
Proceedings of the 31st International Conference on Computational Linguistics, pages 4586–4610
January 19–24, 2025. ©2025 Association for Computational Linguistics

4586

Towards Database-Free Text-to-SQL Evaluation:
A Graph-Based Metric for Functional Correctness

Yi Zhan1*, Longjie Cui2*, Han Weng3*, Guifeng Wang3, Yu Tian3,
Boyi Liu3, Yingxiang Yang3, Xiaoming Yin3, Jiajun Xie3, Yang Sun3†,

1School of Computer Science, Peking University, Beijing, China
2Department of Computer Science, The University of Hong Kong, Hong Kong

3ByteDance Inc., Beijing, China
zhanyi@stu.pku.edu.cn

longjie.cui@connect.hku.hk
{wenghan, wangguifeng, yutian.yt, boyi.liu01, yingxiang.yang,

yinxiaoming, xiejiajun.666, sunyang.46135}@bytedance.com

Abstract

Execution Accuracy and Exact Set Match are
two predominant metrics for evaluating the
functional correctness of SQL queries in mod-
ern Text-to-SQL tasks. However, both metrics
have notable limitations: Exact Set Match fails
when SQL queries are functionally equivalent
but syntactically different, while Execution Ac-
curacy is prone to false positives due to inad-
equately prepared test databases, which can
be costly to create, particularly in large-scale
industrial applications. To overcome these chal-
lenges, we propose a novel graph-based met-
ric, FuncEvalGMN, that effectively overcomes
the deficiencies of the aforementioned metric
designs. Our method utilizes a relational op-
erator tree (ROT), referred to as RelNode, to
extract rich semantic information from the log-
ical execution plan of SQL queries, and embed
it into a graph. We then train a graph neu-
ral network (GNN) to perform graph matching
on pairs of SQL queries through graph con-
trastive learning. FuncEvalGMN offers two
highly desired advantages: (i) it requires only
the database schema to derive logical execution
plans, eliminating the need for extensive test
database preparation, and (ii) it demonstrates
strong generalization capabilities on unseen
datasets. These properties highlight FuncE-
valGMN’s robustness as a reliable metric for
assessing functional correctness across a wide
range of Text-to-SQL applications. The source
code can be found at https://github.com/Leon0-
0/FuncEvalGMN.

1 Introduction

Text-to-SQL (Zelle and Mooney, 1996) (Zhong
et al., 2017) (Qin et al., 2022) is an important task

*Work was done during the internship at ByteDance.
†Corresponding Author: sunyang.46135@bytedance.com

Query: “What are the template IDs used in all documents?”

Gold

Prediction
INNER JOIN documents

ON templates.template_id = documents.template_id;

Executes
Test suite Denotations:

Gold: 4, 10

Prediction: 4, 10

Template_ID Document_Name

10 Robbin CV
 10 Lisa CV
 4 Tom CV

Table: Documents

Template_ID Version_Number

4 7
 5 5
 10 3

Table: Templates

Test Suite !cre_Doc_Template_Mgt"Databases

Figure 1: A false positive example may arise from re-
dundant JOIN operators, particularly when the test suite
constructs tables with foreign key relationships. Here,
the template_id in the Documents table references the
template_id in the Templates table, ensuring every
template_id in Documents exists in Templates. This
results in identical test suite denotations between golden
and predicted SQL queries. However, they are semanti-
cally different, causing a false positive.

in Natural Language Processing (NLP) that con-
verts queries described in natural language into
executable SQL queries. It enables users to interact
with structured databases without requiring exper-
tise in SQL syntax. With the advance of Large
Language Models (LLMs) and their impressive
capabilities, there has been a significant surge in
interest towards generating SQL queries directly
from natural language prompts (Gao et al., 2023)
(Zhang et al., 2023). Consequently, the develop-
ment of robust evaluation methods that ensure both
syntax and functional correctness of the generated
SQL queries has become increasingly important.

Two evaluation metrics are prevalent in existing
listerature. The first one is Execution Accuracy (Yu
et al., 2018), which directly assesses the similarity
in functionality of SQL queries by comparing their
execution outputs. The second metric, Exact Set
Match introduced by Yu et al. (2018), is a specific
example of a broader range of matching-based met-

https://github.com/Leon0-0/FuncEvalGMN
https://github.com/Leon0-0/FuncEvalGMN

4587

rics. This range includes adaptation of the BLEU
metric (Papineni et al., 2002), specifically tailored
for code evaluation (Eghbali and Pradel, 2022; Ren
et al., 2020). Like others, Exact Set Match empha-
sizes the importance of textual similarity.

Despite their predominance, both aforemen-
tioned metric designs have notable limitations. Ex-
act Set Match tends to generate false negatives, as
it may incorrectly identify two functionally equiva-
lent SQL queries as different due to their syntactic
variations (Zhong et al., 2020). Conversely, Execu-
tion Accuracy is prone to generating false positives,
identifying functionally different SQL queries as
equivalent when their outputs on unit tests match
due to inadequately prepared tests or databases.

Since their introduction, various efforts have
been made to improve both metrics. For example,
Zhong et al. (2020) propose Test Suite Accuracy
to improve on Execution Accuracy by using a dis-
tilled and fuzzed database, achieving comprehen-
sive code coverage and distinguishing neighboring
queries. This effectively reduces the false positive
rate of the Execution Accuracy metric. However,
certain cases, such as those involving redundant
JOIN operator (as illustrated in Figure 1), cannot
be completely eliminated. On the other hand, re-
searchers transform the query equivalence problem
into a constraint satisfaction problem and utilize
a generic verifier to determine query equivalence
(Zhou et al., 2022; Wang et al., 2022; Chu et al.,
2018). Nevertheless, some SQL keywords cannot
be converted into equivalent symbolic representa-
tions, which limits its applicability to all queries.
In summary, designing a well-rounded metric with
both low false positive and false negative rates re-
mains an open problem.

In this paper, we propose a novel graph-based
evaluation metric that effectively mitigates both
false negatives and false positives. Specifically, we
parse SQL queries into a Relational Operator Tree
(ROT), referred to as RelNode. Since RelNode is
based on the logical plans of SQL queries, it can
simulate SQL query execution without requiring a
physical database. Moreover, functionally equiva-
lent SQL queries with different syntactic structures
yield similar logical plans. Inspired by RelNode’s
robust logical representation, we formulate the eval-
uation of the functional equivalence of SQL query
pairs as a graph matching problem. In the fol-
lowing section, we first introduce RelNode Partial
Matching (RelPM), a rule-based graph matching
approach that serves as a prototype of our idea.

To enhance generalizability, we then leverage the
Graph Matching Network (GMN) (Li et al., 2019)
and incorporate a global positional embedding into
its cross-attention mechanism to increase its expres-
sive power. Additionally, we pre-train the GMN
using graph contrastive learning, which ensures
better generalization and transferability of graph
representations.

To facilitate the evaluation of SQL functional
correctness, we further develop a dataset called
Spider-pair dev, which is derived from Spider (Yu
et al., 2018). Each data point consists of a prompt
constructed from table schemas and a correspond-
ing question, along with a pair of SQL queries (ref-
erence and generated SQL queries), and a binary
score (0 or 1) indicating the functional equivalence
of the SQL query pair. We evaluate our trained
network on the held-out validation set of Spider
and on out-of-sample test sets created from Wik-
iSQL (Zhong et al., 2017), BIRD (Li et al., 2024)
and Spider-DK (Gan et al., 2021). Compared to
other metrics, our trained graph network, FuncE-
valGMN, achieves a higher AUC on the held-out
validation set and comparable performance on out-
of-sample test sets. This highlights possibilities for
a robust evaluation metric when test databases are
not available.
Contributions. The main contributions of this
paper are as follows: (i) We propose a novel graph-
based evaluation metric that effectively reduces
false negatives and false positives across various
datasets and complexity levels. (ii) We innovatively
introduce RelNodes to represent SQL queries, en-
suring functionally equivalent queries yield similar
logical execution plans. (iii) With RelNodes, we
introduce a rule-based RelPM method. To enhance
generalizability, we use a graph matching neural
network with global positional embeddings and pre-
train it through graph contrastive learning, which
improves its ability to capture differences between
graphs and generalize effectively. (iv) We develop
the Spider-pair dataset for evaluating SQL func-
tional correctness. Our model, named as FuncE-
valGMN, achieves superior AUC on validation and
external test sets, demonstrating its robustness both
with and without databases.

2 Related Work

This section discusses research that focus on code
representation with embeddings. It aligns with our
approach that incorporates pre-trained models and

4588

Gold:

Predict:

One-Hot

ASCII

Linear
Layer

ResNet
Model

Query: “Who is above 34 years old?” Node Feature Embedding

Node Positional Embedding

Linear
Layer

Random
Walk

 G i

......

 G j

......
parse

parse

Add &
Delete Edge

Drop Node
& Edge

Augmentations

A. Graph Construction B. Node Embedding C. Graph Contrastive Learning

Content
Node

Computing
Node

...
Shared

GMN-based
Encoder

Pretrained GMN Model

Matching

Gold Predict

SQL Pairs

Positive Negative

Scores

D. Graph Matching

......

......

Encoding
Methods

Different
Embedding

Figure 2: Overview of FuncEvalGMN approach. We first parse the SQL query pairs into graphs and embed their
nodes, and then train the Graph Matching Network using graph contrastive learning. Finally, the correctness of the
generated SQL is evaluated based on the similarity of the graph representations.

graph-based representations.

Code representation with pre-trained models.
Pre-trained models demonstrate exceptional code
comprehension, significantly enhancing code eval-
uation capabilities. CodeBERTScore (Zhou et al.,
2023) utilizes CodeBERT (Feng et al., 2020) to
encode codes into contextual embeddings and cal-
culates their vector similarity, providing a robust
metric for code quality assessment. Meanwhile,
CodeScore (Dong et al., 2023) introduces a uni-
fied code generation learning framework for pre-
trained models to effectively learn from code exe-
cution. Additionally, GraphCodeBERT (Guo et al.,
2020) incorporates data flow in the pre-training
stage. This approach tracks the flow of variables
and yields meaningful results on downstream tasks,
illustrating the powerful adaptability of these mod-
els to diverse coding contexts.

Graph-based code representations. Effectively
representing source code while preserving crucial
information is essential for various code analysis
tasks (Wang and Li, 2021; Tang et al., 2021). Ab-
stract Syntax Trees (ASTs) offer a tree-based rep-
resentation that emphasizes structural and content-
related aspects while omitting specific syntax de-
tails. To enhance ASTs, Mi et al. (2023); Wang
et al. (2020) integrate explicit semantic edges, such
as data flow and control dependencies, creating
more comprehensive program graphs.

Beyond ASTs, other graphical representations
like Control Flow Graphs (CFGs) (Cota et al.,
1994), Data Flow Graphs (DFGs) (Orailoglu and
Gajski, 1986), and Program Dependence Graphs
(PDGs) (Ottenstein and Ottenstein, 1984) are
widely used in program analysis to capture dif-
ferent aspects of program behavior. For example,

Fang et al. (2020); Shi et al. (2023) leverage CFGs
to address the limitations of ASTs in capturing se-
mantic features and PDGs’ coarse granularity in
detailed code analysis.

However, SQL lacks the inherent structures pro-
vided by CFGs, DFGs, and PDGs. Current meth-
ods for SQL primarily focus on extracting its syn-
tax and structure from ASTs (Cao et al., 2023a;
Zhuo et al., 2021; Cao et al., 2023b). Given this
limitation, a specialized representation is needed
to capture SQL’s unique logical and data flow char-
acteristics. The Relational Operator Tree (ROT)
addresses this by representing SQL queries as a
hierarchy of relational operators, effectively captur-
ing both the sequence and structure of the logical
execution plan (Cyganiak, 2005). Our research pio-
neers the combination of ROT with logic and data
flow to extract SQL syntax and semantics for more
advanced code analysis.

3 From SQL to RelNode

Ren et al. (2020); Eghbali and Pradel (2022) ar-
gue that evaluating model-generated code purely
as natural language may overlook its complex syn-
tactic structure. Conversely, graph-based methods,
as highlighted by Mi et al. (2023); Allamanis et al.
(2018); Wang et al. (2020), effectively abstract this
syntactic structure without omitting crucial infor-
mation. In this section, we introduce ROT, which
adeptly represents SQL queries based on their log-
ical execution plans. Additionally, we explore a
rule-based method utilizing ROT to assess the par-
tial correctness of a SQL query in comparison to
the golden SQL query.
Relational Operator Tree (ROT). To convert a
SQL query into an ROT, we use relational algebra

4589

TableScan Project Sort Limit Project

table outputs outputs
exprs

outputscollation outputsfetch outputsexprs

players player_id

first_name

last_name

hand

birth_date

country_code

input

input

input

first_name

country_code

birth_date field

direction

DESCENDING

first_name

country_code

birth_date

literal

1

first_name

country_code

birth_date

input

input

first_name

country_code

Computing NodeNode Type Content Node

Edge Type AST Edge Logic Edge Data Edge

first_name

country_code

birth_date

birth_date

first_name

country_code

Rels

From

Orderby Limit

value

first
_name

country
_code

Select

value

AST

players

value

first
_name

desc

sort

1

Figure 3: SQL representations using AST (left) and RelNode (right). The AST abstracts SQL purely from a
syntactic perspective, while RelNode offers more semantic information from an execution standpoint. In RelNode,
orange edges represent logic flows. Connected at the second layer of RelNode, they portray the logical sequence of
clause execution. Green-colored data flows represent the pathways of data across various clauses, connecting nodes
representing column names.

to parse the query into a sequence of logical oper-
ations and construct a tree-structured graph based
on their execution order and dependencies (Cyga-
niak, 2005). By leveraging Apache Calcite (Begoli
et al., 2018), we obtain a canonical ROT, known as
RelNode. It refines the logic plan through opera-
tion reordering and redundant clause elimination,
allowing RelNode to uncover similar logical exe-
cution patterns beneath varied syntactic forms (an
example is shown in Appendix D). To facilitate
representation, we categorize RelNode nodes into
Computing Nodes and Content Nodes. This dis-
tinction arises because Computing Nodes are count-
able and serve as operators that form the syntactic
structure of SQL queries, while Content Nodes are
uncountable and represent the query’s parameter
variables as operands, functioning as the leaf nodes
of the tree. Figure 3 shows an example.

RelNode Partial Matching (RelPM). Upon con-
verting the SQL query to the RelNode, we establish
an unbiased rule-based partial matching algorithm
to serve as the benchmark for the matching-based
evaluation (see details in Appendix A). In short,
RelPM is a general matching algorithm applied to
the tree structure, calculating the score for every
matching node. In the Node Matching Algorithm 3,
the score of each node is calculated as a weighted
sum of the node’s own score and the scores of its
children. Algorithm 1 is used to compare the at-
tributes of two nodes. The parameter α is a globally
adjustable free parameter, subject to fine-tuning to
ensure a balanced allocation of matching weights
between the root node and its child nodes. Note
that Algorithm 3 is asymmetric with respect to S
and T . In Algorithm 2, we use an adjustable param-
eter β to calculate the weighted geometric mean to
control the focus on the semantics completion of

the source tree.

4 RelNode Graph Matching Network

As a matching-based method, RelPM still tends to
fail to recognize identical semantics of SQL with
syntactic structure change. Therefore, we propose
a novel approach, FuncEvalGMN, based on the
graph matching network, to further predict the func-
tional correctness of generated SQLs.

As shown in Figure 3 with a specific SQL query,
RelNode already provides a hierarchical organiza-
tion of relational operators via the RelNode edges.
To thoroughly capture syntactic and semantic infor-
mation of SQL, we integrate both data and logic
flows into this graph. Hence, the graph is able to
accurately analyze the complex interactions and
dependencies within SQL subclauses. Therefore, a
SQL query can be represented as a heterogeneous
program graph G = (V, E), where V are nodes
consisting of computing nodes and content nodes,
while E are edges including the edges of RelNode,
data and logic edges.

4.1 Node Feature Embedding
Computing nodes. In SQL, many equivalent syn-
tactic structures can perform the same functional
operations. For instance, a combination of ORDER
BY and LIMIT indicate an equivalent MAX or MIN
operation. Assuming there are M distinct types in
Computing Nodes, we compute the embeddings of
node v with feature xv as h(0)v = Embedding(xv),
where the superscript (0) represents the initial
state, which will be updated as message propagates
through the graph neural network.
Content nodes. The Content Nodes serve as place-
holders for the query’s parameter variables, which
correspond to specific elements of the database

4590

schema. One of the key challenges in text-to-SQL
is the potential for SQL queries that fails due to
incorrect usage of parameter variables, such as ta-
ble and column names. In order to better represent
Content Nodes, we avoid the use of word embed-
ding models, such as Word2Vec (Mikolov et al.,
2013) and FastText (Bojanowski et al., 2017), as
they tend to produce similar embeddings for en-
tities that are semantically related but distinct in
meaning (e.g., column names ‘kid’ and ‘child’).
Instead, we introduce a string-aware embedding
method to distinguish different entities. Specifi-
cally, we have represented each Content Node as
a fixed-length string S = (s1, s2, ..., sn), where
each element is encoded as an ASCII value rang-
ing from 0 to 127. This string is then transformed
into an n-dimensional vector X ∈ R1×n. We then
apply one-hot encoding, expanding the vector to
X ∈ Rn×128. Finally, we adopt a 1D text convolu-
tion model (Kim, 2014) with ResNet structure (He
et al., 2015) to extract the string-level feature. For
the specific architecture, please refer to Appendix B
due to page limitations.

4.2 Positional Embedding
Graph positional encoding injects specific location
information of nodes into a graph neural network
(Dwivedi et al., 2021; Chen et al., 2022; Dwivedi
et al., 2022). Actual functions of nodes in our
setting vary due to unique hierarchical positions
or locations within subtrees. To address such an
issue, we incorporate positional encoding, specifi-
cally using the Random Walk Positional Encoding
(RWPE) (Dwivedi et al., 2021), which is defined
using a k-step random walk:

prw
v = [T 1

vv, T
2
vv, . . . , T

k
vv] ∈ Rk, k ∈ [K],

where T = AD−1 is the state transition matrix of
random walk. A and D represent the adjacency ma-
trix and degree matrix of the graph. T k represents
the k-th power of T . This method employs a simple
random walk matrix approach, concentrating solely
on the probability Tvv of node v returning to itself.
This strategy offers a distinct node representation,
based on the premise that each node possesses a
unique k-hop topological neighborhood, particu-
larly when k is sufficiently large.

We propose two methods for computing node
positional encoding. The first method computes po-
sitional encoding for nodes within each graph sep-
arately. The second method connects correspond-
ing program graphs through Rels and predefined

Figure 4: Positional Encoding: We compute po-
sitional encoding for graph pairs by connecting
Rels nodes and seed nodes across the graphs.

Rels

2. Cross
Attention

Rels

SQL 1
Positional

Graph Embeddings

1. Inner Graph
Message Passing

Vector Space Similarity

Weighted Sum Pooling Weighted Sum Pooling

Edge Type

Node Feature

SQL 2

Figure 5: Graph Embedding: Graph pair embed-
ding is computed with integrating inner graph mes-
sage passing and a cross attention computation.

seed nodes to create a merged graph, as shown
in Figure 4. This merged graph allows us to cal-
culate global positional encoding, improving the
assessment of functional consistency between the
SQLs in terms of local substructures. The Rels
nodes are the top nodes in each RelNode, and Seed
nodes are those that match between two RelNodes
with their corresponding subtrees S1 and S2, where
RelPM(S1, S2) = 1. The node colors in Figure 4
represent the average probability of self-return after
K = 4 random walks, highlighting feature simi-
larities for nodes with similar substructures. Ad-
ditionally, a merged graph provide its nodes with
more random walk paths, reducing self-returns and
emphasizing hierarchical positions.

4.3 Graph Embedding

Consider two graphs constructed from SQL queries,
G1 = (V, E) and G2 = (V, E). We utilize a GMN
based on (Li et al., 2019) to generate graph repre-
sentations and assess their similarity. We focus on
GMN’s message-passing mechanism (Figure 5) in
this section, deferring details to Appendix C.
Inner-graph message passing. The message
passed at time t for the neighbor set N(v) of node

4591

v is:

m(t+1)
v =

∑
u∈N(v) finner(h

(t)
v , h

(t)
u , euv),

where m
(t+1)
v represents the message received by

node v at setp t + 1, h(t)v and h
(t)
u are represen-

tations of node v and u in step t. euv is the rep-
resentation of edge between u and v. We com-
pute the embeddings of each edge e ∈ {0, 1, 2} as
euv = Embedding(e), since there are three types
of edges (See Figure 3).
Cross-graph message passing. In this stage, cross-
attention is used to capture the semantic similarity
between two graphs jointly. Specifically, for a node
v in graph G1, we consider G2(v) to represent the
corresponding set of nodes in graph G2. Different
from inner-graph message passing, the node rep-
resentation rv is a nonlinear combination of the
node’s feature embedding xv and positional em-
bedding pv. Furthermore, the node’s positional
encoding is updated in this process (Dwivedi et al.,
2021), giving more expressive node representation
on top of Li et al. (2019). Specifically, µv is cross-
graph message between node v to another graph,
which is computed as:

µ
(t+1)
v =

∑
u∈G2(v)

au→v(r
(t)
v − r

(t)
u), r

(t)
v = MLP(h(t)v ⊕ p

(t)
v)

au→v = exp(s(r
(t)
v ,r

(t)
u))∑

u∈G2(v)
exp(s(r

(t)
v ,r

(t)
u))

, s(rv, ru) =
rv ·ru√

d
,

where au→v is the attention weight of node v in G1

to u in G2, s(·, ·) is the similarity function, d is the
dimension of the node embedding h, and the factor
1/
√
d follows from that in (Vaswani et al., 2017).

4.4 Graph Contrastive Learning
Given the limited availability of labels in our
dataset, we adopt a graph pretraining approach to
enhance generalization, following You et al. (2020).
We generate positive and negative samples using
techniques like node dropping and edge perturba-
tion, and apply the same contrastive loss in You
et al. (2020). Further details are in Appendix C.4.

5 Experiment
5.1 Datasets
In this section, we describe the composition of our
dataset. Each entry consists of a SQL pair, where
the generated SQL query is matched with its cor-
responding ground truth, labeled as positive (func-
tionally identical) or negative (functionally differ-
ent) (1/0). Further details on the training dataset
can be found in Appendix E.

Training dataset. We construct the training dataset
from the Spider dataset (Yu et al., 2018), consisting
of approximately 18K SQL query pairs. Keyword
statistics are provided in Table 6. We refer to this
dataset as Spider-pair train.
Test dataset. Our primary test dataset, named
Spider-pair dev, is derived from the Spider dev
set, which uses a distinct database not overlapping
with the training data. To assess the generalizabil-
ity of FuncEvalGMN to unseen datasets, we also
prepare test datasets from widely used sources, in-
cluding WikiSQL (Zhong et al., 2017), BIRD (Li
et al., 2024), and Spider-DK (Gan et al., 2021), re-
ferred to as WikiSQL-pair dev, BIRD-pair dev, and
Spider-DK-pair dev, respectively. These datasets
range from 0.8K to 3K in size, as shown in Table 4,
and are collectively referred to as the test datasets.
Dataset labeling process. The labeling process for
the training dataset is outlined in Figure 13 (Ap-
pendix E.2) and consists of three steps: (i) Denota-
tion with test suite, (ii) GPT-4 Evaluation, and (iii)
Human Annotation. The denotation step assigns
initial labels to each SQL pair using the test suite,
GPT-4 performs a consistency check, and human
annotators review inconsistent labels to make the
final judgment. For the test dataset, each sample is
manually labeled.

5.2 Evaluation Results
We validate evaluation metrics against the func-
tional correctness using correlation evaluation met-
rics such as AUC, Spearman R (rs) and Pearson
R (rp), as discussed in Appendix I. To compre-
hensively evaluate our model, we compare our
approach with four different kinds of methods.
Matching-based. We baseline the comparisons
with commonly used matching-based metrics for
code evaluation including CrystalBLEU (Eghbali
and Pradel, 2022), CodeBLEU (Ren et al., 2020),
as well as our developed RelPM and ASTPM.
Pre-trained model-based. We use our fine-tuned
CodeScore and CodeBERTScore as baselines. We
use GPT-4 as an evaluator (G-eval) with prompt
format from CriticGPT (McAleese et al., 2024).
Equivalence verifier-based. To evaluate from the
perspective of SQL equivalence, we compare our
approach with the state-of-the-art SQL equivalence
verifier, SPES (Zhou et al., 2022). The verifier can
identify samples with the same functionality with
the ground truths as positives.
Execution accuracy-based. Using test suite with
augmentation of the existing database up to 20

4592

Method Type Method
Dataset

Spider-pair dev BIRD-pair dev Spider-DK-pair dev WikiSQL-pair dev
AUC τ rs AUC τ rs AUC τ rs AUC τ rs

Matching-based

CrystalBLEU 0.6721 0.2424 0.2966 0.7617 0.3130 0.3831 0.7364 0.2963 0.3627 0.7095 0.2869 0.3373
CodeBLEU (with ROT) 0.8395 0.4852 0.5864 0.7776 0.3917 0.4796 0.7489 0.3241 0.3852 0.6425 0.1884 0.2270
ASTPM 0.8281 0.4824 0.5718 0.8038 0.3683 0.4457 0.8712 0.4838 0.5723 0.6658 0.2284 0.2667
RelPM (Ours) 0.8442 0.5028 0.5967 0.8357 0.4054 0.4927 0.8872 0.4929 0.5959 0.7419 0.3427 0.3910

Pre-trained Model-based
CodeBertScore 0.7044 0.2877 0.3522 0.7405 0.2875 0.3521 0.7522 0.3160 0.3869 0.6707 0.2216 0.2713
CodeScore 0.8637 0.5123 0.6268 0.8051 0.4296 0.5257 0.7107 0.2643 0.3233 - - -
G-eval (GPT-4) 0.6386 0.3504 0.3504 0.7042 0.3685 0.3685 0.7212 0.4103 0.4103 0.6139 0.2857 0.2857

Equivalence Verifier-based SPES 0.7109 0.4805 0.4805 0.7496 0.5565 0.5565 0.7577 0.5805 0.5805 0.6083 0.2103 0.2103
Execution Accuracy-based Test Suite 0.9637 0.9316 0.9316 0.9267 0.8994 0.8994 0.9277 0.8958 0.8958 - - -
GNN FuncEvalGMN(Ours) 0.9750 0.8529 0.8529 0.9272 0.7563 0.7563 0.9753 0.8741 0.8741 0.9910 0.9155 0.9155

Table 1: The performance for different methods on four dev Datasets. The best results for each dataset are
highlighted in bold, with FuncEvalGMN achieving the highest overall AUC score.

Query Difficulty Methods Dataset
Spider-pair dev BIRD-pair dev Spider-DK-pair dev

AUC τ rs AUC τ rs AUC τ rs

Easy FuncEvalGMN 0.9908 0.9291 0.9291 0.9371 0.7745 0.7745 0.9921 0.9227 0.9227
Test Suite 0.9712 0.9093 0.9093 0.9381 0.9093 0.9093 0.9406 0.9051 0.9051

Medium FuncEvalGMN 0.9767 0.8621 0.8621 0.9218 0.7010 0.7010 0.9898 0.9200 0.9200
Test Suite 0.9554 0.9113 0.9113 0.8806 0.8513 0.8513 0.9183 0.8762 0.8762

Hard FuncEvalGMN 0.9730 0.8260 0.8260 0.6810 0.5159 0.5159 0.9490 0.7768 0.7768
Test Suite 0.9715 0.9533 0.9533 0.8871 0.8643 0.8643 0.9643 0.9503 0.9503

Extra Hard FuncEvalGMN 0.9517 0.7425 0.7425 - - - 0.9348 0.7249 0.7249
Test Suite 0.9494 0.9317 0.9317 - - - 0.8910 0.8667 0.8667

Table 2: Performance comparison of FuncEvalGMN and test suite on different datasets for various query difficulties.
The best results for each dataset are highlighted in bold.

iterations, we further reduce false positives, leading
to a more accurate assessment of the gold query’s
functionality. Note that our approach does not rely
on any existing database for testing.
Results. As in Table 1, our proposed RelPM sig-
nificantly surpasses all matching-based methods in
terms of AUC.1 By comparison, ASTPM’s perfor-
mance is lower by about 1.61%. This shows that
RelNode can mitigate the impact of syntactic dif-
ferences. To better exploit the potentials of Code-
BLEU, we replace AST with RelNode. However,
CodeBLEU only performs coarse-grained subtree
matching on syntax trees, and its performance is
merely on par with ASTPM. This highlights the
superiority of our proposed partial matching algo-
rithm. Additionally, since CrystalBLEU disregards
the syntactic structure and semantic information
of SQL queries, it performs the worst among all
matching-based algorithms.

In pre-trained model-based approaches, Code-
Score treats codes as token sequences and concate-
nates the generated code with reference code. A
projection head predicts functional consistency be-
tween the ground truth and the predicted code. De-
spite the strength of pre-training, CodeScore scores
11.13% lower than FuncEvalGMN and outper-
forms non-finetuned G-Eval and CodeBERTScore
on Spider-pair dev. However, it performs poorly on
Bird-pair dev and Spider-DK-pair dev.

1FuncEvalGMN outputs a continuous score.

SPES generates symbolic query representations
and establishes equivalence by assessing their con-
tainment relationships. However, it lacks full sup-
port for all SQL keywords and struggles with case-
sensitive strings, leading to an AUC of only 71.09%
on Spider-pair dev.

Generalization. Generalization on unseen datasets
is of key importance for FuncEvalGMN. To high-
light distribution differences, we assess the com-
plexity of Spider-pair dev, BIRD-pair dev, and
WikiSQL-pair dev, with keyword distributions
shown in Table 6 (see Appendix M for details).
BIRD-pair dev has a significantly higher usage of
JOIN and WHERE, indicating more complex ta-
ble and query structures. Despite a drop in corre-
lation on BIRD-pair dev due to this domain gap,
FuncEvalGMN, trained only on Spider-pair, still
outperforms other metrics, including the test suite,
suggesting its potential as an evaluation metric for
Text-to-SQL applications in general.

In industrial practice, SQL queries are mainly
categorized into DDL, DML, and DQL. Given
that DDL statements generally have simpler log-
ical structures, our focus is on the more complex
DML and DQL forms, particularly SELECT state-
ments, which constitute a substantial part of SQL
queries. Our chosen datasets, including Spider and
BIRD, cover nearly all commonly used keywords
in SELECT queries, such as GROUP BY, JOIN,
and ORDER BY, as indicated by Table 6 in Ap-

4593

Sc
or

e
(%

)

FuncEvalGMN Test Suite

94.06 92.30

76.24

89.34

76.24

89.34

50

55

60

65

70

75

80

85

90

95

100

AUC 𝜏 𝑟!

(a) Join Queries

95.82 95.51

78.68

93.05

78.68

93.05

50

55

60

65

70

75

80

85

90

95

100

FuncEvalGMN Test Suite

AUC 𝜏 𝑟!

(b) Nested Queries

95.78 94.84

82.60

91.82

82.60

91.82

50

55

60

65

70

75

80

85

90

95

100

FuncEvalGMN Test Suite

AUC 𝜏 𝑟!

(c) Group By Queries

Figure 6: Performance comparison of FuncEvalGMN and test suite across different datasets for Join Queries, Nested
Queries, and Group By Queries using the combination of BIRD-pair dev, Spider-pair dev, and Spider-DK-pair dev
datasets. It can be observed that the AUC scores of the FuncEvalGMN method are consistently higher than those of
test suite.

pendix M. The BIRD dataset, in particular, spans
37 specialized domains and closely mirrors real-
world contexts, ensuring that the logical forms in
our datasets encompass a wide range of SQL query
scenarios.

However, beyond merely covering SQL key-
words, it is essential to consider the structural com-
plexity that arises in real-world scenarios. The
complexity of SQL queries often results from
nested subqueries, which correspond to subgraphs
in our graph-based representation. Importantly,
such nested structures do not significantly affect
our model’s evaluation capabilities. This is demon-
strated by the model’s strong performance on the
more complex BIRD dataset, despite being trained
solely on the simpler Spider dataset (see Table 1).

Additionally, when extending our evaluation to
real-world industrial settings, it is important to
recognize that such datasets often contain a sig-
nificantly larger number of tables and columns,
resulting in greater structural complexity, which
may affect the accuracy of Text-to-SQL generation
tasks. However, despite this complexity, the logical
structures and syntax of real-world queries remain
similar to those found in datasets such as Spider
and BIRD. This similarity minimizes the impact
of increased structural complexity on our evalua-
tion method, further supporting its effectiveness in
diverse and complex real-world SQL scenarios.
Observation. In Figure 6 of Appendix J, we show a
comparision of the performance for FuncEvalGMN
and test suite on queries with important keywords.
On queries related to Join, our FuncEvalGMN ap-
proach is superior to test suite on all test datasets.
When there are foreign key relationships in certain
tables, test suite cannot effectively identify these re-
dundancies. A further decomposition into datasets
is shown in Table 5. For more information, please
refer to Appendix F and Appendix G. However,

our approach shows performance deterioration in
difficult cases in BIRD-pair dev dataset, which is
demonstrated in Table 2. This suggests further fine-
tuning data is needed.

5.3 Ablation Studies

This section presents ablation studies on variations
of FuncEvalGMN and other graph matching meth-
ods. We summarize the results in Table 3.

Type Method AUC Score

GMN (0): ASTGM 0.9205
(1): RelNodeGM 0.9514
(2): (1) + logic + data 0.9565
(3): (2) + separated PE 0.9560
(4): (2) + global PE 0.9707
(5): (4) + graphCL 0.9750

Other GMNNs (5): (2) + MGMN 0.8839
(6): (2) + EGSC 0.9127
(7): (2) + ERIC 0.9303

Table 3: Experiment (0) parses SQL into an AST,
whereas (1) parses SQL into a RelNode; (2) incorporates
control flow and data flow into the RelNode to capture
more semantic information. Experiments for (0), (1),
and (2) are conducted on the original version of GMN;
(3) and (4) build upon (2), and introduce different Posi-
tional Embeddings (PE) into the GMN’s cross attention.
The PE in (3) is calculated on separate graphs, while
the PE in (4) is derived from the merged graph obtained
by connecting seed nodes. Experiment (5) introduces
graph contrastive learning for model pre-training.

AST Graph Matching (ASTGM). We train
FuncEvalGMN based on ASTs.2 In the Spider-pair
dev test dataset achieves an AUC of 92.05%.
RelNode Graph Matching (RelGM). FuncEval-
GMN based on RelNode improves performance by
3.09% on Spider-pair dev. Further integrating logic

2We adopt this implementation: https://github.com/
klahnakoski/mo-sql-parsing.

https://github.com/klahnakoski/mo-sql-parsing
https://github.com/klahnakoski/mo-sql-parsing

4594

and data flow edges into RelNode boosts AUC by
an additional 0.51%.
RelGM with Positional Encoding. Further en-
hancements to the GMN include learnable Posi-
tional Embeddings (PE) to include structural and
positional information. Experiment (3), apply-
ing PE to two separate graphs, AUC decreases by
0.05% on Spider-pair dev, which indicates that em-
phasizing structural differences in SQL pairs with
similar syntactic structures fails to provide clear
positional inductive bias. In contrast, Experiment
(4) calculates global PE on a merged graph pair,
leading to gains of 1.47%. Global PE not only
highlights differences between nodes at different
levels in RelNode but also brings features of poten-
tially matching subtrees closer, thereby facilitating
generalization beyond the training dataset.
RelGM with GCL. GCL facilitates unsupervised
representation learning on graph-structured data
by leveraging contrastive learning. This approach
maximizes feature consistency across different aug-
mented views, improving the robustness of graph
representations, and leads to a 0.43% performance
increase for FuncEvalGMN. Figure 18 shows a
faster convergence and significant improvement
with this pretraining process.
Other Graph Matching Networks. In addition,
we experiment with various Graph Matching Neu-
ral Networks (GMNNs), but their performance is
inferior to that of GMN. We speculate that in SQL
evaluation task, compared to MGNN (Ling et al.,
2021), our optimized GMN is better at understand-
ing SQL ROT structure via global positional en-
coding . Furthermore, compared to EGSC (Qin
et al., 2021) and ERIC (Zhuo and Tan, 2022), it can
better focus on feature differences between nodes
through cross-attention.

6 Discussion

While our metric demonstrates strong performance
in evaluating the functional equivalence of SQL
queries, it still has limitations. These limitations
arise primarily due to two key factors: the lack of
column type information and insufficient diversity
of training data. In the following, we detail these
issues and propose potential solutions.

As shown in Figure 7, the unnecessary CAST to
DOUBLE can mislead FuncEvalGMN, as it does
not have access to the original data type of the mpg
column.

As Figure 8 shows, the absence of similar data

Reference SQL:	
SELECT MAX(CAST(mpg AS DOUBLE))
FROM cars_data;

Generated SQL:
SELECT MAX(mpg) FROM cars_data;

Figure 7: False Positive: Missing Column Information

Reference SQL:	
SELECT Name FROM country GROUP
BY Name HAVING COUNT() > 2;

Generated SQL:
SELECT Name FROM country GROUP BY
Name HAVING COUNT() >= 3;

Figure 8: False Negative: Insufficient Training Dataset

in the training data set means that our model has
not learned that ">2" and ">=3" are semantically
equivalent, resulting in false negatives.

There are two potential improvements. First,
enhancing our graph representation by embedding
schema information, such as column data types,
key type (foreign keys, primary keys, etc.) and
data lineage constraints, could provide the model
with critical contextual information. Second, by
prompting LLMs to allow for generation of more
hard positive/negative cases, a more robust data
distribution is provided. We believe these methods
will potentially solve issues of the misjudged cases,
and we will leave it for future work.

7 Conclusion

This paper presents FuncEvalGMN, a novel graph-
based approach for accurate evaluation of func-
tional correctness of text-to-SQL. This method in-
volves transforming SQL queries into a graph that
captures its syntactic and semantic essence, using a
combination of node types and encoding strategies
to represent SQL structures and parameters. We
leverage Graph Matching Networks to assess graph
similarity, incorporating positional embedding to
improve structural understanding. We develop a
training and test dataset, for the purpose of training
FuncEvalGMN and verifying generalization. Look-
ing forward, we aim to extend this methodology
to additional programming languages, exploring
its potential to generalize across diverse coding
paradigms.

4595

References
Miltiadis Allamanis, Marc Brockschmidt, and Mah-

moud Khademi. 2018. Learning to represent pro-
grams with graphs. In International Conference on
Learning Representations.

Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde,
Michael J Mior, and Daniel Lemire. 2018. Apache
calcite: A foundational framework for optimized
query processing over heterogeneous data sources.
In Proceedings of the 2018 International Conference
on Management of Data, pages 221–230.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vec-
tors with subword information. Transactions of
the association for computational linguistics, 5:135–
146.

Ruisheng Cao, Lu Chen, Jieyu Li, Hanchong Zhang,
Hongshen Xu, Wangyou Zhang, and Kai Yu. 2023a.
A heterogeneous graph to abstract syntax tree frame-
work for text-to-sql. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Ruisheng Cao, Hanchong Zhang, Hongshen Xu, Jieyu
Li, Da Ma, Lu Chen, and Kai Yu. 2023b. Astormer:
An ast structure-aware transformer decoder for text-
to-sql. arXiv preprint arXiv:2310.18662.

Dexiong Chen, Leslie O’Bray, and Karsten Borg-
wardt. 2022. Structure-aware transformer for graph
representation learning. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 3469–3489. PMLR.

Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Che-
ung, and Dan Suciu. 2018. Axiomatic foundations
and algorithms for deciding semantic equivalences
of sql queries. Preprint, arXiv:1802.02229.

Bruce A Cota, Douglas G Fritz, and Robert G Sar-
gent. 1994. Control flow graphs as a representa-
tion language. In Proceedings of Winter Simulation
Conference, pages 555–559. IEEE.

Richard Cyganiak. 2005. A relational algebra for sparql.
Digital Media Systems Laboratory HP Laboratories
Bristol. HPL-2005-170, 35(9).

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretrain-
ing for text-to-sql. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics.

Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li,
Ge Li, and Zhi Jin. 2023. Codescore: Evaluating
code generation by learning code execution. arXiv
preprint arXiv:2301.09043.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan
Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. 2022. Benchmarking graph neural net-
works. Preprint, arXiv:2003.00982.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Lau-
rent, Yoshua Bengio, and Xavier Bresson. 2021.
Graph neural networks with learnable structural
and positional representations. arXiv preprint
arXiv:2110.07875.

Aryaz Eghbali and Michael Pradel. 2022. Crystalbleu:
precisely and efficiently measuring the similarity
of code. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software
Engineering, pages 1–12.

Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang,
and Qingkai Shi. 2020. Functional code clone
detection with syntax and semantics fusion learn-
ing. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and
analysis, pages 516–527.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics.

Yujian Gan, Xinyun Chen, and Matthew Purver.
2021. Exploring underexplored limitations of
cross-domain text-to-sql generalization. Preprint,
arXiv:2109.05157.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recogni-
tion. Preprint, arXiv:1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

https://proceedings.mlr.press/v162/chen22r.html
https://proceedings.mlr.press/v162/chen22r.html
https://arxiv.org/abs/1802.02229
https://arxiv.org/abs/1802.02229
https://arxiv.org/abs/1802.02229
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
https://doi.org/10.18653/v1/p18-1033
https://doi.org/10.18653/v1/p18-1033
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

4596

Jin Huang and Charles X Ling. 2005. Using auc and
accuracy in evaluating learning algorithms. IEEE
Transactions on knowledge and Data Engineering,
17(3):299–310.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback.
Preprint, arXiv:1704.08760.

Maurice G Kendall. 1938. A new measure of rank
correlation. Biometrika, 30(1/2):81–93.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Preprint, arXiv:1408.5882.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals,
and Pushmeet Kohli. 2019. Graph matching net-
works for learning the similarity of graph structured
objects. In International conference on machine
learning, pages 3835–3845. PMLR.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. 2015. Gated graph sequence neu-
ral networks. arXiv preprint arXiv:1511.05493.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma,
Fangli Xu, Alex X Liu, Chunming Wu, and Shouling
Ji. 2021. Multilevel graph matching networks for
deep graph similarity learning. IEEE Transactions
on Neural Networks and Learning Systems.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment. Preprint, arXiv:2303.16634.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron
Uribe, Evgenia Nitishinskaya, Maja Trebacz, and
Jan Leike. 2024. Llm critics help catch llm bugs.
Preprint, arXiv:2407.00215.

Qing Mi, Yi Zhan, Han Weng, Qinghang Bao, Longjie
Cui, and Wei Ma. 2023. A graph-based code repre-
sentation method to improve code readability classi-
fication. Empirical Software Engineering, 28(4):87.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Alex Orailoglu and Daniel D Gajski. 1986. Flow
graph representation. In Proceedings of the 23rd
ACM/IEEE Design Automation Conference, pages
503–509.

Karl J Ottenstein and Linda M Ottenstein. 1984.
The program dependence graph in a software de-
velopment environment. ACM Sigplan Notices,
19(5):177–184.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, page 311–318,
USA. Association for Computational Linguistics.

A Pranklin. 1974. Introduction to the Theory of
Statistics.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.
A survey on text-to-sql parsing: Concepts, methods,
and future directions. Preprint, arXiv:2208.13629.

Can Qin, Handong Zhao, Lichen Wang, Huan Wang,
Yulun Zhang, and Yun Fu. 2021. Slow learning and
fast inference: Efficient graph similarity computa-
tion via knowledge distillation. Advances in Neural
Information Processing Systems, 34:14110–14121.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Chaochen Shi, Borui Cai, Yao Zhao, Longxiang Gao,
Keshav Sood, and Yong Xiang. 2023. Coss: lever-
aging statement semantics for code summarization.
IEEE Transactions on Software Engineering.

Ze Tang, Chuanyi Li, Jidong Ge, Xiaoyu Shen, Zheling
Zhu, and Bin Luo. 2021. Ast-transformer: Encod-
ing abstract syntax trees efficiently for code sum-
marization. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), pages 1193–1195. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in neural information
processing systems, 30.

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi
Jin. 2020. Detecting code clones with graph neu-
ral network and flow-augmented abstract syntax
tree. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 261–271. IEEE.

Yanlin Wang and Hui Li. 2021. Code completion by
modeling flattened abstract syntax trees as graphs.
In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 14015–14023.

Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding,
Gansen Hu, Ding Ding, Chuzhe Tang, Haibo Chen,
and Jinyang Li. 2022. Wetune: Automatic dis-
covery and verification of query rewrite rules. In
Proceedings of the 2022 International Conference on
Management of Data, SIGMOD ’22, page 94–107,
New York, NY, USA. Association for Computing
Machinery.

https://arxiv.org/abs/1704.08760
https://arxiv.org/abs/1704.08760
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2407.00215
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://doi.org/10.1145/3514221.3526125
https://doi.org/10.1145/3514221.3526125

4597

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis
from natural language. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):1–26.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. 2020. Graph
contrastive learning with augmentations. Advances
in neural information processing systems, 33:5812–
5823.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence -
Volume 2, AAAI’96, page 1050–1055. AAAI Press.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought. Preprint, arXiv:2310.17342.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-sql with distilled test suites.
arXiv preprint arXiv:2010.02840.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
Preprint, arXiv:1709.00103.

Qi Zhou, Joy Arulraj, Shamkant B Navathe, William
Harris, and Jinpeng Wu. 2022. Spes: A sym-
bolic approach to proving query equivalence under
bag semantics. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE), pages
2735–2748. IEEE.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Gra-
ham Neubig. 2023. Codebertscore: Evaluating code
generation with pretrained models of code. arXiv
preprint arXiv:2302.05527.

Wei Zhuo and Guang Tan. 2022. Efficient graph
similarity computation with alignment regulariza-
tion. Advances in Neural Information Processing
Systems, 35:30181–30193.

Zhongliu Zhuo, T Cai, Xiaosong Zhang, and Fengmao
Lv. 2021. Long short-term memory on abstract syn-
tax tree for sql injection detection. IET Software,
15(2):188–197.

https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

4598

A RelNode Partial Matching (RelPM)

RelPM calculates the matched nodes and their
scores for each RelNode, using the F-beta score
to determine the similarity between the two SQLs.
We divide the process into three parts: Node Match-
ing, RelNode Scoring, and Similarity Evaluation.

Algorithm 1 ROT Node Comparison

1: function CALC(node, Node)
2: if node.val == Node.val then
3: return 1
4: end if
5: return 0
6: end function

Algorithm 2 RelPM Score
1: Let S be the source tree.
2: Let T be the target tree.
3: function RELPM(S, T)
4: recall← NODEMATCH(S, T)
5: precision← NODEMATCH(T, S)

6: Fβ = (1+β2)×precision×recall
β2×precision+recall

7: return Fβ

8: end function

Algorithm 3 Node Match
1: procedure NODEMATCH(S, T)
2: mroot ← CALC(S, T)
3: if S or T is a leaf node then
4: return mroot

5: else
6: scores← an empty list
7: for each child s in S.children do
8: m← 0
9: for each child t in T.children do

10: m← max(m, (
11: (NODEMATCH(s, t)))
12: end for
13: scores.add(m)
14: end for
15: mchildren = Sum(scores)

Length(scores)
16: return mroot ∗α+(1−α)∗mchildren

17: end if
18: end procedure

A.1 Node Matching

When matching two SQL queries’ Relational Oper-
ator Trees, we can designate one as the source tree
and the other as the target tree, then use depth-first

search to find their matching node sets. When eval-
uating the match for the target tree, the source tree
is treated as a reference to measure how well the
nodes of the target tree align with it. The success of
node matching is determined by scoring against l
candidate matching nodes, with the highest-scoring
node being selected as the final match. The formula
for this process is m = max{mj}, j ∈ {0, 1, ...l}
where mj represents matching score of node n
with a candidate matching node nj in another tree,
which can be calculated as:

mj = α×mj
self+(1−α)

∑N
i=0m

j

childi

N
α ∈ (0, 1)

The mj
self represents the matching score of the

node itself with the candidate matching node, and
mj

child indicates the maximum matching score of
child node between two trees. The calculation of
mchild is recursive, following the same method as
m, until it reaches leaf nodes. Additionally, as
Figure 9 illustrates that α serves as a weighting
coefficient to balance the significance between the
scores of a node and those of its children. A node
colored in red signifies a successful match, whereas
a gray node denotes an unsuccessful one. When
α falls below 0.5, the emphasis shifts towards the
matching outcomes of the child nodes, leading us
to circumvent the "OR" and "AND" logic in favor
of matching a greater number of child nodes. Con-
versely, when α exceeds 0.5, the focus is placed on
matching the parent node, resulting in the failure to
match for all corresponding subtree nodes beneath
it.

mj
self =

{
1 if val(n) = val(nj)

0 otherwise

For a given node, its matching score is determined
by the candidate matching node nj . If the attributes
of both nodes are identical, it is considered that a
match can be established.

A.2 RelNode Scoring

For trees that exhibit matching information, we ad-
just the weights of clauses and key nodes according
to their importance, thereby determining the overall
score. The scoring equation is defined as:

s = ω × sself +

∑N
i=0 ω

i × sichild
N

,

where ω +
∑N

i=0 ω
i = 1, sself = σ, σ ∈ (0, 1)

4599

Figure 9: Partial Matching

Here, ω represents the weighting factor, and sself
denotes the node’s own score, which is calculated
during the process of matching stage. The calcula-
tion starts from the root node and proceeds recur-
sively, combining the scores of the node itself and
its children through a weighted sum.

A.3 Similarity Evaluation

By performing a cross-comparison between the
source and target trees, "Precision" calculates the
percentage of nodes in the source tree that success-
fully find matches in the target tree, while "recall"
measures the percentage of nodes in the target tree
that are matched in the source tree. We compute
the weighted geometric mean,

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall

When assessing code generation models, our
main focus is on verifying if the generated code
fully aligns with the semantics of the reference
code. In this context, the reference code acts as the
target tree, while the generated code represents the
source tree. Hence, we give priority to recall in our
evaluation, indicating that we assign a relatively
high value to β.

B Content Node Feature Embedding

Figure 10 depicts the process of representing a Con-
tent Node, using "abc_cba" as an example. Initially,
the string is encoded into a one-dimensional vec-
tor through ASCII encoding. Following this, each
element of the vector is transformed via one-hot

encoding. As a result, "abc_cba" is encoded into
a 64 × 128 matrix. In this context, 64 denotes the
string’s length, with any deficiency up to 64 being
compensated by zero padding. The 128 dimension
reflects the ASCII one-hot encoding’s dimension-
ality. To enhance the characterization of Content
Nodes, we used a ResNet (He et al., 2016) model.
This model comprises eight residual blocks (or-
ganized into 4 layers), with each block primarily
employing 1D convolutional layers as its core com-
ponents.

C RelNode Graph Matching Network

In addition to message passing, the other imple-
mentation details of GMN are as follows:

C.1 Update Function

The update function integrates all gathered mes-
sages to update each node’s representation at every
iteration step. This process is mathematically for-
mulated as:

h(t+1)
v = fupdate(h

(t)
v ,m(t+1)

v , µ(t+1)
v),

In this equation, h(t+1)
v is the updated represen-

tation of node v at step t+1. The function fupdate,
which in our implementation is a Gated Recurrent
Unit (GRU), updates the node’s feature represen-
tation using its previous state h

(t)
v , the inner-graph

message m
(t+1)
v , and cross-graph communication

µ
(t+1)
v .

4600

Figure 10: The Architecture of Content Node Feature
Embedding Model.

C.2 Aggregator

Aggregation is to calculate a representation for the
entire graph. Following T propagation steps, an
aggregation function processes the set of node rep-
resentations to produce a graph-level representation
hG. The aggregation method we utilize is proposed
in Li et al. (2015):

hG = MLPG

(∑
v∈G(v) σ(MLPgate(h

(T)
v))⊙MLP (h

(T)
v)

)
In this method, a gated weighted sum, which

aggregates information across all nodes and filters
out irrelevant data, proves to be more effective than
a simple summation.

C.3 Similarity Metric

Once we obtain the graph representations, hG1 and
hG2 , for the graph pair (G1, G2), we evaluate their
similarity using a vector space metric. Suitable
metrics include Euclidean, cosine, or Hamming
similarities. Here, we employ the Euclidean dis-
tance as the similarity metric, which is defined as:

s(hG1 , hG2) = ∥hG1 − hG2∥2.

C.4 Graph Contrastive Learning

Inspired by the work of GraphCL (You et al., 2020),
we have attempted various graph augmentation
strategies on each RelNode graph, for instance,
node dropping, edge perturbation, attribute mask-
ing and subgraph. The details of these augmenta-
tion strategies are given below:
Node dropping. For graph G, a specified number
of random nodes and their incident edges will be
removed. The dropout probability for each node
is determined by an independent and identically
distributed (i.i.d.) uniform distribution by default.
Edge perturbation. The connectivity of graph G
will be disrupted by randomly adding or remov-
ing a certain proportion of edges. We also utilize
an independent and identically distributed (i.i.d.)
uniform distribution to decide whether to retain or
remove each edge.
Attribute masking. The attribute masking re-
quires the model to use the contextual information
from the remaining known attributes to predict the
masked vertex attributes.
Subgraph. We use random walk to find the sub-
graph within the graph G and use this subgraph
as an augmentation graph to compare with other
augmented graphs.

According to the findings reported in GraphCL,
it was observed that the combination of multiple
augmentation strategies yields superior gains in re-
sults. As such, we conducted several experiments
with different combinations and ultimately identi-
fied the most effective combination, which involves
applying attribute masking with a ratio of 0.1 on
node features and node dropping with a ratio of 0.1.
Therefore, for a batch of N graphs, 2N augmented
graphs are generated, we choose the augmented
graph from the same original graph as the positive
samples, while the other N − 1 graphs in the batch
serve as negative samples. Noting that after the
augmentation, the representation of each sample is
still obtained through the graph matching network.

D Equivalent Conversion Capabilities of
RelNode

Calcite converts relational algebra expressions gen-
erated by the parser into an execution plan, apply-
ing several optimization rules in the process. These
optimization rules enable equivalent transforma-
tions of relational expressions, such as Predicate
Pushdown, Constant Folding and Column Pruning.

In our work, we utilize execution plans gener-

4601

Figure 11: An Example of Predicate Pushdown

Figure 12: The RelNode Structure of above SQLs.

4602

Query: “Who is above 34 years old?”

Gold SELECT NAME FROM People
WHERE AGE > 34

Predict SELECT NAME FROM People
WHERE AGE >= 34

SQL-Pair Label Correction

SQL
Generation

LLMs for SQL Generation

Query + Schema + Prompt (Text2SQL)

Denotation
Comparison

!

GPT4-
Evaluation

"

1Input:

Gold + Predict
+ Prompt (SQL-Eval)

Output:

Score (0/1)

Human
Annotation

#

Human Check
Score: 0

Test Suite Score: 0

GPT4 Score: 1
Final Label: 0

Test-Suite

Alice

NAME AGE

34

Bob 37

Database 1

Alice

NAME AGE

20

Bob 37

…

Denotations:

Gold: Bob

Predict: Alice, Bob

Gold: Bob

Predict: Bob

Database 2

…

Figure 13: Dataset processing pipeline: 1) Generate predicted SQL queries using large language models. 2) Pair
each generated SQL query with its corresponding ground truth SQL query to form a SQL-pair. 3) Apply label
correction operations to associate each pair with a label indicating whether the predicted SQL query has the same
functionality as the ground truth SQL query.

ated by Calcite to construct graphs. It abstracts
the syntactic structure of SQL and provides rich
semantic information from the perspectives of logi-
cal execution and variable usage. Furthermore, its
optimization of execution plans standardizes SQL,
uncovering the same functionality under different
syntactic structures, thereby reducing the difficulty
of judgment in determining functional equivalence.

In the following discussion, we explore a case of
predicate pushdown optimization. Predicate push-
down is a strategy that involves relocating predi-
cates from the WHERE clause of an outer query block
to a more granular query block where the predicate
is relevant. This approach enables earlier data fil-
tering and enhances index utilization. Figures 11
demonstrates two SQL queries that are function-
ally equivalent, while Figure 12 illustrates their
identical RelNode.

The initial SQL query conducts a θ-join across
the has_pet, student, and pets tables, fol-
lowed by applying a filter based on the conditions
pets.pettype = ’dog’ and student.sex = ’F’.

Through predicate pushdown optimization, the
overarching condition of the outer query is decom-
posed into sub-conditions that are applied directly
within the inner queries. Consequently, in the mod-
ified SQL, the condition student.sex = ’F’ is
applied to the student table, and pets.pettype
= ’dog’ is applied to the pets table, prior to ex-
ecuting a θ-join on these tables. This optimiza-
tion allows for more efficient data processing by
leveraging early filtering and improved index per-

formance.

E Spider-pair Dataset

Text-to-SQL refers to the process of translating nat-
ural language queries into precise SQL commands
(Yu et al., 2018; Iyer et al., 2017; Deng et al., 2021;
Yaghmazadeh et al., 2017; Finegan-Dollak et al.,
2018). Numerous datasets, including Spider (Yu
et al., 2018), have been developed for this purpose,
where each entry comprises a reference SQL query,
a corresponding natural language question, and the
relevant database. However, there is no dataset
available to validate the consistency between the
quality of generated SQL code and evaluation met-
rics. Our proposed Spider-pair fills this gap. It
consists of a training set and a testing set, which
we refer to as train and dev. Each entry in the
dataset includes a pair of SQL queries (reference
and generated SQL), a prompt, and the functional
correctness of the generated SQL. In the follow-
ing sections, we will introduce our construction
approach.

E.1 SQL Pairs Auto-generated by LLMs

To generate SQL pairs, we utilize Spider (Yu et al.,
2018) as our source dataset. It comprises 10, 181
queries and 5, 693 unique, complex SQL queries
spanning 200 databases across 138 distinct do-
mains. We utilized 8, 659 examples from 146
databases as our train set, while the test set contains
1, 034 examples from 20 different databases. This
separation ensures fairness in evaluation by having

4603

LLM BIRD-pair dev Spider-DK-pair dev WikiSQL-pair dev
Code Llama 7b - 262 102
Code Llama 13b 152 - -
GPT-3.5 701 304 -
GPT-4 915 - 207
GPT-4 32k 748 228 -
DeepSeek 1.3b - 298 152
DeepSeek 6.7b 387 291 129
DeepSeek 33b - 283 159
Llama2 13b 74 211 74
Total 2977 1877 823

Table 4: Number of Predicted SQL Generated by Each LLM for BIRD-pair dev, Spider-DK-pair dev and WikiSQL-
pair dev Datasets

distinct databases for train and test sets.
As the capabilities of Large Language Models

(LLMs) continue to advance, surpassing human
performance in various tasks, we leverage them as
an intermediary to generate SQLs. We carefully
designed the prompts formed from the questions
and the Data Definition Language (DDL) of the
required databases. The DDL is crafted from the
schemas of all tables within our database, where
each schema outlines the table’s structure in mark-
down format. The LLMs used to generate SQLs
include GPT-3.5, GPT-4, and CodeLLaMA-13B.

For executable SQL queries, we use 1 to indicate
fidelity to the prompt instructions and 0 to indicate
the opposite. Alternatively, 1 signifies equivalence
in functionality to the reference SQL, while 0 indi-
cates non-equivalence.

E.2 Data Labeling Process

We utilize three components for this process: origi-
nal database, test suite augmentation, and distilla-
tion for the original database which involves lan-
guage model evaluation and human annotation to
ensure the quality of labels.

• Denotation Comparison: Using the test suite
from (Zhong et al., 2020), SQL pairs with
exactly the same denotations, up to column
permutations are labeled as 1 (functionally
consistent) and 0 (functionally inconsistent)
otherwise. This helps us to eliminate a decent
amount of false positives.

• GPT4 Evaluation: GPT-4 is known to have
strong capacity of evaluation of other lan-
guage model (Liu et al., 2023) on various
tasks. We leverage GPT-4 as a judge for the

generated predicted SQL. When GPT-4 deter-
mines that the SQL pairs are functionally iden-
tical, it will output 1; otherwise, it will output
0. The prompt is shown in the Appendix N.2.

• Human Annotation: Although the test suite
has a high code coverage, it might still in-
troduce false positives as shown in the Ap-
pendix F. Therefore, we further check samples
with inconsistent labels derived from GPT-4
Evaluation and test suite, and finally perform
manual verification to ensure the accuracy of
the labels.

E.3 Data distribution of the test dataset

In order to evaluate the generalization ability of
the model on unseen dataset, we select Spider-DK,
BIRD, and WikiSQL datasets to prepare the test
dataset. Spider-DK is built based on the Spider de-
velopment set. It introduces five different domain
knowledge to modify the query or query-SQL pair
of the Spider dataset to ensure that the new expres-
sion conforms to the domain knowledge required
by the existing Spider samples and does not cause
ambiguity (Gan et al., 2021). WikiSQL is a large-
scale hand-annotated semantic parsing dataset con-
taining 80,654 samples covering 24,241 tables in
Wikipedia. In the WikiSQL dataset, each sample
includes a table, an SQL query, and the natural lan-
guage question corresponding to the query (Zhong
et al., 2017). The BIRD dataset is a comprehensive
benchmark designed for text-to-SQL tasks, con-
taining 12,751 SQL query pairs and 95 databases
across 37 professional domains. It emphasizes the
quality of database values and the challenges of
generating efficient and accurate SQL queries in
large-scale database environments, making its SQL

4604

Reference SQL:

SELECT COUNT(DISTINCT templates.template_id)
AS num_templates FROM templates
INNER JOIN documents ON templates.template_id =
documents.template_id;

Generated SQL:

SELECT COUNT(DISTINCT Template_ID) AS EXPR$0 FROM Documents

Figure 14: False positive case a

Reference SQL:

select id from tv_channel group by id having count(1) > 2
Generated SQL:

SELECT id FROM TV_Channel GROUP BY Country, id HAVING
COUNT(*) > 2

Figure 15: False positive case b

queries more complex than those in Spider-DK
and WikiSQL (Li et al., 2024). Specifically, the
Spider-DK dataset contains 535 query-SQL pairs,
the BIRD validation set includes 1201 query-SQL
pairs, and the WikiSQL validation set contains
8243 query-SQL pairs. To ensure the fairness of the
experiment, we keep the sample size of the three
datasets roughly consistent. Therefore, we extract
502 query-SQL pairs from the WikiSQL validation
set to prepare the test dataset. We generated pre-
dicted SQL queries through several different large
language models. The number of predicted SQL
generated by each LLM is shown in the Table 4.

We combine these generated predicted SQL with
ground truth SQL into pairs. The labeling process
is the same as in section 5.1, but it is worth noting
that WikiSQL cannot perform database enhance-
ment through test suite, so we directly execute SQL
queries in WikiSQL to determine the label of the
SQL pair. Finally, we still use GPT-4 to find possi-
ble false positive cases, and then get the confirmed
label after manual review.

F False positive cases on test suite

In this section, we will introduce two typical cases
of false positives after using test suite and discusses
the causes of false positives.

In the first case, the key difference between
the two SQL queries is that the second query
includes an additional inner join. Specifically,
the second query counts unique template_id in
the documents table that also have matching en-
tries in the templates table. In contrast, the
first query directly counts unique template_id
from the documents table without checking for
their presence in the templates table, providing
the count of all unique template_id used in the
documents table, regardless of whether they exist
in the templates table.

The execution outcomes are consistent across the
augmented database because every template_id
found in the documents table also exists in the
templates table. However, if there are template
ids within the documents table that lack corre-

sponding entries in the templates table, the execu-
tion outcomes of the two SQL queries will differ.

For the second case, the semantic difference be-
tween the two SQL queries is that the first SQL’s
group by parameter is less than the second SQL’s.
The first SQL will return all ids that appear more
than two times in the tv_channel table. The sec-
ond SQL will return all ids that appear more than
two times for each (country, id) combination in
the tv_channel table. Therefore, if an id appears
more than twice but belongs to different countries,
and the (country, id) combination does not appear
more than twice, the execution results of the two
SQL queries will be different.

G False negatives cases on test suite

Reference SQL:	
SELECT COUNT(*) FROM concert
WHERE CAST(year AS INTEGER) IN
(2014, 2015);

Generated SQL:
SELECT COUNT(concert_id) FROM
concert WHERE year IN ('2014',
'2015');

Figure 16: False Negative: Insufficient Training Dataset

As shown in Figure 16, since test suite randomly
generated data may include entries like "2014FAS"
in the year column, causing the two queries to pro-
duce different outputs and leading to false nega-
tives.

H Attention Visualization For
Explanation

In this section, we analyze a hard positive case
that two SQLs are functionally equivalent but dif-
fer in their syntactic structure. We visualize the
initial and final attention graphs propagated by our
FuncEvalGMN to examine the its capacity to iden-
tify key features within the graph. Furthermore,
by observing the modifications in the attention
graph from initial to final propagation, we elucidate

4605

how FuncEvalGMN detect and match nodes with
strong correlations. This analysis demonstrates that
our model is adept at recognizing equivalent sub-
structures and functional nodes across both graphs,
thereby facilitating a thorough comprehension of
the SQL’s syntactic structure and semantics.

H.1 Attention Map from the First
Propagation

Figure 17a shows a notable feature: attention is
primarily focused on the ts_date and MAX nodes.
This is because ts_date is the field retrieved by
the SQL query, and MAX is the logic used to ex-
tract it. Together, they essentially define the core
functionality expressed by the SQL query. This
indicates that our model has successfully captured
the key semantics of SQL from the beginning.

H.2 Attention Map From the Final
Propagation

Figure 17b displays the attention map from the
model’s final propagation, where we can identify
several key features:

1. Equivalent Substructures Captured
It is observed that all corresponding nodes
of the TableScan subtree, except for
the other_details node, are successfully
matched by attention edges in both graphs.
This phenomenon can be explained from two
perspectives:

a. In terms of similarity, the TableScan
subtree, being a common element in both
SQL queries, exhibits the highest degree
of similarity.

b. Furthermore, nearly all nodes within the
Project, Sort, and Limit subtree in
the left graph are matched with attention
edges to the HashAggregate subtree in
the right graph. This is because the com-
bination of Project, Sort, and Limit
operations in the left graph is function-
ally equivalent to the HashAggregate
operation in the right graph. From this
analysis, it is evident that our model
possesses a strong capability to extract
equivalent functional structures from en-
tirely different structures.

2. Equivalent Functional Nodes Captured
Observation reveals that the LAST node in the
Sort subtree of the left graph draws attention

to the MAX node in the right graph. This is
because the operation of sorting in descend-
ing order and selecting the last data entry is
equivalent to directly taking the MAX in an ag-
gregate function. Additionally, ts_date, as
the field resulting from the SQL execution,
is precisely captured: the 1 node within the
limit subtree in the left graph draws atten-
tion to the ts_date node in the right graph.
This occurs because using limit to retrieve
the last record extracts the ts_date field, and
this node, being the only ts_date node in the
right graph, is accurately identified.

H.3 Attention Map Comparison
In the following, we compare the attention maps
from the initial and final propagations to analyze
the trends in the attention map changes throughout
the model’s propagation process, ultimately dis-
cerning the capabilities and characteristics of the
model’s attention component in feature extraction.

Initially, the node embeddings have only been
processed by the encoder layer and have not yet
integrated neighborhood information and structural
features. At this stage, the model quickly captures
the SQL’s core features, ts_date and MAX, but over-
looks other SQL details. However, after the final
propagation, by observing the direction and opac-
ity of the attention edges, we can discern that the
attention map exhibits the following four character-
istics:

1. The distribution of attention is more uniform.

2. The attention weights are more balanced.

3. Equivalent substructures within the two
graphs are captured.

4. Functionally equivalent nodes across different
structures are identified.

These observations indicate that as propagation
progresses, the model begins to consider a broader
range of features within the SQL graph, moving
beyond the initial focus on key elements to a more
comprehensive understanding of the SQL’s struc-
ture and semantics. Additionally, the model is
capable of extracting functionally consistent in-
formation from both equivalent functional nodes
and equivalent substructures. This capability is, to
some extent, due to the use of the relational op-
erator tree (ROT), as each subtree (substructure)
within the ROT represents an atomic functional
operation in the execution plan.

4606

(a) Attention map from the first propagation

(b) Attention map from the final propagation

Figure 17: Attention maps from different propagation steps. In the graph, the labels on the nodes denote their
content. Black edges illustrate the connections in the RelNode, while green edges represent attention links. The
transparency level of the green edges reflects the magnitude of the attention weights. Attention links are drawn from
nodes in the left graph to the node that receives the highest attention out of all nodes in the right graph.

4607

I Correlation Evaluation

The performance of different models can be evalu-
ated using the following metrics:

Area Under the Curve (AUC) (Huang and Ling,
2005) refers to the area under the Receiver Oper-
ating Characteristic (ROC) curve. The ROC curve
is a graphical representation that illustrates the di-
agnostic ability of a binary classifier system as its
discrimination threshold is varied.

AUC =

∫
TPR(ξ)FPR′(ξ) dξ

where TPR(ξ) is the true positive rate and
FPR(ξ) is the false positive rate at threshold ξ,
and FPR′(ξ) takes the differentiation with respect
to the threshold.

Spearman R (rs) (Pranklin, 1974) is a nonpara-
metric measure of rank correlation, which assesses
the statistical dependence between the rankings of
two variables or data sets:

rs =
cov(R(Y 1),R(Y 2))

σR(Y 1)σR(Y 2)
,

where cov(R(Y 1),R(Y 2)) expresses the covari-
ance between the rankings of Y 1 and Y 2, repre-
sented by R(Y 1) and R(Y 2) and σ refers to the
standard deviation.

Kendall-Tau (τ) (Kendall, 1938) assesses the
relationship between two rankings by measuring
the ordinal or rank correlation between a given
variable and a reference measurement. The formula
is:

τ =
Concordant−Discordant

Concordant+Discordant
,

where Concordant is the number of pairs for
which the two measurements agree on their rel-
ative rank. Conversely, Discordant counts the
pairs in which the two measurements demonstrate
conflicting ranking orders.

J Test Set AUC Trends During Training

AST Graph Matching (ASTGM). As shown in
Figure 18, the green dashed line represents the
method using Abstract Syntax Trees (AST) for
SQL parsing and graph partial matching. The ini-
tial AUC is 87%, with slow growth, eventually
stabilizing around 90%. This curve shows signifi-
cantly weaker performance compared to other ex-
periments, indicating that AST struggles to capture
SQL’s rich semantic information.

Relnode Graph Matching (RelGM). Compared
to Experiment (0), the blue solid line uses RelN-
ode for SQL parsing, starting with a higher AUC
than ASTGM and stabilizing around 94% after 100
epochs. RelNode, based on SQL’s logical execu-
tion plan, reduces discrepancies caused by different
syntactic structures expressing the same function-
ality.
Logic and Data Flow in RelNode. The red dashed
line with triangles represents the experiment where
control and data flow are added to RelNode to cap-
ture richer semantic information. It performs simi-
larly to Experiment (1) in the early epochs (50-100)
but achieves a slightly higher AUC, stabilizing at
94.5%.
Positional Encoding (PE). Incorporating separate
PE led to a significant fluctuation early in train-
ing, but performance gradually declined, showing
signs of overfitting. The final result was 0.05%
lower than Experiment (3), indicating that focusing
on structural differences in SQL pairs with simi-
lar syntactic structures fails to provide a clear po-
sitional inductive bias. In contrast, Experiment
(4), which uses global graph PE by calculating
node positional encodings across connected graphs,
achieved steady improvement throughout the train-
ing process.
RelGM with GCL. The orange curve represents
the model with Graph Contrastive Learning (GCL).
It enhances unsupervised representation learning
for graph-structured data, maximizing feature con-
sistency across augmented views. This improves
the robustness of graph representations, resulting
in 0.43% performance boost for FuncEvalGMN.

K Performance on join queries, nested
queries and group by queries in
different datasets

In Table 5, we show a comparision of the perfor-
mance for FuncEvalGMN and test suite on queries
with important keywords. On queries related to
Join, our FuncEvalGMN approach is superior to
test suite on all test datasets, which reveals weak-
ness of test suite. When there are foreign key re-
lationships in certain tables, test suite cannot ef-
fectively identify these redundancies. For more
information, please refer to Appendix F. However,
our approach shows performance deterioration in
difficult cases in BIRD-pair dev dataset, which was
not observed in Spider-pair dev. This suggests fur-
ther finetuning data is needed.

4608

Figure 18: AUC Trends in test dataset

Keywords Methods Dataset
Spider-pair dev BIRD-pair dev Spider-DK-pair dev

AUC τ rs AUC τ rs AUC τ rs

Join Queries FuncEvalGMN 0.9580 0.7782 0.7782 0.9289 0.7568 0.7568 0.9589 0.8259 0.8259
Test Suite 0.9414 0.9114 0.9114 0.9139 0.8824 0.8824 0.9270 0.9027 0.9027

Nested Queries FuncEvalGMN 0.9662 0.8169 0.8169 0.8912 0.6564 0.6564 0.9493 0.7366 0.7366
Test Suite 0.9586 0.9299 0.9299 0.9138 0.8946 0.8946 0.9500 0.9318 0.9318

Group By Queries FuncEvalGMN 0.9740 0.8427 0.8427 0.6463 0.4549 0.4549 0.9791 0.8647 0.8647
Test Suite 0.9640 0.9365 0.9365 0.8333 0.7943 0.7943 0.9407 0.9044 0.9044

Table 5: Performance comparison of GMN and test suite across different datasets for Join Queries, Nested Queries,
and Group By Queries. The best performance results for different keyword queries across each dataset are
highlighted in bold. It can be observed that, in the case of join queries, the AUC scores of GMN consistently
outperform those of test suite.

L Evaluation of Code LMs

Our training and testing datasets are sourced from
GPT3.5, GPT-4, and CodeLlama. To validate
the effectiveness of our FuncEvalGMN against
other models, we conducted inference using the
DeepSeek model on the Spider dataset. The ob-
tained AUC, rs, and rp are 91.64%, 51.55%, and
59.94%, respectively, demonstrating that our ap-
proach also exhibits strong evaluation capabilities
on other large models.

Finally, we evaluated four Code Large Models
(LMs) on the Spider dataset using three evaluation
metrics: FuncEvalGMN, Test Suite (Zhong et al.,
2020), and Execution Accuracy (Yu et al., 2018).
The original output range of FuncEvalGMN, de-
noted as y, ranged from negative infinity to zero.
We normalized the output results to the range of
0 to 1 using the formula y = max

[
y+3
3 , 0

]
. As

shown in Figure 19, our FuncEvalGMN can also
serve as a good metric for evaluating SQL gener-

ation. Compared to Execution Accuracy and Test
Suite, we do not incur the cost of maintaining and
executing databases.

M Keywords Distribution in BIRD-pair
dev, WikiSQL dev, and Spider-pair
Datasets

In our study, we analyzed five datasets: Spider-pair
Train, Spider-pair dev, BIRD-pair dev, Spider-DK-
pair dev, and WikiSQL dev, to understand the dis-
tribution of SQL keywords. This analysis provides
insight into the complexity and nature of queries
present in each dataset.

The Spider-pair Train dataset shows a notable
usage of the WHERE keyword, present in 61.57%
of the queries, indicating a strong focus on filter-
ing data. The JOIN keyword appears in 48.02% of
the queries, suggesting a moderate level of com-
bining data from multiple tables. Additionally,
Aggregation operations (e.g., COUNT, SUM, AVG)
are found in 45.63% of the queries, showing a

4609

Figure 19: Evaluation of Code LMs

Keyword Spider-pair train (%) Spider-pair dev (%) BIRD-pair dev (%) Spider-DK-pair dev (%) WikiSQL-pair dev (%)

Where 61.57 47.45 90.63 48.81 100.00
Join 48.02 44.65 74.87 31.46 N/A
Group By 32.37 35.95 6.25 22.96 N/A
Order By 20.76 22.75 15.82 6.80 N/A
Limit 13.80 19.71 15.69 4.59 N/A
Subquery 62.08 67.09 3.69 6.63 N/A
Union 6.45 9.18 0.07 5.10 N/A
Aggregation 45.63 58.76 37.15 57.31 31.35
Count 31.20 44.28 28.22 39.63 9.96
Average 5.86 6.63 2.96 8.16 4.01
MinMax 6.61 6.51 1.28 10.54 12.88
Sum 3.53 3.89 2.65 0.34 4.50
Distinct 5.11 4.26 16.66 10.71 N/A
StrFunc N/A 13.49 4.33 N/A N/A
Regex Filter 1.78 0.97 2.49 4.76 N/A
Cast 3.30 5.66 7.96 N/A N/A

Table 6: Distribution of Keywords in Various Datasets

significant emphasis on data summarization. The
dataset also includes a relatively high frequency
of Subquery usage at 62.08%, reflecting complex
query structures.

The Spider-pair dev dataset presents a differ-
ent distribution. The WHERE keyword appears in
47.45% of the queries, which is less frequent than
in Spider-pair Train, indicating fewer conditions
are applied to filter data. The JOIN keyword is used
in 44.65% of the queries, showing a similar pattern
to Spider-pair Train but slightly lower. Notably,
Aggregation operations occur in 58.76% of the
queries, and Subquery is used in 67.09%, suggest-
ing a higher focus on complex query patterns.

The BIRD-pair dev dataset exhibits a high fre-
quency of the WHERE keyword, present in 90.63%
of the queries, which indicates a strong emphasis
on filtering conditions. The JOIN keyword is also
prevalent, appearing in 74.87% of the queries, sug-
gesting that many queries involve combining data
from multiple tables. Additionally, Aggregation

operations are found in 37.15% of the queries, re-
flecting a moderate level of data summarization.

The Spider-DK-pair dev dataset has a balanced
usage of the WHERE keyword, present in 48.81%
of queries, and the JOIN keyword in 31.46%.
These values indicate moderate filtering and table-
combining operations. Moreover, there is con-
siderable emphasis on Aggregation operations
(57.31%) and the use of Order By (6.80%) and
LIMIT (4.59%), showing diverse query types.

The WikiSQL-pair dev dataset stands out for
its high reliance on the WHERE keyword, used in
100% of the queries, which highlights its focus on
filtering. However, it shows no occurrence of JOIN,
GROUP BY, or DISTINCT, indicating a simpler query
structure with minimal need for combining tables
or unique data selection. The dataset does include
Aggregation operations in 31.35% of the queries,
indicating a moderate amount of summarization
tasks.

Overall, the analysis reveals distinct patterns in

4610

SQL keyword usage across these datasets. The
Spider-pair Train dataset has a strong focus on
filtering, joining, and complex queries involving
subqueries and aggregations. The BIRD-pair dev
dataset emphasizes filtering and joining, while the
Spider-pair dev and Spider-DK-pair dev datasets
show diverse query patterns with significant usage
of aggregations and subqueries. The WikiSQL-pair
dev dataset, in contrast, is characterized by sim-
pler query structures, relying heavily on filtering
without complex joins or aggregations. These dif-
ferences highlight the varied query complexities
and use cases catered to by each dataset.

N Prompt Design for LLM-Based Tasks

N.1 LLMs-based Text2SQL Task

The Text2SQL task requires generating SQL
queries that accurately correspond to a user’s ques-
tion, utilizing the given database schema. Below
is an illustrative example of a prompt designed for
this task using a Large Language Model (LLM):

Text2SQL Prompt

1 Table schema: There are two tables: stadium, singer.
2
3 the structure of table stadium is as follows:
4 | column name | column type |
5 | −−−−−−−−−−−− | −−−−−−−−−−−− |
6 | stadium_id | number |
7 | location | text |
8 | name | text |
9 | capacity | number |

10 | highest | number |
11 | lowest | number |
12 | average | number |
13 stadium_id is the primary key.
14
15 the structure of table singer is as follows:
16 | column name | column type |
17 | −−−−−−−−−−−− | −−−−−−−−−−−− |
18 | singer_id | number |
19 | name | text |
20 | country | text |
21 | song_name | text |
22 | song_release_year | text |
23 | age | number |
24 | is_male | others |
25 singer_id is the primary key.
26
27 Question: How many singers do we have?
28
29 Please write a sql based on the table schema above to answer

question.

N.2 GPT-4-based SQL Evaluation

As discussed in Section 5.1, GPT-4 is utilized as
a judge to evaluate the consistency between the
ground truth SQL and the predicted SQL. The fol-
lowing example demonstrates a detailed evaluation
prompt:

GPT4-Evaluation Prompt

1 <Instruction>
2 Given two SQLs, please return the score of these two SQLs in

functional and logical consistency scope, directly output
the score as 0 or 1 (0 means inconsistent, 1 means
consistent).

3 </Instruction>
4
5 <Input>
6 SQL_1:
7 SELECT NAME FROM People WHERE AGE > 34
8 SQL_2:
9 SELECT NAME FROM People WHERE AGE >= 34

10 </Input>
11
12 <Response>
13 score:
14 </Response>

	Introduction
	Related Work
	From SQL to RelNode
	RelNode Graph Matching Network
	Node Feature Embedding
	Positional Embedding
	Graph Embedding
	Graph Contrastive Learning

	Experiment
	Datasets
	Evaluation Results
	Ablation Studies

	Discussion
	Conclusion
	RelNode Partial Matching (RelPM)
	Node Matching
	RelNode Scoring
	Similarity Evaluation

	Content Node Feature Embedding
	RelNode Graph Matching Network
	Update Function
	Aggregator
	Similarity Metric
	Graph Contrastive Learning

	Equivalent Conversion Capabilities of RelNode
	Spider-pair Dataset
	SQL Pairs Auto-generated by LLMs
	Data Labeling Process
	Data distribution of the test dataset

	False positive cases on test suite
	False negatives cases on test suite
	Attention Visualization For Explanation
	Attention Map from the First Propagation
	Attention Map From the Final Propagation
	Attention Map Comparison

	Correlation Evaluation
	Test Set AUC Trends During Training
	Performance on join queries, nested queries and group by queries in different datasets
	Evaluation of Code LMs
	Keywords Distribution in BIRD-pair dev, WikiSQL dev, and Spider-pair Datasets
	Prompt Design for LLM-Based Tasks
	LLMs-based Text2SQL Task
	GPT-4-based SQL Evaluation

