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Abstract

Large language models (LLMs) have achieved
significant performance improvements in natu-
ral language processing (NLP) domain. How-
ever, these models often require large compu-
tational resources for training and inference.
Recently, Mamba, a language model architec-
ture based on State-Space Models (SSMs), has
achieved comparable performance to Trans-
former models while significantly reducing
costs by compressing context windows during
inference. We focused on the potential of the
lightweight Mamba architecture by applying
BitNet quantization method to the model archi-
tecture. In addition, while prior BitNet meth-
ods generally quantized only linear layers in the
main body, we extensively quantized the em-
bedding and projection layers considering their
significant proportion of model parameters. In
our experiments, we applied ternary quantiza-
tion to the Mamba-2 (170M) architecture and
pre-trained the model with 150 B tokens from
scratch. Our method achieves approximately
90.0% reduction in the bits used by all parame-
ters, achieving a significant improvement com-
pared with a 48.4% reduction by the conven-
tional BitNet quantization method. In addition,
our method experienced minimal performance
degradation in both the pre-training perplexity
and downstream tasks. These findings demon-
strate the potential of incorporating lightweight
language models into edge devices, which will
become more demanding in the future.1

1 Introduction

Large language models (LLMs) have become in-
creasingly prevalent in various aspects of human
life, demonstrating impressive capabilities for a
wide range of natural language processing tasks
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Figure 1: (left) Model structure of Mamba-2 (Dao and
Gu, 2024). (right) Model structure of Slender-Mamba,
where we replace linear, embedding, and projection
layers of Mamba-2 with BitLinear and BitEmbedding.

(Achiam et al., 2023). LLMs have acquired these
capabilities by expanding their model size follow-
ing scaling laws (Brown et al., 2020).

However, the substantial scale and high energy
consumption of current mainstream LLMs present
significant environmental challenges and limita-
tions for deployment on edge devices (Strubell
et al., 2020). There is a growing demand to develop
compact and efficient LLMs, particularly those suit-
able for edge device applications, expecting small
computational costs, high latency speeds, and of-
fline operations simultaneously.

Recent advancements in language model archi-
tectures, such as Mamba based on State-Space
Models (SSMs) (Gu and Dao, 2023), have gained
attention as computationally cost-effective methods
at the time of inference. These models have been
shown to achieve comparable performance to the
Transformer (Vaswani, 2017) while significantly
reducing costs by compressing the context length
during inference. This approach offers potential
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advantages in resource-constrained environments.
BitNet (Wang et al., 2023; Ma et al., 2024b)

is a lightweight model architecture based on pa-
rameter quantization. BitNet b1.58 (Ma et al.,
2024b) reduces computational complexity by lim-
iting weights to ternary values {-1, 0, 1}, signifi-
cantly decreasing memory requirements and band-
width consumption, while maintaining a perfor-
mance comparable to that of full-precision models.
However, because language models must employ
high-precision probabilities for sampling, this tech-
nology has only been implemented in the linear
layers of the attention block in the Transformer,
leaving the embedding and head layers untouched.
With the growing demand for multilingual (Qin
et al., 2024) and multimodal (Chu et al., 2024) tech-
nologies, the parameter size (i.e., vocabulary size)
of the embedding and head layers is expanding.
In addition, under the condition that vocabulary
size is fixed, the parameters of these layers will
account for a larger percentage of the total if we
try to reduce the overall parameter size in order to
develop lightweight model. Therefore, there is an
increasing need to quantize these layers.

This study aims to address a new challenge: How
can we develop models that are more lightweight
than Mamba? We propose Slender-Mamba, a
highly parameter-efficient language model that fur-
ther advances Mamba’s lightweight design by ap-
plying BitNet method to the model. While prior
BitNet methods quantized only linear layers in the
main body, we extensively quantized the embed-
ding and projection layers considering their sig-
nificant proportion of model parameters. In our
experiments, we applied ternary quantization to the
Mamba-2 (170M) architecture and pre-trained the
model with 150B tokens from scratch. Our method
achieves approximately 90.0% reduction in the bits
used by all parameters, achieving a significant im-
provement compared with a 48.4% reduction by the
conventional BitNet quantization method. In addi-
tion, our method experienced minimal performance
degradation in both the pre-training perplexity and
downstream tasks.

2 Related Work
Mamba Mamba is one of the innovations of lan-
guage models based on structured state space mod-
els (SSMs) (Gu et al., 2020). The model has been
shown to achieve comparable performance with a
Transformer (Vaswani, 2017) while significantly
reducing costs by compressing the context length

during inference. Mamba-1 (Gu and Dao, 2023)
combines the H3 block (Fu et al., 2022) with the
ubiquitous MLP block of modern neural networks
by interleaving them, thereby resulting in a more
powerful architecture. Mamba-2 (Dao and Gu,
2024) is constructed using the original Mamba ar-
chitecture. Similar to its predecessor, Mamba-2
offers a promising alternative to self-attention lay-
ers and Transformer in sequence modeling tasks.
The model can be computed efficiently during train-
ing using hardware-aware algorithms by leveraging
modern accelerators, such as GPUs. Mamba-2 in-
troduces a theoretical framework called "structured
state space duality" (SSD) that connects SSMs,
structured matrices, and variants of attention.

Lightweighting Technologies The existing quan-
tization methods for language models are mostly
Post-training quantization (PTQ), such as Absmax
(Dettmers et al., 2022a), SmoothQuant (Xiao et al.,
2023), and GPTQ (Frantar et al., 2022), among
others. These methods are simple and easy to ap-
ply because they do not require any changes in the
training process or model retraining. However, Re-
ducing precision can lead to greater accuracy loss
as the model isn’t optimized for quantized repre-
sentation during training.

However, quantization-aware training (QAT), as
exemplified by BitNet, reduces computational com-
plexity by employing 1bit or 1.58-bit weights dur-
ing the pre-training stage, significantly lowering
memory requirements, bandwidth consumption,
and energy usage while maintaining a performance
comparable to that of full-precision models. Al-
though BitNet has proven to be a promising ap-
proach for lightweight Transformer models, its ef-
fectiveness has not been validated using Mamba
models. Furthermore, prior studies did not conduct
quantization experiments on the embedding and
head layers. In this study, we pioneered the explo-
ration of quantization techniques for these compo-
nents, thereby providing a novel contribution to this
field. Appendix A further describes light weighting
methods other than quantization, such as parameter
sharing (Takase and Kiyono, 2021).

3 Proposed Method

3.1 Overall architecture
To achieve full BitNet quantization for the Mamba
architecture, we first replaced the linear layers in
the main block with BitLinear layers (Wang et al.,
2023; Ma et al., 2024b; Zhu et al., 2024), which is
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a conventional approach to BitNet for Transformer.
Second, our method quantizes the embedding and
head layers using the BitLinear and BitEmbedding
layers. BitEmbedding is our proposed method for
quantizing embedding layers in language models,
and it will be described in later subsection. We
employed a ternary quantization method (BitNet
b1.58) instead of binary quantization (1-bit BitNet)
because it retains the benefits of the original 1-bit
BitNet: requiring almost no multiplication opera-
tions for matrix multiplication, while significantly
improving the performance of the 1-bit LLMs. An
overview of the proposed method is presented in
Figure 1.
3.2 BitLinear
BitLinear is an existing quantization approach for
a linear layer, originally proposed for Transformer
architectures (Ma et al., 2024b). This approach
is technically applicable to the linear layers in the
Mamba architecture. This subsection describes the
formulation of BitLinear as preliminary informa-
tion. First, the original linear-layer weight matrix
W ∈ RDin×Dout is quantized into ternary weights
W̃ within {−1, 0, 1} using the following formula:

W̃ = clip
(

Round
(
W

β

)
,−1, 1

)
, (1)

where the clip(x, a, b) function ensures that the in-
put values x are constrained within the range [a, b].
The Round(x) function maps each element of x
to the nearest integer value, effectively quantizing
continuous values into discrete levels. β ∈ R is
defined as the average absolute value of the weight
matrix, calculated by:

β = max

(
1

DinDout

∑
dindout

|Wdindout |, ϵ
)

, (2)

where Din, Dout is the total number of elements
in the weight matrix W; din and dout index these
elements; and |Wdindout | is the absolute value of
each element. ϵ is a small constant added to prevent
division by zero.

We define input matrix as x ∈ RN×Din , where
N is the number of tokens in a sample, and Din

represents the dimensionality of each token. To
preserve the variance after quantization, previous
research proposed introducing a LayerNorm (Ba
et al., 2016) function before activation quantization.

x̂ =
x− µ(x)√
Var(x) + ϵ

(3)

Subsequently, the activation is quantized to 8-bit
(Qb = 27) using absmax quantization (Dettmers

et al., 2022b). The input is scaled and quantized
to form x̃ ∈ RN×Din , in which the ith row x̃i is
calculated as follows:

x̃i = clip

(
Round(x̂i ×

Qb

γi
),−Qb, Qb − 1

)
, (4)

γi = max

(
max

j
(|x̂ij |), ϵ

)
, (5)

where γi ∈ R denotes scale factor for the ith token
and x̂ij denotes the jth dimension of the ith token.
We concatenate each scale factor (γ1, .., γi, .., γN )
to form γ ∈ RN×1. We define 1Dout ∈ R1×Dout as
a row vector of one. Finally, the output activation
y ∈ RN×Dout is rescaled for dequantization to the
original precision.

y = (x̃W̃ ⊙ γ1Dout)×
β

Qb
(6)

3.3 BitEmbedding: Embedding layer
Quantization Function

First, we describe a method for converting the
embedding parameters into 1.58 bits for training.
W ∈ RV×D is an embedding matrix, with V being
the vocabulary size and D the embedding dimen-
sion. x ∈ ZN represents the input sequence of
token indices, where N is the sequence length. The
embedding is subjected to ternary quantization.

W̃ = clip
(

Round
(
W

β

)
,−1, 1

)
, (7)

where β ∈ R is a scaling factor that belongs to the
category of token-wise normalization methods, en-
suring that the embedding values are appropriately
bounded. β is computed as follows:

β = max

(
1

V D

∑
vd

|Wvd|, ϵ

)
. (8)

In the equation, v indexes a specific word in the
vocabulary, and d refers to the dimension within the
embedding vector for that word. The term ϵ > 0 is
a small positive constant used to prevent numerical
instability and ensure that β remains nonzero, even
if all the elements of Wvd are small.

The final embedding representation E for the
input sequence is formed by retrieving the vec-
tors from the quantized matrix W̃ corresponding
to the token indices in x. An embedding matrix
E ∈ RN×D is obtained using the following lookup
operation:

E = W̃[x] (9)

Subsequently, E undergoes layer normalization,
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which is formulated as:

Ê =
E− µ(E)√
Var(E) + ϵ

(10)

Thereafter, we describe a method for adjusting the
embedded outputs into 8-bit. The scale factor for
the ith token γi ∈ R is calculated as follows:

γi = max

(
max

j
(|Êij |), ϵ

)
(11)

Here, Eij denotes the jth embedding dimension of
the ith token. Subsequently, the embedding matrix
is scaled and quantized. We quantize the embed-
ding to an 8-bit (Qb = 27) matrix Ẽ ∈ RN×D,
where the ith row Ẽi is calculated as follows:

Ẽi = clip

(
Round(Êi ×

Qb

γi
),−Qb, Qb − 1

)
(12)

During forward propagation, the final output
Eout ∈ RN×D is computed as follows:

Eout = (Ẽ⊙ γ1D)×
(

β

Qb

)
, (13)

where γ ∈ RN×1 is a concatenation of (γ1, .., γN )
and 1D ∈ R1×D is a row vector of ones. The
above formula ensures that the quantization-aware
training model has 1.58-bit weights for the em-
bedding layer and 8-bit output. We employed a
straight-through estimator (Bengio et al., 2013) to
approximate the gradient during backpropagation.

4 Experiments
4.1 Setup
Models We pre-trained Mamba-2 models with
sizes ranging from 80M to 170M parameters, em-
ploying the same pre-training methodology as a
GPT-like autoregressive decoder (Brown et al.,
2020). In particular, for the 170M model with
a vocabulary size of 50288, the proportions of
trainable parameters in various layers are listed
in Table 1. The linear layers account for 53% of
the parameters, whereas the language model head
and embedding layers account for 47%. Mean-
while, the normalization and convolutional layers
accounted for a relatively small proportion, and
the SSM layers contained almost no trainable pa-
rameters, allowing them to be maintained at full
precision. We explored three key model variants to
focus on different quantization strategies. “Slender-
Mamba-EQ” quantizes only the embedding layers.
“Slender-Mamba-LQ” model applies quantization
to all linear layers including a head layer, which is

Component Parameters Total (%)
conv1d layers 215,040 0.13
normalization 36,864 0.02
head layer 38,731,776 23.08
embedding 38,731,776 23.08
linear layers 90,095,616 53.68

Table 1: Trainable parameter distribution of each com-
ponent for Mamba-2 (Model size 170M).

Figure 2: Frontier curve between parameter-bits and
training loss. Each line is created by changing the num-
ber of layers (=model parameter size) for each model.

a slight different setting from the conventional Bit-
Net. “Slender-Mamba” quantizes the linear layers
as well as embedding and head layers to achieve a
highly compact and efficient model.
Settings Models on Figure 2 are pre-trained with
1B tokens using instruction data (Xu et al., 2024),
employing a custom-trained tokenizer with a vo-
cabulary size of 32000, which is comparatively
small dataset owing to the computational limitation
for experiments of several model sizes. Models
on Table 2 are pre-trained with 150B tokens (4500
iterations) from FineWeb-Edu dataset (Hugging-
FaceFW, 2024). The models in Table 4 were pre-
trained with 20B tokens (600 iterations) from the
same dataset. These models used GPT-NEOX-20B
tokenizer (Black et al., 2022) with a vocabulary of
50288. The context length was set to 4096 tokens.
The experiments were conducted on 8 H100 GPUs,
each with a batch size of 8. The gradient accumu-
lation step was set at 128. The detailed training
hyperparameters are described in Appendix B.
Evaluation For downstream tasks, we evaluate
models by zero-shot performance, including BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), ARC (Clark et al., 2018), and
OpenbookQA (Mihaylov et al., 2018).
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Models Pb × 108 WG PIQA OBQA HS BoolQ ARC-E ARC-C Avg.
Mamba-2 26.8 48.7 59.1 29.6 27.6 53.6 40.9 22.6 40.3

Slender-Mamba-EQ 21.2 51.3 60.7 28.2 29.3 61.5 44.4 24.2 42.8
Slender-Mamba-LQ 8.27 50.8 56.4 30.8 28.3 61.7 39.2 24.4 41.7

Slender-Mamba 2.69 51.8 55.6 27.0 27.7 58.5 38.6 25.2 40.6
Mamba-2-EQ 21.2 50.0 53.1 27.0 26.2 43.3 33.4 21.5 36.4
Mamba-2-LQ 8.27 49.1 50.1 24.6 26.2 40.7 27.9 24.2 34.7

Mamba-2-(E+L)Q 2.69 50.8 48.9 24.6 24.6 41.3 27.4 26.0 34.8

Table 2: Model performance on various benchmarks. HS, WG, and OBQA are abbreviations for HellaSwag,
Winogrande, and OpenbookQA. Bold font indicates the best performance for the task in that column under pre-
training, while an underline represents the best performance for the task in that column under direct quantization.

4.2 Results
Frontier Curve Between Parameter-Bits and
Training Loss To quantitatively evaluate the
trade-offs between model compression and pre-
training performance as a result of BitNet quan-
tization, we define “parameter-bits” (the total bits
used by model parameters) as an evaluation metrics
for compression. Specifically, the total number of
parameter-bits Pb is calculated using the following
equation: Pb =

∑Np

i=1 b
i
p, where Np is the total

number of parameters and bip is the number of bits
per parameter for the i-th indexed parameter. This
study quantizes the model parameters to 1.58-bit
to ensure that bp = 1.58 after BitNet quantization
and bp = 16 before quantization.

Figure 2 shows frontier curve between training
loss (perplexity) and parameter-bits for each model.
Each line is drawn by changing the total number
of parameters (by changing the number of layers)
for each model from 80M (number of layers:1) to
170M (number of layers:24). The result demon-
strates that the frontier curve shifts to left side as
the quantization ratio increases (Original Mamba-2
-> Slender-Mamba-LQ -> Slender-Mamba), indicat-
ing that we could reach a new frontier curve by our
quantization method, which cannot be achieved by
normal hyper-parameter tuning. Additionally, we
conducted experiments by applying the parameter-
sharing method to Slender-Mamba, achieving the
most left-sided frontier curve. For reference, we
conducted additional experiments by applying the
parameter-sharing method to Slender-Mamba to
further reduce the model size. This result yields the
most left-sided frontier curve. Although the fron-
tier curve improved, there was a noticeable degra-
dation in the performance of downstream tasks.
The detailed performance of the Parameter Sharing
method is described in Appendix C.

Performance of Downstream Tasks We tested
the performance of four architectures: Slender-
Mamba-EQ, Slender-Mamba-LQ, Slender-Mamba,
and the original Mamba-2 on downstream tasks.

We pre-trained the four models (170M) using
the same data and parameters, with the detailed
training parameters provided in Appendix B. We
followed the pipeline from lm-evaluation-harness
(Gao et al., 2024) to perform the evaluation.

As shown in Table 2, pre-trained models using
our method (Slender-Mamba series) showed no sig-
nificant performance degradation on downstream
tasks while achieving a reduction of parameter-bits.
Especially, Slender-Mamba achieves 90.0% reduc-
tion in parameter-bits (2.68 · 109 → 2.69 · 108)
while maintaining the competitive performance as
original Mamba-2. Similar to the results of Bit-
Net1.58 (Ma et al., 2024b), our approach, which
pre-trains models using Quantization-Aware Train-
ing (QAT), can maintain a performance on par with
full-precision models and occasionally surpasses
them owing to performance fluctuations. In con-
trast, Mamba-2-EQ, Mamba-2-LQ, and Mamba-
2-(E+L)Q directly apply 1.58-bit quantization to
the original pre-trained Mamba-2 model for the
embedding layer, linear layer, and both embed-
ding and linear layers, respectively. Under the
same parameter-bits, their scores were lower than
those of the corresponding Slender–Mamba mod-
els, with the average score decreasing linearly as
the parameter-bits were reduced. Appendix D de-
scribes the performance of the other baselines. Ap-
pendix E describes embedding layer analysis.

5 Conclusion
This study introduced Slender-Mamba, a highly
parameter-efficient quantized language model that
further advances the lightweight design of Mamba.
We extended BitNet quantization method, which
generally focuses on linear layers, to include em-
bedding and projection layers. The proposed
method achieved a significant reduction of bits
used by the model parameters with minimal per-
formance degradation. We hope that these find-
ings will provide the potential to incorporate more
lightweight language models into edge devices,
which will become more demanding in the future.
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6 Limitations

This study has several limitations. First, owing
to time constraints, we could not further verify
the performance of our model when the embed-
dings were quantized to 1-bit. Although the pre-
liminary results are promising, additional exper-
iments would be beneficial to fully ascertain the
impact of such extreme quantization on the model
accuracy and stability. Second, our computational
resources were limited, which restricted our ability
to scale the model and expand the training dataset.
Consequently, the findings may not fully repre-
sent the potential of the model when trained un-
der more resource-abundant conditions. Future
research with enhanced computational capabilities
can thoroughly explore these aspects, potentially
leading to more robust conclusions.
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A Related Work Continued

The introduction of a baseline model called Mo-
bileLLM (Liu et al., 2024) demonstrated supe-
rior performance over existing sub-billion models
through architectural innovations such as deep and
thin layers, embedding sharing, and grouped-query
attention mechanisms. Previous studies (Takase
and Kiyono, 2021) have shown that parameter-
sharing strategies can significantly reduce the num-
ber of parameters required by a model while main-
taining or even enhancing its performance. This is
particularly critical for large-scale language mod-
els, as it helps mitigate computational and storage
challenges.

B Training parameters

Table 3 lists the training hyperparameters of Slen-
der Mamba for the experiments.

Parameter Value
model dimension 768
number of layers 24

Optimizer AdamW
learning rate schedule cosine

Learning Rate 1.6× 10−3

AdamW Betas (0.9, 0.95)
Weight Decay 0.1
Warmup Ratio 0.1

Batch Size 8192

Table 3: Optimizer and Training Parameters
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C Parameter Sharing

In our study, we followed the methodology of
previous research by applying various parameter-
sharing strategies to optimize the performance of
Mamba models. These strategies, including Se-
quential Sharing (SEQUENCE), Cyclical Shar-
ing (CYCLE), Reverse Cyclical Sharing (CYCLE
(REV)), and Universal Sharing (UNIVERSAL)
(Dehghani et al., 2018), are described in Algo-
rithm 1. In our experiments, we focused on
the performance of these parameter-sharing strate-
gies across different sizes and configurations of
Mamba models. Notably, Sequential Sharing (SE-
QUENCE), Cyclical Sharing (CYCLE), and Re-
verse Cyclical Sharing (CYCLE (REV)) strategies
effectively reduced the total number of parameters
by approximately 50% while maintaining the to-
tal number of layers. This significant parameter
reduction decreases the computational complex-
ity as well as preserves the expressiveness of the
model. In particular, the Universal Sharing (UNI-
VERSAL) strategy represents an extreme case of
parameter compression that condenses the param-
eters of all the layers into a single layer. While
this approach maximizes parameter efficiency, it
may present challenges, such as potential loss in
model expressiveness. We conducted pre-training
tests using the Parameter Sharing method in the
Slender-Mamba architecture to further reduce total
parameter-bits. The results of the downstream task
tests are presented in Table 4.

D Performance on downstream tasks
compared to other baselines

We compared our work with ternary quantization
LLM of similar size, BitNet b1.58 (Ma et al.,
2024b) and binarized LLM FBI-LLM (Ma et al.,
2024a), which use knowledge distillation. We
further included results from open-source full-
precision models of similar sizes, such as Mo-
bileLLM (Liu et al., 2024), Mamba (Gu and Dao,
2023), and Mamba-2 (Dao and Gu, 2024). We
compared our work with recent studies that apply
post-training quantization (PTQ) at 8-bit and 4-bit
to the Mamba model, as detailed in MambaQuant
(Anonymous, 2024). BW means bit-width occu-
pied by model parameters, excluding the embed-
ding layer and the head. The results, as shown in
Table 5, indicate that although our model has a bit-
width (BW) of 1.59, the overall parameter-bits are
significantly reduced owing to the quantization of

Algorithm 1 Parameter Sharing Strategy
Input:
Total number of layers, (N) Number of independent
layers (M) Output: enc1, . . . , encN

1: for i = 1 to N do
2: if i == 1 then
3: enci ← CreateNewLayer()
4: else if TYPE == SEQUENCE then
5: if (i− 1) mod ⌊N/M⌋ == 0 then
6: enci ← CreateNewLayer()
7: else
8: enci ← enci−1

9: end if
10: else if TYPE == CYCLE then
11: if i ≤M then
12: enci ← CreateNewLayer()
13: else
14: enci ← enc((i−1) mod M)+1

15: end if
16: else if TYPE == CYCLE(REV) then
17: if i ≤M then
18: enci ← CreateNewLayer()
19: else if i ≤ (M × (⌈N/M⌉ − 1)) then
20: enci ← enc((i−1) mod M)+1

21: else
22: enci ← encM−((i−1) mod M)

23: end if
24: else if TYPE == UNIVERSAL then
25: enci ← shared_block
26: end if
27: end for

both the linear and embedding layers. Moreover,
our model nearly matches the performance level of
the baseline model with only pre-training on the
150B dataset, which sufficiently demonstrates the
effectiveness of our proposed method. Compared
to the Transformer architecture, the application of
BitNet to Mamba shows only a small gap and even
surpasses the baseline, demonstrating the effective-
ness of BitNet under the SSMs framework.

E Embedding Matrices Analysis

The objective of this study is to ascertain whether
word embeddings experience minimal or no degra-
dation after conversion to BitNet format. The ex-
periment aimed to confirm that the distances be-
tween words within word embeddings did not un-
dergo significant changes before and after conver-
sion to BitNet. Word-embedding matrices were
prepared from the four models described in the ex-
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Models Pb × 108 WG PIQA OBQA HS BoolQ ARC-E ARC-C Avg.
Slender-Mamba-SEQUENCE 1.97 48.6 51.3 26.6 26.6 37.8 26.1 26.5 34.8

Slender-Mamba-CYCLE 1.97 48.9 53.4 24.8 24.9 37.8 28.5 25.3 34.8
Slender-Mamba-CYCLE(REV) 1.97 49.4 53.3 26.4 24.4 38.1 32.3 22.4 35.2

Slender-Mamba-Universal 1.32 50.3 52.0 24.6 25.0 56.3 27.6 21.9 36.8

Table 4: Model applying parameter-sharing technique performance on various benchmarks. HS, WG, and OBQA are
abbreviations for HellaSwag, Winogrande, and OpenbookQA, respectively. Bold font indicates the best performance
for the task in that column under pre-training

Model Architecture BW data size WG PIQA OBQA HS BoolQ ARC-E ARC-C Avg.
MobileLLM-125M Transformer 16 1T 53.1 65.3 39.5 38.9 60.2 43.9 27.1 46.9

Mamba-130M Mamba 16 300B 52.6 63.1 28.6 35.2 55.0 41.9 24.2 43.0
Mamba-2-130M Mamba-2 16 300B 52.1 64.1 30.6 35.3 55.2 42.0 24.2 43.3

MambaQuant-130M-W8A8 Mamba 8 300B 52.3 62.5 - 34.7 - 45.9 24.2 43.9
MambaQuant-130M-W4A8 Mamba 4 300B 50.9 56.9 - 30.5 - 36.2 24.6 39.8

BitNet b1.58-700M Transformer 1.59 100B 55.2 68.0 20.0 35.1 58.2 51.8 21.4 44.2
FBI-LLM-130M Transformer 1 1.2T 51.0 59.3 26.4 28.7 62.1 34.9 20.5 40.4

Slender-Mamba-170M(Ours) Mamba-2 1.59 150B 51.8 55.6 27.0 27.7 58.5 38.6 25.2 40.6

Table 5: Performance on downstream tasks compared to other baselines. BW means bit-width occupied by model
parameters, excluding the embedding layer and the head. HS, WG, and OBQA are abbreviations for HellaSwag,
Winogrande, and OpenbookQA, respectively. Bold font indicates the best performance for the task in that column
under pre-training

perimental results. Table 2. The word-embedding
matrices W1 for the original Mamba-2, W2 for
Slender-Mamba-LQ, W3 for Slender-Mamba, W4

for Mamba-2-EQ and W5 for Slender-Mamba-EQ.
Subsequently, the cosine distances among all the
words in the embeddings were computed.

cosine_similarity(a,b) =
a · b
∥a∥∥b∥

(14)

Here, Xn represents the cosine similarity matrix
for the embedding matrix Wn, where each element
Xn[i, j] corresponds to the cosine similarity be-
tween the ith and jth column vectors of Wn. This
metric quantifies semantic relationships within the
embedding space of the specified model.

Xn[i, j] = cosine_similarity(wi
n,w

j
n), (15)

where wi
n and wj

n are the ith and jth column
vectors of Wn and n = 1, 2, 3, 4, 5.

Subsequently, the degree of degradation was
measured using the L2 distance, which calculates
the Euclidean distance between the two matrices
X1 and Xn. This distance quantifies the dissimilar-
ity introduced during quantization or other modifi-
cations, thereby reflecting the extent of deviation
from the original embedding matrix.

L2_distance(a,b) =

√√√√ n∑
i=1

(ai − bi)2 (16)

Y(1,n) = L2_distance(x1,xn) (17)

where n = 2, 3, 4, 5, x1 = X[1, :] represents the
first row vector of X and xn = X[n, :] denotes
the n-th row vector. Y(1,n) represents the com-
puted degradation measure for each pair of the
original embedding matrix X1 and its modified
counterparts Xn. The results are listed in Table
6. Among these, X2, X3, and X5 represent the
proposed methods, whereas X4 involves the direct
quantization of the embedding layer in Mamba-2,
which does not align with the results in Table 2.
The impact of varying degrees of BitNet applica-
tion on the word embeddings of the Mamba model
was examined by calculating and comparing the
cosine similarity and Euclidean distance between
these embeddings. The performance degradation
owing to model changes was assessed. Further-
more, the correlation coefficients for the embed-
ding layers of Slender-Mamba-EQ and Slender-
Mamba compared with the original Mamba-2 are
relatively small. Figure 3 shows a scatter plot of the
embedding comparisons across various configura-
tions: X1 versus X2 (top left), X1 versus X3 (top
right), X1 versus X4 (bottom left), and X1 versus
X5 (bottom right). The comparisons revealed dis-
tinct patterns in the embeddings depending on the
quantization and replacement strategies employed.
Considering these observations, it is hypothesized
that the gradient propagation method inherent in
BitEmbedding differs fundamentally from unquan-
tized approaches. However, according to the results
in Table 2 the implementation of BitEmbedding
does not result in degradation.
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Comparison L2 Distance Correlation
Y1,2 (X1 vs. X2) 1694.1 0.006
Y1,3 (X1 vs. X3) 2071.3 0.498
Y1,4 (X1 vs. X4) 791.7 0.894
Y1,5 (X1 vs. X5) 2083.2 0.0387

Table 6: L2 Distances and Correlation Coefficients Be-
tween Word Embedding Matrices Before and After BitNet
Conversion

Figure 3: Scatter plot distributions of embedding comparisons: X1 versus X2 (top left), X1 versus X3 (top right),
X1 versus X4 (bottom left), and X1 versus X5 (bottom right). X1 does not use BitEmbedding as a replacement for
the embedding layer, whereas X4 directly quantizes the embedding layer, showing some correlation. In contrast,
X3 and X5, which replace the embedding layer with BitEmbedding, do not exhibit such correlation.
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