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Abstract

Generative information extraction (Generative
IE) aims to generate structured text sequences
from unstructured text using a generative frame-
work. Scaling in model size yields variations in
adaptation and generalization, and also drives
fundamental shifts in the techniques and ap-
proaches used within this domain. In this sur-
vey, we first review generative information ex-
traction (IE) methods based on pre-trained lan-
guage models (PLMs) and large language mod-
els (LLMs), focusing on their adaptation and
generalization capabilities. We also discuss the
connection between these methods and these
two aspects. Furthermore, to balance task per-
formance with the substantial computational
demands associated with LLMs, we emphasize
the importance of model collaboration. Finally,
given the advanced capabilities of LLMs, we
explore methods for integrating diverse IE tasks
into unified models.

1 Introduction

Information Extraction (IE) (Wilks, 1997) is a pop-
ular and fundamental task in natural language pro-
cessing, which aims to extract structured informa-
tion from unstructured plain text. IE typically in-
cludes Named Entity Recognition (NER), Rela-
tion Extraction (RE), and Event Extraction (EE)
(Xu et al., 2023b). Given the precise and struc-
tured nature of IE target, traditional IE methods
have primarily relied on extractive architectures,
where models like BERT (Devlin et al., 2018) and
RoBERTa (Su et al., 2022b) pinpoint specific spans
of text to extract relevant information. However,
as the complexity of IE tasks grows, extractive ap-
proaches often require highly specialized designs
to handle intricate tasks effectively. In contrast,
generative IE, which regards the target of IE as the
text sequence and the target tokens are generated in
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Figure 1: The number of papers on generative informa-
tion extraction (IE) published from 2020 to the present
(Referring to Appendix D for a detailed description).

a sequential manner, can alleviate the above prob-
lems. This paradigm shift allows for the generation
of different types of information, such as entities,
relations, and events, in a coherent manner.

The development of generative IE has been pro-
foundly influenced by the principles outlined in
scaling laws (Kaplan et al., 2020), which highlight
that increasing model size leads to improved adapt-
ability and generalization across a wide range of
tasks (as shown in Figure 2). However, while scal-
ing up models leads to better performance in IE
tasks, it also incurs significant costs due to the
increased computational demands of large parame-
ter models (Tang et al., 2024; Zhao et al., 2023b).
To balance performance with cost, it is essential
to explore the collaboration between models with
smaller and larger parameter counts. Finally, the in-
tegration of various IE tasks into a single model has
become a prevailing trend, largely due to the robust
capabilities of large language models (LLMs).

However, there is currently a lack of an in-depth
review of existing PLMs-based generative IE meth-
ods. And existing surveys either focus solely on ex-
tractive IE, ignoring generative IE (Li et al., 2020;
Wang et al., 2022b; Li et al., 2022b; Yang et al.,
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2022; Zhou et al., 2022); or they focus only on
generative IE with LLMs, neglecting PLMs with
small parameters (Xu et al., 2023b). In this sur-
vey, we provide a comprehensive review of exist-
ing generative IE methods based on PLMs. We
mainly examine the widely utilized closed infor-
mation extraction scenario, where the schema is
predefined. The remainder of this survey is or-
ganized corresponding to the main steps in this
procedure: (1) In Section 2: we introduced the
Generative IE framework and discussed the core
step of output linearization within this framework.
We highlighted that model scaling is the key factor
for the continuous improvement of IE performance.
(2) In Section 3: We have summarized common
methods for enhancing model adaptation and gen-
eralization capabilities in generative information
extraction tasks. (3) In Section 4: We discussed
collaboration for generative IE. (4) In Section 5:
we examine methods of unified IE in the generative
framework. (5) In Section 6: We conclude with
related and future directions.

2 Generative Information Extraction

In this section, we will give a brief overview of
generative IE. First, we introduce the formaliza-
tion of the generative framework, Then, the in-
stantiation of IE tasks within the generative frame-
work and the benefits of generative IE will be in-
troduced. Finally, we highlight several key fac-
tors in the generative framework: output lineariza-
tion and model scaling. At the beginning, We de-
fine some terms. We denote the source sentence
with n words as X = (x1, x2, . . . , xn), the target
sentence with m words as Y = (y1, y2, . . . , ym),
the generative model as M, and the output target
of IE with k elements in the source sentence as
T = {T1, T2, . . . , Tk}.

2.1 Generative Framework
Task Formulation. Given a data point (X,Y ), the
objective of the generative framework is to learn a
mapping function f(·) from the source sequence
to the target sequence f : X → Y to estimate
the unknown conditional distribution P (Y |X; θ),
where θ denotes the parameter set of a model.

P (Y |X; θ) =
m∏
i=1

P (yi|y<i, X; θ) (1)

where yi is the token at the time step i and y<i are
the tokens in previous t− 1 decoding steps.
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Figure 2: The performance of ICL on different datasets
with different model sizes. The horizontal line repre-
sents the state-of-the-art (SOTA) of existing methods
on this dataset. The blue and the yellow indicate the
performance of the conll03 and ace2005 on the NER
(conll03 SOTA: (Wang et al., 2020), ace2005 SOTA:
(Yang et al., 2023)), the pink indicate the performance of
the conll2004 on RE (conll04 SOTA: (Lou et al., 2023)),
the green indicate the performance of the ace2005 on
ED (ace2005 SOTA: (Wang et al., 2023b)), the pur-
ple indicate the performance of the ace2005 on EAE
(ace2005 SOTA: (Hsu et al., 2021)). The experimental
setup follows (Han et al., 2023b). The selected mod-
els are GPT2-base to GPT2-xl, openllama-3B-v2, and
llama-2-7B, 13B, and 70B.

IE task instantiation. For NER, the Ti in T will
be concretized as Ti = (ei, ti), where ei is a sub-
sequence of X , ti is an entity type (an example
shown in Figure 5a). For RE, Ti = (si, ri, oi),
where si is the subject entity, oi is the object entity,
both of them are sub-sequence of X and ri is rela-
tion type (an example shown in Figure 5b). A com-
mon subtask in RE is the Relation Classification
(RC) task. And for EE, the Ti will be concretized
as Ti = (ei, ti, ri1, ai1, . . . , rij , aij), where ei is
event type, ti is trigger words, rij is the jth argu-
ment role of event ei and aij is the arguments of rij
(an example shown in Figure 5c). Common sub-
tasks in EE are Event Argument Extraction (EAE)
and Event Dection (ED) tasks. Under the gener-
ative framework, the Ti will be converted into a
text sequence, which can be generated by the gen-
erative model (Details in Appendix F). Therefore,
various IE tasks can be unified naturally under the
generative framework (Details in Appendix G, H).

The merits of generative IE. The advantages of
the generative IE are as follows: (1) General mod-
eling and General task: It is convenient to model
various IE tasks (Fei et al., 2022). Specifically,
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when it faces complex IE structures, researchers
will convert the output target into a text sequence
(Hsu et al., 2021) without developing dedicated ar-
chitectures. Furthermore, UIE (Universal informa-
tion extraction) tasks can be naturally implemented
in the generative framework (Wang et al., 2023b;
Lu et al., 2022b). (2) Knowledge sharing: The
above multi-task integration facilitates knowledge
sharing between different IE tasks, enhancing the
performance and the generalization ability of the
model (Wang et al., 2022c; Lu et al., 2022b).

2.2 Key Factor of Generative IE
Output Linearization. Under the generative
framework, the output space is not aligned between
IE tasks and the generative model. The output
space of IE tasks is the form of a set (Section 2.1),
whereas that of generative models is in the form
of natural language. Furthermore, the flexibility of
natural language means that parsing out the output
of the generative model to compare it to a gold
target (to calculate standard metrics like precision,
recall, and F1 score) is a non-trivial problem (Wad-
hwa et al., 2023). Typically, to alleviate the above
issues, researchers convert the output target of IE
tasks into structured text sequences (Details in Ta-
ble 7), which are compatible with the output space
of the generative model (Josifoski et al., 2021). We
refer to the above process as output linearization.
Meanwhile, the structured text sequences will be
referred to as linearized text. Furthermore, output
linearization can unify the task formats of differ-
ent IE tasks. After obtaining the linearized text,
researchers can design deterministic algorithms to
extract the output targets of IE tasks from the lin-
earized text (Athiwaratkun et al., 2020; Deußer
et al., 2023; Ni et al., 2022; Cabot and Navigli,
2021; Josifoski et al., 2021). The format for lin-
earized text in IE can be divided into natural lan-
guage text sequence (Cui et al., 2021; Wang et al.,
2022c), special token text sequence (Iovine et al.,
2022; He and Tang, 2022), and code text sequence
(Wang et al., 2022d; Li et al., 2023e) (Details in Ap-
pendix F). It is worth mentioning that code text se-
quences are typically used to align the output space
of Code-LLMs (Li et al., 2023e; Sainz et al., 2023).
Additionally, although special text sequences are
in textual form, they are still "unnatural," result-
ing in a mismatch between the output format at
pre-training time and inference time.

It is important to note that after output lineariza-
tion, an order bias may be introduced, as structured

objects in IE are concatenated into the target se-
quence in a pre-defined order. However, structured
objects in IE constitute an unordered set (Zhang
et al., 2022b; Xia et al., 2023; Li et al., 2023c).

Model Scaling. Since larger models often signif-
icantly enhance the adaptation and generalization
capabilities of LMs (Brown et al., 2020; Wei et al.,
2021), we investigate how scaling model size bene-
fits generative IE. We evaluated the performance of
models with varying parameter sizes in in-context
learning (ICL) for different IE tasks, as detailed in
Appendix K. Our findings indicate that once the
parameter size exceeded a threshold of 1.5 billion,
the ICL performance in IE tasks improved with
further increases in parameter size. This suggests
that the adaptability and generalization ability of
the model in IE tasks enhance as the parameter size
increases. However, as the number of model pa-
rameters increases, fine-tuning LLMs for IE tasks
incurs significant computational overhead. Conse-
quently, researchers have begun exploring methods
to combine smaller parameter PLMs with LLMs
to improve IE task performance while reducing
costs. Additionally, due to the robust capabilities of
LLMs, they are increasingly being used to handle
multiple IE tasks simultaneously, making unified
information extraction an emerging trend.

3 Adapation and Generalization

Adaptability and generalization have consistently
been key focus areas in information extraction tasks
(Details in Appendix A, B, C, I). Research indicates
that PLMs have already demonstrated excellent
adaptability and generalization in IE tasks. Fur-
thermore, LLMs exhibit even stronger adaptability
and generalization capabilities as the number of
model parameters increases. In this section, we
will explore various common methods for improv-
ing the adaptability and generalization capabilities
of generative IE models, from PLMs to LLMs.

3.1 Training

A common strategy for enhancing the adaptabil-
ity and generalization capabilities of information
extraction (IE) models is fine-tuning. Various fine-
tuning techniques influence the performance of the
model in these areas. In the following sections, we
will provide a detailed overview of existing fine-
tuned generative IE methods and examine their
impact on adaptability and generalization.
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Figure 3: The framework of generative IE methods. The development trend of the generative IE methods as shown
in Appendix E

3.1.1 Single-task and Multi-task training

The fine-tuning approach generally entails design-
ing the input and output formats for the IE model
and determining the appropriate number of training
tasks. Variations in task formats and the number of
tasks can enhance the adaptability and generaliza-
tion of the model in IE tasks to different extents.

Single-task training. In generative informa-
tion extraction tasks, single-task training typically
involves either constructing a linearized text for-
mat for fine-tuning, which primarily enhances gen-
eralization or converting the information extrac-
tion task into a format suitable for fine-tuning,
which improves both generalization and adaptabil-
ity. Construct Linearized Text. Researchers de-
velop various linearized text formats (as shown in
the appendix Table 7 ) and fine-tune them directly
to capture structural information. (Wadhwa et al.,
2023; Ding et al., 2024a; Shi and Luo, 2024; Li
et al., 2023f). Athiwaratkun et al. (2020), Ding
et al. (2024a) and Paolini et al. (2021) finetune the
generative model on the augmented natural lan-
guage for NER. Nayak and Ng (2020), Cabot and
Navigli (2021), Ni et al. (2022), Wadhwa et al.
(2023), Shi and Luo (2024) and Tan et al. (2022)
design a type of linearized text for RE, respectively.
Compared to Nayak and Ng (2020), Cabot and
Navigli (2021) considers the impact of the diver-
sity of relation types. Tan et al. (2022) complete
the missing relation triplets in the dataset. And Ni
et al. (2022) explore various encoding representa-

tions for the source and target sequences for RC.
Li et al. (2023a) enhance the semantics of the la-
bels using paraphrase, inquiry, and synonym for
RC. Hsu et al. (2021) construct a linearized text for
each event type and fine-tune the generative model
to generate linearized text for EE. Task Transfor-
mation. Reformulating the IE into other tasks not
only helps to stimulate the capabilities of the model
but also improves its adaptation and generalization
ability. A common transformation method is con-
verting IE tasks into QA tasks (Kondragunta et al.,
2023; Kar et al., 2022; Uddin et al., 2024; Sainz
et al., 2023), where questions are designed for each
element type and answered to obtain the output
target of IE. Furthermore, Wang et al. (2024a) con-
sider multi-turn QA. Du and Ji (2022) retrieve the
most similar QA pair to help answer questions.
Unlike the above methods of manually construct-
ing questions, Lu et al. (2023a) utilizes a question
generation module to generate questions that can
contain contextual information. Apart from con-
verting IE to QA, Kim et al. (2022) transform RE
to a template infilling task. A template is created
for each relation type, using placeholders for the
subject and object entities. Then, the generative
model generates the content for the placeholders.
Kan et al. (2023) decompose the IE task into sub-
tasks, design a template that needs to be filled for
each subtask, then concatenate the templates of all
subtasks to form a prompt, and finally fill in this
prompt. And Cui et al. (2021) reformulated NER
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as a template ranking problem. They use the gener-
ative model to score templates containing an entity
type and a span. Further, the entity type contained
in the highest-scoring template will be assigned to
the span. Lu et al. (2022a) converted RC into a
summarization formulation and use a summariza-
tion model to summarize the relation type in the
source sentence. Then, they use a summarization
model to summarize the relation type in the en-
hanced sentence, which enriches the semantics of
the source sentence using the subject and object.

Multi-task training. Single-task training does
not fully utilize the knowledge acquired during the
pre-training phase. Moreover, knowledge can be
shared among different IE tasks (Kan et al., 2023;
Fei et al., 2022), and complex IE tasks can be de-
composed into smaller, more manageable tasks
(Gao et al., 2023; Duan et al., 2024; Zhou et al.,
2023a). Consequently, researchers have adopted
multi-task training, which facilitates knowledge
sharing, enables rapid adaptation to new IE sce-
narios, and significantly enhances IE performance.
Task Integration. Integrating different IE tasks
or incorporating additional auxiliary tasks into a
generative model facilitates knowledge sharing,
thereby enhancing performance and generaliza-
tion (Xiao et al., 2023; Li et al., 2024b). Lu et al.
(2022b), Yu et al. (2023), Wang et al. (2022a), Lu
et al. (2023b) and Wang et al. (2023b) unify differ-
ent IE tasks into a generative model through output
linearization. Cao and Ananiadou (2021) and Gan
et al. (2023b) introduced the BIO tagging classifi-
cation task and sentence classification task as aux-
iliary tasks, respectively. Iovine et al. (2022) and
Chen et al. (2024c) proposed cyclic optimization
by converting back and forth between the source
sentence and the linearized text. And Li and Qian
(2023) designed three generative meta-learning ap-
proaches to boost the generalization capability of
generative models. Gan et al. (2023a) integrated
text Classification, Sentiment Analysis and IE us-
ing a uniform input-output schema. Task Decom-
position. Common decomposition methods for
NER include entity recognition, entity type classifi-
cation, or entity recognition based on a given entity
type (Wang et al., 2022c; Gao et al., 2023). The
RE task can usually be divided into entity recog-
nition and relation classification (Gao et al., 2023;
Lilong et al., 2024; Wu et al., 2024). And the EE
task can be divided into ED and EAE (Lu et al.,
2021; Zhou et al., 2023a; Duan et al., 2024). Wang
et al. (2022c) design three subtasks related to NER,

including generating all entity and entity type pairs,
generating entities corresponding to a given entity
type, and generating all entities. Gao et al. (2023)
design a series of simple subtasks for each IE task
to learn basic skills. Lu et al. (2021) adopt a cur-
riculum learning approach, first learning the sub-
structures of linearized text and then learning the
complete linearized text for EE. Zhou et al. (2023a)
decomposes the complex EE into multiple subtasks,
i.e., extracting triggers and type, extracting argu-
ments, and assigning arguments to corresponding
roles. Duan et al. (2024) propose employing an
auxiliary EKE sub-prompt and concurrently train-
ing both EE and EKE with the generative model.

3.1.2 Model architecture
The fine-tuning approach typically entails modify-
ing the model architecture or incorporating addi-
tional modules. Designing intricate model archi-
tectures (He et al., 2023) for specific information
extraction (IE) tasks can effectively enhance the
capabilities of the model in those tasks. A common
strategy involves introducing auxiliary modules to
improve the adaptability and generalization of the
model. For instance, Guo and Guo (2022) intro-
duced the BERT-based Enhanced Lexicon Adapter
to integrate external lexicon features into PLMs.
Similarly, Fei et al. (2022) proposed a heteroge-
neous structure and an inductor structural broad-
caster to fully leverage syntactic knowledge for
UIE. Zhang et al. (2023e) introduced an entity start
classification module to detect entity boundaries,
while Shi et al. (2023) developed an event-type de-
tector to pre-identify event types. Beyond auxiliary
modules, Yang et al. (2021) designed a document-
level encoder coupled with a multi-granularity de-
coder for document-level RE. Mo et al. (2023) de-
vised a transformer architecture incorporating rela-
tion attention and type attention mechanisms.

3.1.3 Prompt learning
Prompt learning-based methods involve manually
designing a prompt or inserting extra trainable
modules into PLMs (Liu et al., 2023b; Li and
Liang, 2021). Different from Section 3.1.2, prompt
learning-based methods eliminate complex genera-
tive IE networks and massive extra parameters and
allow the model to quickly transfer to different IE
domains (Chen et al., 2023b) while achieving gen-
eralization capabilities similar to those of a fully
parameterized model (Liu et al., 2023a).

An essential aspect of prompt learning methods
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is the process of constructing prompts, which en-
compasses both soft and hard prompts. A common
approach in this process is the incorporation of
knowledge, which can be accomplished through
manual integration (Hsu et al., 2021; Su et al.,
2022a; Song et al., 2023), the use of external tools
(Song et al., 2023; Li et al., 2022a; Zhang et al.,
2022a; Chen et al., 2023a; Cao et al., 2023), or the
integration of knowledge from various domains or
prompts (Chen et al., 2023b; Zhang et al., 2023b;
Liu et al., 2022b; Wu et al., 2023). Hsu et al.
(2021) design a template for each event type and
learn to summarize the source sentence into a nat-
ural sentence following the predefined template.
Song et al. (2023) construct a knowledge-enhanced
soft prompt, which uses a relational graph neural
network to encode event triplet entities and fuse
them with word embedding to obtain a knowledge
representation for RE. Chen et al. (2023b) fuse
various source domain-prefix into a single prefix
based on the similarity between the target domain
and the source domain for the NER task. Zhang
et al. (2023b) use prefix tuning to integrate over-
lap knowledge between different datasets and then
learn special task knowledge through the adapter
for EE. Liu et al. (2022b) and Wu et al. (2023) con-
struct a context-and-type-aware prompt through at-
tention mechanism. Nguyen et al. (2023) employs
a graph attention mechanism to construct a context-
and-aware prompt. Once a prompt is constructed, it
typically allows for efficient data utilization, and is
well-suited for low-resource scenarios (Duan et al.,
2024). Furthermore, due to the flexibility of the
prompt, it can easily facilitate knowledge transfer
(Chen et al., 2021), thereby enhancing adaptabil-
ity. Moreover, a well-designed prompt can effec-
tively harness knowledge from PLMs, leading to
improved performance (Chen et al., 2024d; Nguyen
et al., 2023) and, consequently, better generaliza-
tion (Chen et al., 2023b).

3.1.4 Decoding
Decoding is a critical aspect of generation. Beyond
standard autoregressive decoding, alternative meth-
ods have been proposed that leverage the specific
characteristics of IE, potentially enhancing the gen-
eralization capabilities of the model on IE tasks
(Yan et al., 2021). In this section, we will discuss
constrained decoding and set decoding (Figure 11).

Constrained Decoding. The output target of
IE typically originates either from the source sen-
tence or a predefined schema set. To prevent the

generative model from producing tokens outside
the intended scope, researchers have concentrated
on imposing constraints on the model’s generation
process (Deußer et al., 2023; Lu et al., 2021; Cao
and Ananiadou, 2021). The core principle of con-
strained decoding is to restrict the probability dis-
tribution associated with generating the ith token
(Figure 11c). Dynamic Constrained Decoding. A
common constrained method is to dynamically de-
termine the distribution of the token in the current
step based on a specific signal. Cao and Anani-
adou (2021) utilized BIO tags as the signal. They
first predict the BIO labels and then determine the
distribution of the word list. They first predict the
BIO tags corresponding to the token and then dy-
namically change the vocabulary distribution of the
token based on the predicted BIO tags. Lu et al.
(2021) and Deußer et al. (2023) used special tokens
as the signal. When generating the ith token, Lu
et al. (2021) proposes three optional vocabulary
distributions for the token according to the special
token: event schema, element string (event trigger
words or arguments), and special token. Similarly,
Deußer et al. (2023) determines whether to gener-
ate an entity type token, the end token, or any token
from the source sentence based on the generated
special token. Josifoski et al. (2021) employed the
token generated in the previous steps as the signal.
Specifically, they used a trie structure for constraint.
And Liu et al. (2022a) utilized the action as the
signal. Static Constrained Decoding. Another
constrained method is the copy mechanism, which
copies a token from a fixed scope. Yan et al. (2021)
and Li et al. (2021b) employed the pointer network
to complete copy mechanism. Zeng et al. (2018),
Zeng et al. (2020), and Giorgi et al. (2022) also
proposed similar work. Differently, Chang et al.
(2023) mapped the hidden states of the generative
model to a fixed scope through a linear layer.

Set Decoding. The output target of IE is essen-
tially set where the elements are unordered (Sec-
tion 2.1). However, the current generative IE meth-
ods force the element to be generated in a prede-
fined order, which will suffer from error propaga-
tion, inefficient decoding, and order bias (Zhang
et al., 2022b; Xia et al., 2023; Li et al., 2023c).
Therefore researchers propose to directly generate
the set using the generative framework. Query to
Set. A common method for set generation is to use
a query vector to generate an element in the set (as
shown in Appendix Figure 11b) (Tan et al., 2021;
Sui et al., 2023; Yang et al., 2021). Tan et al. (2021)
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utilizes an entity query vector to predict entity and
entity type. And Sui et al. (2023) also generates
a relation triplet using a query vector as same as
Tan et al. (2021). Furthermore, Chen et al. (2024b)
proposed a dual-query approach. Ma et al. (2022)
integrated the query into the template, generating
all arguments corresponding to an event type at
once. Besides utilizing query vector to achieve
set generation, He and Tang (2022) treated each
element as a target sequence and generated it in
parallel. Li et al. (2023c) considered multiple per-
mutations of output target of IE to optimize set
probability approximately.

3.2 Training-Free
Due to the extensive volume of pre-training data,
large language models (LLMs) already possess a
rich knowledge base (Zhao et al., 2023b). This en-
dows them with the potential for significant adapt-
ability and generalization across various tasks. In
this section, we will introduce methods to activate
the adaptability and generalization capabilities of
LLMs in IE tasks without additional training.

Inference with Zero Shot In the absence of suf-
ficient data, emphasizing the construction of IE
prompts, the simplification of IE tasks, and the
use of multi-turn inference are crucial for opti-
mizing the performance of LLMs and improving
their adaptation and generalization. Well-designed
Prompt. A well-constructed prompt, which gener-
ally encompasses the description of IE tasks, the
format of the linearized text, and the incorpora-
tion of external IE knowledge, significantly aids in
eliciting the information extraction capabilities of
LLMs (Ni et al., 2023; Ashok and Lipton, 2023;
Xie et al., 2023a). Decomposing. Decomposing
IE tasks into simpler sub-tasks enables LLMs to
more effectively address complex IE tasks. Xie
et al. (2023a) decomposed NER by entity type,
enabling LLMs to identify one type of entity at
a time. Bian et al. (2023) first identified entities
and then performed classification. In contrast, Wei
et al. (2023) initially identified element types and
subsequently identified the corresponding mentions
based on these types. Multi-turn Inference. Lever-
aging LLMs to perform multi-turn inference is also
a strategy to enhance their performance in IE. Ji
(2023) and Wang et al. (2023a) pproposed a two-
stage identification-correction framework for NER.
Li et al. (2024a) introduced a three-step inference
framework consisting of generation, clarification,
and structuralization for generative IE. Task Trans-

formation. In alignment with the discussion in
Section 3.1.1, some studies reframe generative IE
tasks into alternative task paradigms, such as Ques-
tion Answering (QA) (Zhang et al., 2023a; Li et al.,
2023b) and code generation (Guo et al., 2023; Bi
et al., 2024; Li et al., 2023e; Wang et al., 2022d).

Inference with In Context Learning In data-
scarce scenarios, researchers often employ in-
context learning (ICL) to harness the capabilities
of LLMs for completing IE tasks. Demonstra-
tion Selection. Research has demonstrated that
selecting appropriate demonstration examples in
ICL can significantly enhance task performance
(Liu et al., 2021). Common methods for selecting
high-quality data as demonstrations are typically
based on the sentence or entity similarity (Rajpoot
and Parikh, 2023; Wan et al., 2023; Wang et al.,
2023a; Zhang et al., 2024b). In addition, Xie et al.
(2023b) employed self-consistency (Wang et al.,
2022e) to measure the quality of the data and select
high-quality data. Mo et al. (2024) added negative
examples in demonstrations. Qi et al. (2023) se-
lected examples that can minimize the syntactic dis-
tribution difference between the test example and
the LLMs as the demonstration. Demonstration
Format. The demonstration format is also helpful
in stimulating the capability of LLMs. Pang et al.
(2023) included guidelines in examples to mitigate
the issue of underspecified IE task descriptions.

Inference with Chain-of-Thought CoT (Wei
et al., 2022) further incorporated step-by-step rea-
soning steps in each example to stimulate the rea-
soning potential of LLMs on IE. Ma et al. (2023b)
manually constructed a CoT for RC. Zhao et al.
(2023a) divided RE into multiple steps, determined
the sequential relationship of each step and in-
cluded the solution method for each step in a CoT.

3.3 Data Manipulation
In addition to designing fine-tuning methods, re-
searchers also explore how to enhance the gener-
alization and adaptability of the model in IE tasks
from a data perspective. The quality and quantity
of data are crucial for imparting knowledge to the
model and improving the adaptation and general-
ization of the generative model. Moreover, some
methods transfer the capabilities of a teacher model
to a student model through data distillation.

Improve the quality and quantity of IE data.
In PLMs, directly fine-tuning the model to generate
data may lead to lower quality or reduced diversity
in the generated outputs (Papanikolaou and Pier-



4847

leoni, 2020). Therefore, there are many efforts
proposed. Yaseen and Langer (2021) and Veyseh
et al. (2023) employed back-translation and feed-
back mechanisms, respectively. Cabot and Navigli
(2021) enriched the diversity of relation types in
the dataset. Tan et al. (2022) further completed the
missing relation triplets in the dataset. Hu et al.
(2023b) designed two training tasks to maintain
semantic and syntactic structure consistency. Song
et al. (2024) and Guo et al. (2022) created aug-
mented sentences from the corrupt sentences. Addi-
tionally, generating sentences from IE targets (i.e.,
reverse engineering) is also an effective method
(Yili and Haonan (2023); Luo et al. (2024); Hu
et al. (2022)). Hu et al. (2022) took an entity list
as input and generates a sentence that includes all
the entities from this list. Gui et al. (2024) con-
structed a schema-balance dataset, which includes
positive schema, negative schema, and hard nega-
tive schema. In LLMs, a straightforward method is
constructing a well-designed prompt for data gener-
ation (Chen et al., 2024a; Evuru et al., 2024; Meng
et al., 2024; Xu et al., 2023c; Ye et al., 2024). How-
ever, due to the complexity of the IE output target,
one-step data generation is not friendly for LLMs.
Therefore, there are efforts to adopt the prompt
pipeline approach for high-quality IE data gener-
ation (Gatto et al., 2024; Tang et al., 2023; Chen
et al., 2023a; Cai et al., 2024; Sun et al., 2024; Luo
et al., 2024). Similar to PLMs, reverse engineering
is also used in LLMs for data generation (Ma et al.,
2023a; Josifoski et al., 2023; Zhang et al., 2024a).

Knowledge Distillation. LLMs exhibit signifi-
cant capabilities, however, employing these capa-
bilities for generative IE is both costly and time-
intensive (Zhou et al., 2023b). One approach to
address this challenge is to distill the capabili-
ties of LLMs into smaller models tailored for IE,
which can be efficiently fine-tuned on few-shot
training sets to enhance task-specific performance
(Peng et al., 2024). A prevalent distillation method
involves utilizing LLMs to generate or annotate
datasets, thereby transferring the knowledge em-
bedded in LLMs into the data, followed by training
a meta-model on this dataset (Chen et al., 2024a;
Bogdanov et al., 2024; Peng et al., 2024).

4 Single Model or Multi Models

As the number of model parameters increases, the
performance of the model on IE tasks improves
(Wang et al., 2022a; Ding et al., 2024a), signif-

icantly facilitating the completion of these tasks.
However, utilizing large-parameter models (e.g.,
ChatGPT, GPT-4) requires substantial resources.
Meanwhile, fine-tuned small parameter PLMs can
achieve excellent performance on IE tasks (Peng
et al., 2024; Yan et al., 2021; Hsu et al., 2021), and
the cost of fine-tuning PLMs is manageable. To
balance performance and cost, researchers often
combine the inference capabilities of LLMs with
the fine-tuning of small parameter PLMs. In this
section, we will introduce how PLMs and LLMs
collaborate to accomplish IE tasks.

4.1 PLMs-extractive and LLMs-auxiliary

In this part, PLMs primarily perform the extraction
tasks, while LLMs provide corresponding assis-
tance throughout the extraction process. LLMs
as Data Generators/Annotators. A primary ap-
proach to utilizing LLMs as auxiliary tools is to
consider them as data generators or annotators. As
described in Section 3.3, LLMs transfer knowl-
edge into the dataset, which is then transferred to
PLMs through the dataset (Zaratiana et al., 2023;
Bogdanov et al., 2024; Peng et al., 2024). Addi-
tionally, in situations of data scarcity, LLMs can be
employed to generate supplementary data to miti-
gate the issue (Xu et al., 2023a; Zhou et al., 2024).
LLMs as Discriminators/Correctors. Besides,
LLMs can also serve as discriminators or correc-
tors to judge the correctness of PLMs-generated
results and make corrections. Kim et al. (2024)
proposed using LLMs and self-consistency (Wang
et al., 2022e) to verify and correct the results of
PLMs. Zhang et al. (2024d) and Ma et al. (2023c)
utilized LLMs to correct low-confidence results ob-
tained and solve complex examples, respectively.

4.2 LLMs-extractive and PLMs-auxiliary

Conversely, in this part, LLMs perform the pri-
mary extraction tasks, and PLMs provide assis-
tance to LLMs. The knowledge acquired by the
PLMs is thus transferred to the LLM, with the ex-
pectation that the LLM will make more accurate
predictions by integrating the task-specific knowl-
edge of the PLM with its own domain expertise. Li
et al. (2023d) regarded PLMs as scorers to retrieve
the knowledge most similar to the source sentence.
Zhang et al. (2024c) utilized the PLMs to calibrate
the results generated by the LLMs. Tang et al.
(2024), Ding et al. (2024b) and Jiang et al. (2024)
regarded the PLMs as teachers, which the predic-
tion result of the PLMs as a part of the prompt,
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to transfer task knowledge to LLMs. Addition-
ally, Fan et al. (2024) constructed a new evaluation
method by collaborating with PLMs and LLMs.

5 Single IE or Unified IE

Before the emergence of LLMs, researchers were
already focusing on unifying IE tasks (Fei et al.,
2022; Yu et al., 2023), but most efforts remained
concentrated on individual IE tasks. IE exhibits sig-
nificant diversity (Section 2.1), leading researchers
to design task-specific methods for different IE
tasks. These task-specific solutions bring some
problems: 1. Obstructing knowledge sharing. 2.
Developing dedicated architectures. 3. High cost
and time-consuming (Lu et al., 2022b). To address
the aforementioned challenges, there is a growing
trend toward unifying the modeling of various IE
tasks. Benefiting from the powerful capabilities
of LLMs, they are capable of handling various IE
tasks. Furthermore, owing to the intrinsic capac-
ity of generative frameworks to integrate IE tasks
(Lu et al., 2022b), there is a prevailing trend to-
wards universal information extraction (Wang et al.,
2023b). In this section, we will introduce the UIE
method under the generative framework.

In a training-free scenario, the typical ap-
proaches to completing UIE involve designing spe-
cific prompts tailored to different IE tasks and sub-
sequently utilizing LLMs for inference (Xie et al.,
2023a; Guo et al., 2023; Bi et al., 2024). Building
on this foundation, additional techniques such as
task decomposition and task transformation may
also be considered (Wei et al., 2023).

In scenarios requiring training, whether utiliz-
ing PLMs or LLMs, the prevailing approach to
achieving UIE typically involves employing out-
put linearization to standardize the outputs across
different IE tasks (PLMs: (Paolini et al., 2021; Lu
et al., 2022b; Yu et al., 2023); natural language
LLMs: (Wang et al., 2023b); code-based LLMs:
(Sainz et al., 2023; Li et al., 2024b)). Furthermore,
some other work has been proposed. In PLMs,
Fei et al. (2022) further proposed heterogeneous
structure and inductor structural broadcaster on the
aforementioned basis to fully unleash the power
of syntactic knowledge for UIE. Kan et al. (2023)
unified different IE tasks through template filling.
In NL-LLMs, Xiao et al. (2023) involved multi-
turn instruction-tuning for UIE, Lu et al. (2023b)
designed various instructions for UIE, Gui et al.
(2024) constructed a schema-balanced IE dataset,

and Lee et al. (2024) considered task decomposi-
tion and parallel training for UIE. In code-LLMs,
Sainz et al. (2023) finetuned Code-LLMs with an-
notation guidelines to improve the zero-shot per-
formance. Li et al. (2024b) designed a two-stage
fine-tuning algorithm that enables LLMs to better
understand and follow the form of schemas.

6 Future direction

After introducing the existing generative IE meth-
ods based on PLMs and LLMs, we further propose
some promising research directions in this section.
We expect it to provide valuable insights and pro-
mote the development of generative IE.

Long Document IE. The mentioned methods
perform well when dealing with short texts or sen-
tences (Giorgi et al., 2022; Huang et al., 2021; Du
et al., 2022; Lilong et al., 2024), but when process-
ing long documents such as legal documents, the
task becomes more challenging due to the complex-
ity and diversity of the information contained. How
to better model long texts and extract information
from them will be a future research direction.

OIE. OpenIE refers to extracting structured in-
formation from unstructured text without any pre-
defined schema (Zhou et al., 2022). It has always
been a challenging task. For PLMs with small pa-
rameters, it is difficult to complete OpenIE due to
insufficient abilities and knowledge (Kolluru et al.,
2020). For LLMs, with their extensive knowledge
base and strong understanding ability, they have
promoted the development of openIE (Lu et al.,
2023b), but openIE remains a challenging task.

Low resource IE. In practical scenarios, there
is often a lack of data, leading to what is known as
low-resource IE. Although LLMs exhibit excellent
zero-shot and few-shot capabilities, they still fall
short of optimal performance and cannot be directly
applied in practice. Therefore, enhancing the IE ca-
pabilities of LLMs under low-resource conditions
is a promising direction for future research.

Multimodal IE. Multimodal information extrac-
tion is an emerging field in natural language pro-
cessing that focuses on extracting meaningful in-
formation from data that spans multiple modalities,
such as text, images, audio, and video. Unlike tra-
ditional IE, which primarily deals with text, multi-
modal IE aims to integrate and analyze information
from various sources to provide a more comprehen-
sive understanding of the content.
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Limitation

There are several limitations of this work. Firstly,
IE generally includes extractive IE and generative
IE, and the methods of extractive IE have occupied
a large part of the entire development process of
IE. However, this survey focuses solely on gener-
ative IE. To gain a comprehensive understanding
of the methods in IE tasks, we encourage referenc-
ing other surveys on extractive IE (Li et al., 2020;
Wang et al., 2022b; Li et al., 2022b; Yang et al.,
2022; Zhou et al., 2022; Xu et al., 2023b). More-
over, the descriptions in this survey are mostly brief
in order to provide a more comprehensive coverage
within page limits. Instead of presenting the works
in unstructured sequences, we primarily organize
them into meaningful structured groups. Our aim is
for this work to serve as a reference, where readers
can delve into the corresponding works for more
detailed information. Finally, due to personal limi-
tations and understanding, our grasp of the future
development trends in IE may not be comprehen-
sive, hence there might be some deviations in the
trends and future work mentioned in this paper.
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A Experiment setting of adaptation and
generalization in the IE task

Adaptability in information extraction tasks refers
to the ability of the model to effectively extract
the required information when confronted with
data from different domains, often involving cross-
domain adaptation. Generalization refers to the
ability of the model to perform well on unseen data,
leveraging the knowledge acquired during train-
ing. In information extraction tasks, experimental
settings for assessing model adaptability typically
include the following: Cross-Domain Adaptation,
Zero-Shot Learning, Few-Shot Learning and Trans-
fer Learning. And experimental settings for assess-
ing model generalization ability typically include
the following: Cross-Validation, Train-Test Split
and Cross-Domain Evaluation.

B Statistics of datasets and benchmarks

Table 1 presents the commonly used datasets and
benchmarks in IE tasks. The "Name of Bench-
mark" column lists the names of the benchmarks
or datasets. The "IE Tasks" column identifies the
information extraction tasks associated with each
benchmark or dataset. The "Domain" column spec-
ifies the domain knowledge encompassed by the
benchmark or dataset. In the "Number of Datasets"
column, "multi" indicates that the benchmark com-
prises multiple datasets, while "single" indicates
that it consists of only one dataset. The "Leader-
board" column uses a value of 0 to indicate that
the benchmark lacks a leaderboard, and a value
of 1 to indicate that a leaderboard is present. Fi-
nally, the "Train/Test" column provides the counts
for the training and test sets included in the bench-
mark. The data for the leaderboard comes from the
website: https://paperswithcode.com/

C Performance

We have evaluated the performance of generative
IE methods based on PLMs and LLMs across vari-
ous IE tasks, as illustrated in Table 2, 3, 4, 5, 6. The
"Methods" column lists the generative IE methods,
while the "Datasets" column specifies the relevant
datasets. In the "Training" column, a value of 0
indicates that the method does not require train-
ing, whereas a value of 1 indicates that training is
required. The "Experimental Setup" column uses
"full" to denote training under full resource condi-
tions, "low" to indicate training under low-resource

conditions, "zero-shot" for LLM inference with-
out any training samples, and "few-shot" for LLM
inference with a limited number of samples. The
"Model" column identifies the type of model used
by each method, and the "Categories" column clas-
sifies the methods into relevant categories.

D Statistics on the number of related
papers

To conduct a comprehensive survey of generative
IE, we initiated our study by searching Google
Scholar for relevant papers. We utilized the follow-
ing keywords in our search: "named entity recogni-
tion" AND "generative," "relation extraction" AND
"generative," and "event extraction" AND "genera-
tive." The search was confined to papers published
between 2020 and 2024, and the results were fur-
ther narrowed down to the top 50 entries for each
keyword. For papers published in 2023 and 2024,
we expanded our search criteria to include the key-
words "named entity recognition" AND "LLMs,"
"relation extraction" AND "LLMs," and "event ex-
traction" AND "LLMs." After compiling the search
results, we manually filtered out irrelevant papers.
The distribution of generative IE-related publica-
tions on Google Scholar over the past five years is
illustrated in Figure 1. The observed trend is sig-
nificant: with the advent of large language models,
the number of papers on generative IE has been
steadily increasing, underscoring the necessity of
a comprehensive survey to review recent advance-
ments in generative IE technology.

E The development of generative IE
models

In Figure 4, the important and popular works along
the generative IE development are shown in the
timeline. We observe that most generative IE meth-
ods are concentrated in the Training Task category.
Following the advent of LLMs, the number of meth-
ods in the Model Architecture and Prompt Learning
categories has gradually declined, while new meth-
ods have emerged in the Inference with LLMs and
Collaboration categories.

F Examples of Linearized text

To gain an intuitive understanding of linearized text
in different forms (e.g., natural language text se-
quence, special token text sequence, and code text
sequence), we have listed some examples for each
form of linearized text in Table 7. Meanwhile, in
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The Name of Benchmark IE tasks Domain The number of Dataset leaderboard Train/Test

UniversalNER (Zhou et al., 2023b) NER General Multi 0 -

TextEE (Huang et al., 2024) EE General Multi 0 -

DEIE (Ren et al., 2024) EE General Multi 0 -

InstructUIE (Wang et al., 2023b) UIE General Multi 0 -

KnowCoder benchmark (Li et al., 2024b) UIE General Multi 0 -

TRUE-UIE (Wang et al., 2024b) UIE General Multi 0 -

IEPILE (Gui et al., 2024) UIE General Multi 0 -

YAYI-UIE (Xiao et al., 2023) UIE General Multi 0 -

CoNLL2003 NER General Single 1 14041/3453

OntoNotes NER General Single 1 59924/8262

FewNERD NER General Single 1 131767/37648

ACE2004 NER General Single 1 6202/812

ACE2005 NER General Single 1 7299/1060

Genia NER Biomed Single 1 15023/1854

CADEC NER Biomed Single 0 -

TACRED RE General Single 1 68,124/15,509

SciERC RE Scientific Single 1 2136/551

DocRED RE General Single 1 3052/100

RE-DocRED RE General Single 1 3053/500

FewRel RE Medical Single 1 56k/14k

Wiki-ZSL RE General Single 1 -

NYT RE General Single 1 5.6k/5k

WebNLG RE General Single 1 5019/703

TACRED-Revisit RE General Single 1 58,465/13,418

CONLL04 RE General Single 1 922/288

ADE RE Biomed Single 1 3417/428

RAMS EE General Single 0 7,329/7,329

WIKIEVENTS EE General Single 1 5,262/492

ACE05-E EE General Single 0 17172/832

ACE05-E+ EE General Single 0 19216/676

ERE-EN EE General Single 0 14736/ 1163

DocEE EE General Single 0 22k/2.7k

Table 1: Statistics of datasets and benchmarks
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Methods Datasets Train-
ing?

Experimental
Setup

Model Category

Conll03 Genia CADEC

BARTNER (Yan et al., 2021) 93.24 79.23 70.64 training full BART Decoding

Metaretriever (Yu et al., 2023) 92.38 - - 1 full T5 Training Task

TANL (Paolini et al., 2021) 91.7 76.4 - 1 full T5 Training Task

LasUIE (Fei et al., 2022) 93.2 - - 1 full T5 Training Task/Model
Architecture

IE-E2H (Gao et al., 2023) 92.43 - - 1 full T5 Training Task

ASP (Liu et al., 2022a) 94.1 - - 1 full T5 Decoding

Universal-IE (Lu et al., 2022b) 92.99 - - 1 full T5 Training Task

DeepStruct (Wang et al., 2022a) 93.0 - - 1 full GLM10B Training Task

InstructUIE (Wang et al., 2023b) 92.94 74.71 - 1 full FlanT5-11B Training Task

PaDeLLM (Lu et al., 2024) 92.52 85.02 - 1 full llama2-7B/Baichuan-
7B

-

GNER (Ding et al., 2024a) 93.60 - - 1 full llama2-7B Training Task

UniversalNER (Zhou et al., 2023b) 93.30 77.54 - 1 full llama2-7B Data Manipulation

YAYI-UIE (Xiao et al., 2023) 96.77 75.21 - 1 full Baichuan2-13B Training Task

GOLLIE (Sainz et al., 2023) 93.1 - - 1 full Code-LLaMA-34B Training Task

KnowCoder (Li et al., 2024b) 95.1 76.7 - 1 full LLaMA2-base-7B Training Task

ANL (Athiwaratkun et al., 2020) 91.48 - - 1 full T5 Training Task

De-Bias (Zhang et al., 2022b) 93.14 79.08 71.60 1 full T5 Data Manipulation

Debiasing (Xia et al., 2023) 93.48 79.49 71.66 1 full BART -

InformedNER (Deußer et al., 2023) 91.51 - - 1 full GPT2 Decoding

LightNER (Chen et al., 2021) 92.93 - - 1 full BART Prompt Learning

Multi-task transformer (Mo et al.,
2023)

93.44 79.77 71.96 1 full BART Model Architecture

NAG-NER (Zhang et al., 2023e) 92.8 - 71.3 1 full BANG Model Architecture

SetGNER (He and Tang, 2022) 93.2 - 73.56 1 full BART Decoding

templateNER (Cui et al., 2021) 92.55 - - 1 full BART Training Task

CODEIE (Li et al., 2023e) 82.32 - - 0 few-shot(5-shot) code-davinci-002 Inference with LLMs

C-ICL (Mo et al., 2024) 87.36 - - 0 zero-shot CodeLlama-34B Inference with LLMs

GPT-NER (Wang et al., 2023a) 90.91 64.42 - 0 zero-shot GPT3 Inference with LLMs

ChatGPT-IE (Han et al., 2023b) 60.10 38.09 - 0 zero-shot chatgpt Inference with LLMs

Self-Improving-for-NER (Xie et al.,
2023b)

74.99 - 51.11 0 zero-shot GPT-3.5 Inference with LLMs

VerifiNER (Kim et al., 2024) - 55.46 - 0 few-shot GPT3 Inference with LLMs

MIT
Moive

MIT
Restaurant

ATIS

templateNER (Cui et al., 2021) 52.2 58.7 92.6 1 low(50-shot) BART Training Task

CollaborativeNER (Chen et al., 2023b) 81.57 75.92 - 1 low(50-shot) T5 Prompt Learning

InstructionNER (Wang et al., 2022c) 75.6 71.8 95.4 1 low(50-shot) T5 Training Task

LightNER (Chen et al., 2021) 73.1 62.0 92.8 1 low(50-shot) BART Prompt Learning

InstructUIE (Wang et al., 2023b) 63.00 20.99 - 0 zero-shot FlanT5 11B Inference with LLMs

UniversalNER (Zhou et al., 2023b) 59.4 31.2 - 0 zero-shot UniNER-7B Inference with LLMs

GNER (Ding et al., 2024a) 68.6 47.5 - 0 zero-shot GNER-LLAMA-7B Inference with LLMs

YAYI-UIE (Xiao et al., 2023) 68.6 47.5 - 0 zero-shot GNER-LLAMA-7B Inference with LLMs

GOLLIE (Sainz et al., 2023) 68.4 52.7 - 0 zero-shot Code-LLaMA-34B Inference with LLMs

KnowCoder (Li et al., 2024b) 50.0 48.2 - 0 zero-shot LLaMA2-base-7B Inference with LLMs

Table 2: Performance of generative IE methods in NER task under various conditions.
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Methods Datasets Train-
ing?

Experimental
Setup

Model Category

ACE2005 Conl04 WebNLG

Copymtl (Zeng et al., 2020) - - 60.5 1 full - -

Metaretriever (Yu et al., 2023) 64.37 73.66 - 1 full T5 Prompt Learning

(Veyseh et al., 2023) 71.13 - - 1 full Data Manipulation

JoinER-BART (Chang et al., 2023) - - 91.37 1 full BART Decoding

REBEL (Cabot and Navigli, 2021) - 75.4 - 1 full BART Training Task

REKnow (Zhang et al., 2022a) 68.3 - 87.0 1 full T5 Prompt Learning

R-TES (Zhang et al., 2023c) - - 90.7 1 full T5 -

RevisitingRE (Wadhwa et al., 2023) - 80.76 - 1 full T5 Prompt Learning

SetLearning-for-RE (Li et al., 2023c) 65.9 73.7 - 1 full T5 Prompt Learning

LasUIE (Fei et al., 2022) 66.4 75.3 - 1 full T5 Training Task/Model
Architecture

IE-E2H (Gao et al., 2023) 66.40 75.31 - 1 full T5 Training Task

ASP (Liu et al., 2022a) 72.7 76.3 - 1 full T5 Decodin

Universal-IE (Lu et al., 2022b) 66.06 75.00 - 1 full T5 Training Task

InstructUIE (Wang et al., 2023b) 82.31 78.48 - 1 full FlanT5-11B Training Task

YAYI-UIE (Xiao et al., 2023) 84.14 79.73 - 1 full Baichuan2-13B Training Task

GOLLIE (Sainz et al., 2023) 70.1 - - 1 full Code-LLaMA-34B Training Task

KnowCoder (Li et al., 2024b) 64.5 73.3 - 1 full LLaMA2-base-7B Training Task

C-ICL (Mo et al., 2024) 22.31 56.93 - 0 zero-shot CodeLlama-34B Inference with LLMs

FewRel Wiki-ZSL

RAG-ZSRTE (Zhang et al., 2023d) 27.07 32.75 1 low BART Data Manipulation

ZETT (Kim et al., 2022) 30.71 21.49 1 low BART Training Task

RelationPrompt (Chia et al., 2022) 30.01 22.34 1 low BART Data Manipulation

MetaLearning-for-ZSRT (Li and Qian,
2023)

39.15 36.56 1 low T5 Training Task

InstructUIE (Wang et al., 2023b) 39.55 35.20 0 zero-shot FlanT5 11B Inference with LLMs

YAYI-UIE (Xiao et al., 2023) 36.09 41.07 0 zero-shot GNER-LLAMA-
7B

Inference with LLMs

Table 3: Performance of generative IE methods in RE task under various conditions.

Methods Datasets Training? Experimental Setup Model Category

ACE2005 SemEval2010 TACRED

GREC (Ni et al., 2022) 70.2 89.9 80.6 1 full BART/T5 Training Task

GenPT (Han et al., 2022) - - 75.3 1 full BART/T5 Prompt Learning

RELA (Li et al., 2023a) - 90.4 71.2 1 full BART Training Task

TANL (Paolini et al., 2021) - - 71.9 1 full T5 Training Task

TAG (Triplets) - - 64.9 1 low BART -

SuRE (Lu et al., 2022a) 19.47(tacred) 39.27(semeval2010) - 0 zero-shot chatgpt Training Task

Table 4: Performance of generative IE methods in RC task under various conditions.
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Methods Datasets Train-
ing?

Experimental Setup Model Category

RAMS WIKIEVENTS ACE05-E

SPEAE (Nguyen et al., 2023) 58.0/53.3 71.9/66.1 - 1 full Prompt
Learning

Universal-IE (Lu et al., 2022b) - - 54.79 1 full T5 Training Task

IE-E2H (Gao et al., 2023) - - 53.85 1 full T5 Training Task

LasUIE (Fei et al., 2022) - - 51.7 1 full T5 Training Task/Model
Architecture

TANL (Paolini et al., 2021) - - 48.5/48.5 1 full T5 Training Task

Metaretriever (Yu et al., 2023) - - 52.62 1 full T5 Training Task

DEGREE (Hsu et al., 2021) - - 73.3/55.8 1 full/low BART Prompt Learning

GEN-ARG (Li et al., 2021b) - 72.29/65.11 - 1 full BART/T5 -

Memory-Docie (Du et al., 2022) - 64.31/58.78 - 1 full BART Prompt Learning

EEasQA (Lu et al., 2023a) - - 75.0/72.8 1 full BART/T5 Training Task

Simple to Complex (Huang et al., 2023) - 65.31/58.65 - 1 full BART Prompt Learning

KEPGEE (Song et al., 2023) - - 60.8/58.3 1 full BART Prompt Learning

PAIE (Ma et al., 2022) 56.8/52.2 70.5/65.3 75.7/72.7 1 full/low BART Prompt Learning

RGQA (Du and Ji, 2022) - - 75.51/72.75 1 full/low BART Training Task

Retrieve-and-Sample (Ren et al., 2023) 54.6/48.4 69.6/63.4 - 1 full T5 -

Role Knowledge Prompting (Hu et al.,
2023a)

55.1/50.3 69.1/63.8 - 1 full BART Prompt Learning

TEXT2EVENT (Lu et al., 2021) - - -/53.8 1 full T5 Training Task

Overlap (Zhang et al., 2023b) 58.1/54.3 73.7/68.7 78.2/75.4 1 full/low BART Prompt Learning

ChatGPT-IE (Han et al., 2023b) 25.09 - - 0 zero-shot chatgpt Inference with LLMs

ACE05-E

DEGREE (Hsu et al., 2021) 63.3/57.3 1 low(10% training data) BART Prompt Learning

PAIE (Hsu et al., 2021) 55 1 low(10% training data) BART Prompt Learning

RGQA (Hsu et al., 2021) 52.55 1 low(9.5% training data) BART Prompt Learning

Overlap (Hsu et al., 2021) 59.3 1 low(200 training
instances)

BART Prompt Learning

Table 5: Performance of generative IE methods in EAE task under various conditions. If the value has two values,
they represent Arg-I and Arg-C.

Methods Datasets Training? Experimental Setup Model Category

ACE05-E

Universal-IE (Lu et al., 2022b) 73.36 1 full T5 Training Task

IE-E2H (Gao et al., 2023) 72.19 1 full T5 Training Task

ANL (Paolini et al., 2021) 71.8/68.5 1 full T5 Training Task

Metaretriever (Yu et al., 2023) 72.38 1 full T5 Training Task

KEPGEE (Song et al., 2023) 80.9/76.2 1 full Bart Prompt Learning

KiPT (Li et al., 2022a) 78.6/75.3 1 full T5 Prompt Learning

KiPT (Li et al., 2022a) 63.6 1 low(64-shot) T5 Prompt Learning

TEXT2EVENT (Lu et al., 2021) -/71.9 1 full T5 Training Task

ChatGPT-IE (Han et al., 2023b) 17.55 0 zero-shot ChatGPT Inference with LLMs

KnowCoder (Li et al., 2024b) 74.2 1 full LLaMA2-base-7B Training Task

Table 6: Performance of generative IE methods in ED task under various conditions. If the value has two values,
they represent Trig-I and Trig-C.
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Figure 4: The development of generative IE methods. With the advent of large language models (LLMs), approaches
based on LLM reasoning, as well as methods leveraging the collaboration between small language models (SLMs)
and LLMs, have been steadily gaining traction. Meanwhile, methods relying on decoding, prompt learning, and
model architecture have gradually declined in prominence. However, approaches centered on training tasks have
consistently remained integral and uninterrupted throughout.

Figure 13, we have clarified the conversion process
of output linearization.

G IE Examples

To gain an intuitive understanding of different IE
tasks, we have provided an example for NER, RE,
and EE in Figure 5. Figure 5a illustrates three
common entity types in Named Entity Recognition
(NER) tasks: flat entity types, nested entity types,
and discontinuous entity types.

H The evolution of IE tasks

In this section, we will briefly review the evolution
of NER, RE, and EE, respectively.

The classical methods of NER involve regarding
it as sequence tagging task (Devlin et al., 2018).
However, when it comes to complex NER (e.g.,
nested NER and discontinuous NER), elaborate
tagging strategies are required (Ratinov and Roth,
2009; Wei et al., 2019; Alshammari and Alanazi,
2021; Beryozkin et al., 2019). Therefore, the span-
based method is proposed (Li et al., 2021a; Su et al.,
2022a). It attempts to assign an entity type to each
subsequence which may be continuous or discontin-
uous. This approach naturally accommodates more
complex NER tasks (e.g., nested NER and discon-
tinuous NER). However, the span-based paradigm
overlooks interactions between entities and leads
to relatively high time complexity (O(N2)) (Shen
et al., 2023). Furthermore, generative-based meth-
ods have emerged ( as shown in Figure 6).

RE is more challenging than NER. Initially, re-
searchers tend to first identify the entities and then
determine the relationship between them (Chan
and Roth, 2011; Vashishth et al., 2018; Miwa and
Bansal, 2016). However, these methods lead to
the accumulation of errors and ignore the interac-
tion among relation triplets (Nayak and Ng, 2020;
Giorgi et al., 2022; Kambar et al., 2022). To mit-
igate the above issues, researchers have proposed
jointly extracting entities and relations, which em-
ploy parameter sharing to extract entities and pre-
dict their associated relation (Wei et al., 2019; Dixit
and Al-Onaizan, 2019; Han et al., 2023a). How-
ever, these methods still resemble pipelines, with
a separate decoding process, and may still lead to
some degree of error propagation (Wei et al., 2019).
In order to address the aforementioned problems,
researchers have proposed a generative framework
to complete RE tasks (Nayak and Ng, 2020) (as
shown in Figure 7).

Compared to NER and RE, the target of EE is
more complex. Similar to the evolution of RE, it
initially identifies the event type and then recog-
nizes the corresponding arguments (Chen et al.,
2015; Subburathinam et al., 2019). Nevertheless,
this paradigm may result in error accumulation
(Li et al., 2022b), prompting researchers to sug-
gest the joint-based paradigm. In the joint-based
paradigm, first, the trigger words and arguments
are recognized simultaneously. Then, assign the
event type and argument roles to them (Nguyen
et al., 2016; Li et al., 2013; Zhang et al., 2016; Lin
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et al., 2020). However, both pipeline-based and
joint-based event extraction methods are inevitable
due to the influence of errors in event-type predic-
tion on argument extraction effectiveness (Li et al.,
2022b). Therefore, generative-based methods have
been proposed to alleviate the above problems (as
shown in Figure 8).

I Overview of PLMs-based and
LLMs-based methods of Generative IE

Figure 12 illustrates the differences between LLMs
and PLMs. LLMs are a subset of PLMs distin-
guished by their superior language understanding
and emergent capabilities (Zhao et al., 2023b).
These emergent capabilities allow LLMs to per-
form IE tasks using prompts. In contrast, using
PLMs for IE tasks typically requires pre-training or
fine-tuning to achieve comparable performance. To
have a clear overview of PLMs-based and LLMs-
based methods of generative IE, we show the gen-
eral framework in Figure 9, Figure 10.

J Decoding

A brief introduction to the three common decoding
methods in generative IE is provided, as shown in
Figure 11. Figure11a depicts the most common
autoregressive decoding method. Figure11b illus-
trates the set decoding paradigm, where a query
vector can generate a corresponding information
extraction (IE) target. Figure 11c presents the
constraint decoding paradigm, which modifies the
probability distribution of the tokens predicted by
the model.

K Model scaling in generative IE

We examined whether the modeling scaling law
(Kaplan et al., 2020) still exists in generative IE
tasks. The experimental setup in Figure 2 follows
(Han et al., 2023b). Specifically, we select the zero-
shot prompt with the best performance in Han et al.
(2023b) and add the randomly selected samples
from the corresponding training set. The demon-
stration of ICL includes 5 examples. We run 5
experiments and then take the average value for re-
porting. The dataset used in the experiment comes
from (Wang et al., 2023b), and the statistical re-
sults of the dataset are as shown in Table 8. The
experimental models we have chosen are GPT2
base (124M), GPT-2 medium (335M), GPT-2 large
(774M), GPT-2 xl (1.5B), and openllama-3B-v2

(3B), Llama-2-7B, Llama-2-13B, and Llama-2-
70B.
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Method Abstract Instance Specific Instance Task

Natural Language Text Sequence

(Cui et al., 2021) <candidate_span> is a <entity_type> entity U.S. tourist is a person entity. NER

(Wang et al., 2022c) <candidate_span> is a/an <entity_type> U.S. tourist is a/an person. NER

(Athiwaratkun et al.,
2020)

- A [ U.S. tourist | person ] was detained and accused of spying. NER

(Ding et al., 2024a) - A (O) U.S. (B-PER) tourist (I-PER) was (O) detained (O) and (O) accused (O) of (O)
spying (O) . (O)

NER

(Zhang et al.,
2023c)

relation type of subject is object. Nationality of Stephen Chow is China. RE

(Song et al., 2023;
Li et al., 2024a)

- Event trigger is detonated. Palestinian attacked jeep and soldiers by bomb in Gaza Strip. EE

Special Token Text Sequence

(Iovine et al., 2022) entity <sep> entity type <sep> U.S. tourist <sep> person <sep> NER

(He and Tang, 2022;
Mo et al., 2023)

entity span <entity type> </s> U.S. tourist <PER></s> NER

(Chen et al., 2023b) (entity type: entity) (person: U.S. tourist) NER

(Zhang et al.,
2023e)

<s> <entity type> entity span </s> <s> <PER> U.S. tourist </s> NER

(Deußer et al.,
2023)

entity type <TCS> entity span <ES> person <TCS> U.S. tourist <ES> NER

(Wang et al., 2023b) (entity, entity type) (U.S. tourist, person) NER

(Xiao et al., 2023) entity type: [entity] person: [U.S. tourist] NER

(Cao and
Ananiadou, 2021;

Nayak and Ng,
2020)

subject entity ; object entity ; relation type Stephen Chow; China; Nationality RE

(Huang et al., 2021) <SOT><SOSN>subject entity type<EOSN><SOE>subject
entity<EOE><SOSN>object entity

type<EOSN><SOE>object entity<EOE><EOT>

<SOT><SOSN>person<EOSN><SOE>Stephen Chow<EOE>
<SOSN>country<EOSN><SOE>China<EOE><EOT>

RE

(Cabot and Navigli,
2021)

<tirplet> subject entity <subj> object entity <obj> relation
type

<tirplet> Stephen Chow <subj> China <obj> Nationality RE

(Ni et al., 2022) [ subject entity | relation type | object entity ] [ Stephen Chow | Nationality | China ] RE

(Giorgi et al., 2022) subject entity @subject entity type@ object entity @object
entity type@ @relation type@

Stephen Chow @person@ China @country@ @Nationality@ RE

(Chia et al., 2022;
Tan et al., 2022)

Head Entity: subject entity, Tail Entity: object, Relation:
relation type.

Head Entity: Stephen Chow, Tail Entity: China, Relation: Nationality. RE

(Zhang et al.,
2022a)

<subject entity, relation type, object entity> <Stephen Chow, Nationality, China> RE

(Zhang et al.,
2023c)

object entity | subject entity | relation type China | Stephen Chow | Nationality RE

(Li et al., 2023c;
Wang et al., 2023b)

( subject entity, relation type, object entity ) ( Stephen Chow, Nationality, China ) RE

(Chen et al., 2024c) <sub> subject entity </sub> <rel> relation type </rel>
<obj> object entity </obj>

<sub> Stephen Chow </sub> <rel> Nationality </rel> <obj> China </obj> RE

(Han et al., 2022) [X] subject entity type [Y] tail entity type [Z] relation type
[W]

[X] person [Y] country [Z] Nationality [W] RC

(Kim et al., 2022) [X] subject entity [Y] object entity [Z] [X] Stephen Chow [Y] China [Z] RE

(Li et al., 2023f) [subject entity, relation type, object entity] [ Stephen Chow, Nationality, China ] RE

(Xiao et al., 2023) [relation: relation type, head: subject entity, tail: object
entity]

[relation: Nationality, head: Stephen Chow, tail: China] RE

(Lu et al., 2021) ((type trigger words (role1 argument1) (role2 argument2))) ((Conflict:Attack detonated (Attacker Palestinian) (Target jeep) (Target soldiers)
(Instrument bomb) (Place Gaza Strip)))

EE

(Li et al., 2022a) trigger words <triggers> event type detonated <triggers> Conflict:Attack ED

(Wang et al., 2023b) (type: event type, trigger: trigger words, argument role:
argument)

(type: Conflict:Attack, trigger: detonated, Attacker: Palestinian, Target: jeep,
Instrument: bomb, Place: Gaza Strip)

EE

(Xiao et al., 2023) [trigger: trigger words, type: event type, arguments: role:
name]

[trigger: detonated, type: Conflict:Attack, arguments: Attacker: Palestinian, Target:
jeep, Instrument: bomb, Place: Gaza Strip]

EE

Code Text Sequence

(Li et al., 2023e) - entity_list.append({"text": "U.S. tourist", "type": "person"});
entity_relation_list.append("rel_type": "Nationality", "ent1_type": "person",
"ent1_text": "Stephen Chow", "ent2_type": "country", "ent2_text": "China")

NER;
RE

(Sainz et al., 2023) - result=[Person(span="U.S. tourist")] NER

Table 7: The examples of the linearized text. For NER, the entity type is PER, and the entity is U.S. tourist. For
RE, the subject entity is Stephen Chow, the object entity is China, and the relation type is Nationality. For EE,
the label is: event type: Conflict:Attack; trigger words: detonated; Attacker: Palestinian; Target: jeep, soldiers;
Instrument: bomb; Place: Gaza Strip.
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Task Dataset #Train #Val #Test

NER CoNLL2003 14041 3250 3453

NER Ace2005 7299 971 1060

RE CoNLL2004 922 231 288

ED Ace2005 3342 327 293

EAE Ace2005 3342 327 293

Table 8: Dataset statistics.

Flat NER

Nested NER

Discontinuous NER I still have much muscle pain and fatigue .
DIS

DIS

Stallone is the actor of Rocky and Rambo .
PER

MISC MISC

A U.S. tourist was detained and accused of spying .
GPE

PER

(a) Examples of NER include flat NER, nested NER, and
discontinuous NER.

., the best comedian in China , was born in

Place of birth

Nationality Contains

Stephen Chow Hong Kong

(b) The example of RE. The arrow indicates the direction from
the subject entity to the object entity, with the corresponding
relation type annotated on the arrow.

Indonesia will delay the execution of six convicts including an Indian on death

row after five of them appealed to the a second review .

Justice:Execute

Justice:Appeal

Agent Person

Plaintiff Adjudicator 

Place 

Supreme Court for

(c) The example of EE. The arrow indicates the direction from the
trigger word to the argument, with the corresponding argument
role annotated on the arrow.

Figure 5: IE examples.

Extractive Model

BIO-based
paradigm

B-PER O

.RamboandRockyofactortheisStallone

O O O B-MISC O OB-MISC

(a) The BIO-based paradigm assigns a BIO tag to each word
in the source sentence. The paradigm has difficulty handling
complex NER tasks (e.g., nested NER, discontinuous NER).

...

Extractive Model

Stallone is the actor of Rocky and Rambo.

Span-based
paradigm

Stallone

Stallone is

Stallone is the

Rocky
Rambo

...
PER

None
None

MISC
MISC

...

(b) The span-based paradigm attempts to enumerate all avail-
able sub-sequences within the source sentence and assigns an
entity type to each sub-sequence. The sub-sequences might be
continuous or discontinuous. The paradigm naturally accom-
modates more complex NER tasks such as nested NER and
discontinuous NER.

Generative Model

(MISC, Rocky); (PER, Stallone); (MISC, Rambo).

Stallone is the actor of Rocky and Rambo.

Generation-based
paradigm

The Linearized text:

(c) The generation-based paradigm reformulates NER as the
generation task and generates the linearized text.

Figure 6: The evolution of NER
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Stephen Chow, the best comedian in China, was born in Hong Kong.

Model 1 Model 2

(China, Hong Kong)
(Stephen Chow, China)

(Stephen Chow, Hong Kong)

China
Hong Kong

Stephen Chow

Contains
Nationality

Place of birth

Pipeline-based
paradigm

Entity Recognition Relation classification

Entity Pairs

(a) The pipeline-based paradigm first identifies entities using
the NER system, followed by employing a classifier to deter-
mine the relation among them. It will lead to the accumulation
of errors and ignore the interaction among relation triplets
within the source sentence.

Stephen Chow, the best comedian in China, was born in Hong Kong.

Stephen Chow Hong Kong China

Place of birth Nationality
Contains

Extractive Model

Joint-based paradigm

Relation classification

Entity recognition

(b) The joint-based paradigm uses a model to first identify enti-
ties and then perform relation classification. It still resembles
pipelines, with a separate decoding process, and may still lead
to some degree of error propagation.

Stephen Chow, the best comedian in China, was born in Hong Kong.

Generative Model

Generation-based
paradigm

(China, Contains, Hong Kong); (Stephen Chow, Nationality, China); (Stephen  Chow, Place of birth, Hong Kong).
The Linearized text:

(c) The generation-based paradigm reformulates RE as the generation task
and generates the linearized text.

Figure 7: The evolution of RE

Earlier Monday , a 19-year-old Palestinian riding a bicycle detonated a 30-kilo
 ( 66-pound ) bomb near a military jeep in the Gaza Strip , injuring three soldiers.

(Contact:Attack, detonated)

Model 1 Model 2

detonated

Pipeline-based
paradigm

event detection event argument extraction

Instrument: bomb
Attacker: Palestinian
Target: jeep, soldiers
Place: Gaza Strip

trigger words: detonated

(a) The pipeline-based paradigm is necessary to identify the
event type and the trigger words in the source sentence, and
then, given the event type, the corresponding event arguments
are extracted

detonated Palestinian jeep bomb

Contact:Attack
Attacker Target Instrument

Earlier Monday , a 19-year-old Palestinian riding a bicycle detonated a 30-kilo
 ( 66-pound ) bomb near a military jeep in the Gaza Strip , injuring three soldiers.

soldiers

Target Place

Gaza Strip

Extractive Model

Joint-based paradigm

argument roles classification

trigger words and 
arguments recognization

(b) The joint-based paradigm recognizes the triggers and argu-
ments simultaneously in the first stage. In the second stage, to
avoid the error information propagation from event type, trig-
ger classification, and argument role classification are realized
simultaneously

Earlier Monday , a 19-year-old Palestinian riding a bicycle detonated a 30-kilo
 ( 66-pound ) bomb near a military jeep in the Gaza Strip , injuring three soldiers.

Generative Model

Event trigger is detonated. Palestinian attacked jeep and soldiers by bomb in Gaza Strip.

Generation-based
paradigm

The Linearized text:

(c) The generation-based paradigm reformulates EE as the gen-
eration task and generates the linearized text.

Figure 8: The evolution of EE
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Hard
Prompt

Model
Architecture

Encoder Decoder

Constraint
Decoding

Soft Prompt

Encoder Input

Set Decoding

Training Task

Data
Augmentation

Training 
Corpus

Decoder Input

Decoder Output

Figure 9: The overall framework of PLMs for generative IE. The dashed box indicates the technologies that can be
applied to the PLMs. And The dashed arrow indicates that the techniques in this part can be selectively applied to
PLMs.

LLMs

The Linearized Text

Input Text
Sequence

Special Token Text
Sequence

Code Text Sequence

IE task description, external
knowledge base, and the

format of the linearized text

Test IE Example

Demonstration examples 1

Demonstration examples 2

Demonstration examples 3

Demonstration examples n
...

ICL/CoT

Inference

(person, Steven);
(organization, Apple);

(location, America)

entity_list = [ 
person(name = "Steven"), 

organization(name =
"Apple"), 

location(name = "America")

LLMs

The Linearized TextInput Text Sequence

Instruction-formatted instance construction

Single task / Multi task

Selection or Construction Instruction-Tuning
Dataset

Training 
Corpus

Instruction Tuning

Figure 10: The overall framework of LLMs for generative IE.
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Encoder Decoder

The Source Sentence

The Linearized Text

x1 x2 x3 x4

y2 y5y3 y4
AR Generation

y1 y2 y3 y4

(a) In the generative process of the autoregressive paradigm, the
linearized text tokens are sequentially generated one by one.

Encoder Decoder

Query Vectors

(entity, entity type) or
(subject, relation, object)

The Source Sentence
x1 x2 x3 x4 y1 y2 y3 y4

Set Generation

(b) In the set generation, the decoder receives query vectors as
input, with each query vector being decoded into an element of
the IE target set.

Encoder

The Linearized Text

Decoder

Constraint

The Source Sentence

Constraint 
Generation

x1 x2 x3 x4 y1 y2 y3 y4

y2 y5y3 y4 The change in distribution

(c) In the constraint generation, the vocabulary distribution of
each token needs to be constrained before it is generated. After
the constraints, the distribution of token has changed.

Figure 11: Decoding

PLMs

LLMs

LM-powered
generative IE

Pre-train/Fine-tune
Pre-train/Fine-tune

Prompt

Linearized Text

Natural Langurage Text

and Knowledge

Figure 12: The overview of PLMs-based and LLMs-based methods of Generative IE.
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Natural Language Text

Code Text

Special Token Text

Set output linearization Linearized Text

Figure 13: A clear presentation of the output linearization process.
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