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Abstract

Recently, Large language models (LLMs) have
revolutionized Natural Language Processing
(NLP). Pretrained LLMs, due to limited train-
ing context size, struggle with handling long
token sequences, limiting their performance on
various downstream tasks. Current solutions
toward long context modeling often employ
multi-stage continual pertaining, which pro-
gressively increases the effective context length
through several continual pretraining stages.
However, those approaches require extensive
manual tuning and human expertise. In this
paper, we introduce a novel single-stage contin-
ual pretraining method, Head-Adaptive Rotary
Position Encoding (HARPE), to equip LLMs
with long context modeling capabilities while
simplifying the training process. Our HARPE
leverages different Rotary Position Encoding
(RoPE) base frequency values across different
attention heads and directly trains LLMs on the
target context length. Extensive experiments
on 4 language modeling benchmarks, including
the latest RULER benchmark, demonstrate that
HARPE excels in understanding and integrat-
ing long-context tasks with single-stage train-
ing, matching and even outperforming existing
multi-stage methods. Our results highlight that
HARPE successfully breaks the stage barrier
for training LLMs with long context modeling
capabilities.

1 Introduction

In recent years, generative Large Language Models
(LLMs) (Brown, 2020; Raffel et al., 2020; Tou-
vron et al., 2023a; Fu et al., 2023; Su et al., 2024b;
Xiong et al., 2024; Lian et al., 2024b,a) have dom-
inated the field of Natural Language Processing,
outperforming traditional task-specific methods on
many tasks, like text summarization (Liu and La-
pata, 2019; Zaheer et al., 2020; Wu et al., 2021),
information extraction (Wei et al., 2021, 2023b,a)

*These authors contributed equally to this work.

and question answering (Brown, 2020; Raffel et al.,
2020). In the process of utilizing LLMs for down-
stream tasks, it is often necessary for the LLM to
handle long token sequences. For example, when
conducting text summarization with an LLM, the
input sequence may include an entire book (Zhang
et al., 2024a; Karpinska et al., 2024), which con-
tains millions of words. To equip LLMs with the
capability to handle long texts, current methods
typically continually pretrain LLMs on a larger
context window (Xiong et al., 2023; Peng et al.,
2023; Fu et al., 2024a) compared to that in LLM
pretraining. Given that Rotary Position Encoding
(RoPE) (Su et al., 2024a) is the prevailing position
encoding in most LLMs, among those methods, the
mainstream approach is to increase the RoPE base
frequency in the positional encoding during con-
tinual pretraining (Xiong et al., 2023), as studies
have demonstrated that a larger base frequency is
the prerequisite for handling longer text sequences
(Liu et al., 2023; Men et al., 2024).

To achieve a large effective context size, existing
works commonly employ a multi-stage approach,
progressively increasing the context length through
a series of continued pretraining steps. For instance,
Large World Model (Liu et al., 2024c), GLM4-
Chat-1M (ChatGLM, 2024), MiniCPM-2.4B-128K
(Hu et al., 2024) and Llama 3.1 (Dubey et al., 2024)
utilize multi-stage pipelines to reach context win-
dows of 1M and 128k, respectively. This approach
has become the dominant method in the community
for equipping LLMs with long context capabilities.

Our single-stage experiments show that directly
scaling a larger RoPE base in a single stage is less
effective than using multi-stage approaches. This
likely explains why most publicly available mod-
els employ multi-stage ABF (Adjusted Base Fre-
quency) training. We hypothesize that direct scal-
ing to the final training length without intermediate
stages struggles to adapt to increased complexity,
which is better managed through gradual, multi-
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Metric Three-Stage ABF on LLaMA
Uniform 2B Tokens Carefully Selected

NiaH 67.83 81.36
Benchmark 62.59 63.10

Table 1: Performance comparison of different contin-
ual pertaining pipelines when conducting three-stage
ABF (Adjusted Base Frequency) (Xiong et al., 2023).
For both pipelines, we report the average score of the
Needle-in-a-Haystack task (6 lengths, 8 tasks) and on
Short-Context Benchmarks (5 tasks). For more details
on the experiment settings, please refer to Sec. 4.

stage adjustments.
Although multi-stage approaches have shown

promising results, our experiments reveal that they
require substantial manual tuning and human exper-
tise to achieve good performance on long context
modeling benchmarks. For instance, our results
in Tab. 1 demonstrate that a carefully scheduled
three-stage pipeline outperforms a naive approach
by 13.5% on the NiaH benchmark, highlighting the
limited generalizability of hyperparameters across
different LLM sizes and architectures. Moreover,
multi-stage training poses practical challenges due
to varying data and resource requirements. This
motivates the need for single-stage continual pre-
training approaches. However, single-stage train-
ing also presents challenges, such as the risk of
suboptimal outcomes when training with a much
longer context window and larger RoPE base fre-
quency, as shown in our experiments.

In this paper, we introduce a novel single-stage
approach, termed Head-Adaptive Rotary Position
Encoding (HARPE), designed to address the long-
context problem. Our goal is to achieve an effective
context length comparable to that of multi-stage
methods. Drawing inspiration from the finding that
different attention heads can acquire distinct knowl-
edge during training (Li et al., 2023), we propose
to distribute the training of different stages across
multiple attention heads concurrently. Specifically,
we leverage RoPE (Su et al., 2024a) with varying
base values to represent different effective context
lengths, thereby simulating multiple training stages.
By assigning different base values to different at-
tention heads, we enable the LLMs to be trained in
a single stage.

To determine the RoPE base values for each
attention head, we employ a complementary ap-
proach, carefully selecting values that fill in the
peaks and valleys of the sine and cosine waves

in RoPE, thereby optimizing the experimental re-
sults. In contrast to existing methods, our proposed
HARPE offers a significant advantage in terms of
simplicity and efficiency. By pretraining LLMs in
a single stage, we substantially streamline the pro-
cess of data preparation and pipeline adjustment,
eliminating the need for multiple stages and associ-
ated complexities.

We conduct a comprehensive evaluation of
HARPE on 4 benchmarks, including the recently
introduced RULER benchmark (Hsieh et al., 2024),
to assess its effectiveness on both long-context
and short-context tasks. The experimental results
demonstrate that HARPE consistently matches or
surpasses the performance of its multi-stage coun-
terparts across all evaluated benchmarks. No-
tably, on the challenging Needle-in-a-haystack task,
HARPE achieves a significant improvement of
5.46% over the multi-stage Adjused Base Fre-
quency (ABF) (Xiong et al., 2023) approach, under-
scoring its exceptional capabilities in long-context
modeling.

Unlike inference methods that employ multiple
RoPE bases simultaneously to support long con-
texts (Zhang et al., 2024c; Chen et al., 2024b), our
HARPE approach fundamentally alters the learning
dynamics of LLMs during continual pretraining,
enabling a straightforward and streamlined train-
ing pipeline. In summary, our contributions are
threefold:

• We introduce a novel single-stage continual
pretraining approach, termed Head-Adaptive
Rotary Position Encoding (HARPE), to ad-
dress the long context problem in LLMs. By
doing so, we significantly simplify the process
of data preparation and pipeline adjustment.

• To overcome the limitations of traditional
multi-stage approaches, we propose a novel
training strategy that distributes the training
of different stages across multiple attention
heads. We utilize different RoPE base values
to represent distinct training stages and care-
fully select these values to complement the
attention scores.

• We conduct a comprehensive evaluation of
HARPE on 4 long context benchmarks,
including the recently introduced RULER
benchmark. Our experimental results demon-
strate that HARPE consistently yields compa-
rable or even better performance than existing
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multi-stage methods across all benchmarks.

2 Related Works

Large Language Models (LLMs). Language
models are a type of statistical model that aims
to maximize the likelihood token sequences (Tou-
vron et al., 2023a). The Transformer architecture
(Vaswani et al., 2017) marked a turning point in the
evolution of language models, accelerating their de-
velopment. Transformer-based models, like BERT
(Devlin, 2018), GPT-2 (Radford et al., 2019), and
T5 (Raffel et al., 2020), have achieved ground-
breaking results across numerous natural language
processing tasks. More recently, the release of
GPT-4 (Achiam et al., 2023) has further pushed
the boundaries of LLMs performance, showcas-
ing exceptional capabilities. As these models con-
tinue to scale and evolve architecturally, they have
become the driving force behind cutting-edge re-
search in natural language processing, exhibiting
notable adaptability and versatility across a wide
range of applications (Liu et al., 2024a; Cai et al.,
2024; ?). Consequently, LLMs have profoundly
transformed human-computer interaction.
Long Context Modeling. Trained on relatively
short context sequences (i.e., generally <10K to-
kens), open-source LLMs show dramatic perfor-
mance drops on long context modeling (Touvron
et al., 2023a; Bai et al., 2023; Liu et al., 2024a).
Methods to improve the ability of LLMs to han-
dle long context can be mainly divided into the
following categories: attention mechanism opti-
mizing, long-term memory caching, contexual pro-
cessing, and positional encoding optimizing. At-
tention mechanism optimizing methods (Beltagy
et al., 2020; Ma et al., 2021; Dao et al., 2022) re-
duce the computational and memory bottlenecks
of the Transformer, thereby enabling the model to
process longer text sequences. Long-term mem-
ory caching methods (Wang et al., 2024; Bulatov
et al., 2022; Martins et al., 2020; Dai et al., 2019)
utilize internal or external memory caches to fetch
information in long context. Contextual process-
ing methods (Ding et al., 2020; Izacard and Grave,
2020) process long context inputs by calling the
model multiple times to process different parts of
the long text sequence.

Apart from those methods, the most common
approach is to improve the RoPE (Su et al., 2024a)
while conducting continual pretraining with a
longer context window. Specifically, Position In-
terpolation (PI) (Chen et al., 2023) reduces the

input position index to match the original context
window size. ABF (Xiong et al., 2023) adjusts
the RoPE base (i.e., θ) to scale the low-frequency
part more significantly, thereby dispersing the in-
terpolation pressure to multiple dimensions. NTK-
by-parts interpolation (bloc97, 2023) interpolates
RoPE bases according to the wavelength of dif-
ferent dimensions in RoPE relative to the context
size: high-frequency dimensions are not interpo-
lated, low-frequency dimensions are fully interpo-
lated, and intermediate frequency dimensions are
partially interpolated using a ramp function. YARN
(Peng et al., 2023) combines the NTK-by-parts
interpolation with the attention scaling technique
to achieve an even longer effective context length.
Self-Extend (Jin et al., 2024) constructs a two-layer
attention mechanism, consisting of group attention
and neighbor attention, to successfully expand the
context window without additional training. Stud-
ies have also explored the construction (Chen et al.,
2024a) and training strategies (Bai et al., 2024) of
long context data.

While methods based on improving positional
encoding have achieved promising experimental
results (Liu et al., 2024c; He et al., 2024; Zhang
et al., 2024b), they typically rely on complicated
multi-stage training pipelines to gradually increase
the effective context length(e.g., 8k → 16k →
32k . . . → 128k). In contrast, our proposed
HARPE offers a simplified single-stage continual
pretraining approach. Experimental results demon-
strate that our HARPE achieves comparable perfor-
mance to existing multi-stage methods.

3 Head-Adaptive Rotary Position
Encoding based Approach

In this section, we first revist the formulation of
Rotary Position Encoding (RoPE) in Sec. 3.1. We
then present the proposed HARPE in Sec. 3.2, de-
tailing its multi-head RoPE base mechanism and
base selection strategies.

3.1 Preliminaries

RoPE (Su et al., 2024a) is a widely adopted tech-
nique for position encoding in LLMs built on the
Transformer architecture (GLM et al., 2024; Liu
et al., 2024a; Yang et al., 2023; Dubey et al., 2024).
The primary objective of RoPE is to encode posi-
tional information in a way that the inner product
of the query and key embeddings inherently cap-
tures the relative position information, which can
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Figure 1: Illustration of the multi-stage and our proposed single-stage (HARPE) continual pretraining pipeline.

be formally expressed as:

f(qm,m)T f(kn, n) = g(qm, kn,m− n) (1)

Here, f represents the positional encoding function
applied to the query embeddings qm at position m
and key embeddings kn at position n. To satisfy
this condition, the function f is defined as a d-
dimensional rotation matrix, denoted as Rd

Θ,m:

f(x{q,k},m) = Rd
Θ,mx{q,k} (2)

where

Rd
Θ,m = diag

(
R(mθ1), . . . ,R(mθd/2)

)
(3)

R(mθi) =

(
cosmθi − sinmθi
sinmθi cosmθi

)
(4)

Θ = {θi = b−2(i−1)/d, i ∈ [1, 2, . . . , d/2]} (5)

These formulas indicate that the rotation angle
Θ can be adjusted by modifying the base frequency
b. Specifically, increasing b (i.e., decreasing Θ)
mitigates the severe decaying effect of RoPE on
attention scores for distant tokens, thereby enabling
LLMs to process longer input sequences (Xiong
et al., 2023).

3.2 HARPE

As illustrated in Fig. 1, HARPE leverages the di-
verse capabilities of each attention head by pre-
defining a base set B, where the cardinality of B
is equal to the number of attention heads. Specifi-
cally, HARPE assigns a unique base bh from B to

the RoPE in each attention head h. For head h, Θ
in Eq. 5 is defined as:

Θh = {θh,i = b
−2(i−1)/d
h , i ∈ [1, . . . , d/2]} (6)

then
Rd

Θh,m
= diag (R(mθh,i)) (7)

R(mθh,i) =

(
cosmθh,i − sinmθh,i
sinmθh,i cosmθh,i

)
(8)

To determine the base set B, we establish two
distinct RoPE base selection strategies.

The first strategy involves uniformly distribut-
ing the bases Buniform within a predefined range,
bounded by a maximum base bmax and a minimum
base bmin.

Buniform = {bh = bmin+h× bmax − bmin

N − 1
} (9)

where h = 0, 1, . . . , N − 1.
The second strategy adopts the search method

proposed by (Chen et al., 2024b), which seeks
to ensure that the attention waveform valleys of
any given base overlap with peaks from different
bases, and vice versa. To achieve this, a candidate
base set Bc is initially generated by discretizing
the range between bmax and bmin with a relatively
small stride s.

Bc = {bmin + i× s, i ∈ [1,
bmax − bmin

s
]} (10)
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Algorithm 1 The searching algorithm of Bs

Require: A candidate base set Bc

1: Define a function fp(b) 7→ peak positions in
attention waveforms corresponding to base b

2: Define a function fv(b) 7→ valley positions in
attention waveforms corresponding to base b

3: Initialize the searched base set Bs ← {bmin}
4: Ps ← fp(bmin);Vs ← fv(bmin)
5: while |Bs| < N do
6: for bj in Bc do
7: Pj ← fp(bj);Vj ← fv(bj)
8: d+j ←

∑
pj,i ∈ Pj

vs,i ∈ Vs

|pj,i − vs,i|

9: d−j ←
∑

vj,i ∈ Vj

ps,i ∈ Ps

|vj,i − ps,i|

10: dj ← d+j + d−j
11: end for
12: Bs ← Bs ∪ {b′j with the minimum dj}
13: Ps ← Ps ∪ fp(b

′
j);Vs ← Vs ∪ fv(b

′
j)

14: end while
15: return Bs

Head Base Head Base Head Base Head Base

1 1.00 9 2.50 17 3.01 25 3.61
2 1.15 10 2.65 18 3.04 26 3.88
3 1.30 11 2.68 19 3.10 27 4.09
4 1.45 12 2.71 20 3.13 28 4.15
5 2.17 13 2.74 21 3.16 29 4.39
6 2.20 14 2.80 22 3.22 30 4.45
7 2.23 15 2.83 23 3.43 31 4.51
8 2.47 16 2.92 24 3.46 32 4.54

Table 2: RoPE base frequency settings for each head
in HARPE, with each base value expressed in millions
(×106), and stride of 30k.

Subsequently, the final searched base set Bs is de-
termined by iteratively complementing the valleys
and peaks of attention waveforms of different bases
within Bc, as shown in Algorithm 1.

4 Experimental Setup

We select LLama2-7B-Base (Touvron et al., 2023b)
as our base model, which is configured with a RoPE
base frequency of 10k and a context length of 4k.

4.1 Baseline Systems
We compare HARPE with 4 continual pretraining
methods and one training-free method.

PI (Chen et al., 2023) employs a linear down-
scaling of the input position indices to match the
original context window size, thereby avoiding

Method Proof-pile GovReport

Llama2-7B-Base 4336.96 7289.38

PI 20.73 11.47
ABF Single-Stage 3.06 3.58
ABF Multi-Stage 3.03 3.57

YaRN 4.53 4.52

Self-Extend* 5.45 3.76

HARPE(ours) 3.02 3.54

Table 3: Sliding window perplexity (S = 256) for Proof-
pile and GovReport documents. Asterisks (*) denote
the training-free method. Lower perplexity values indi-
cate better model performance.

extrapolation beyond the trained context length,
which can lead to catastrophically high attention
scores that compromise the self-attention mech-
anism. The interpolation scale is set to 32 =
128k/4k.

ABF Single-Stage (Xiong et al., 2023) imple-
ments a minimal yet necessary modification to the
RoPE positional encoding for long-context mod-
eling: increasing the hyperparameter "base fre-
quency" b to 5m (i.e., decreasing the rotation an-
gle), which mitigates the decaying effect of RoPE
for distant tokens. Concurrently, the input sequence
length is increased to 128k.

ABF Multi-Stage also increases the base and
input sequence length, but with a key difference: it
does so in a gradual, multi-stage manner. Specif-
ically, we divide the process into three stages:
(1)b = 1m; l = 32k, (2)b = 2m; l = 64k, and
(3)b = 5m; l = 128k.

YaRN (Peng et al., 2023) utilizes the RoPE for-
mula Eq. (5) to distinguish between high-frequency
and low-frequency positional components. It ad-
justs the base within a 64-dimensional space ac-
cording to these frequency components, applying a
scale factor of 32.

Self-Extend (Jin et al., 2024) is a training-free
method. We apply it with window_size = 1024
and group_size = 32.

4.2 HARPE Base Setting

We adopt the second strategy (i.e.,the peak-valley
search method) mentioned in Sec. 3.2. We set
bmin = 1m; bmax = 5m; s = 30k. The final bases
are shown in Tab. 2. And we will discuss other
base settings in Sec. 5.2.
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Figure 2: Traditional Single-Key Needle-in-a-Haystack: the x-axis represents the number of tokens in the test
sample, ranging up to 128k tokens with finer granularity. The y-axis shows the depth of the needle’s position within
the current test sample.

Method 4k 8k 16k 32k 64k 128k Avg.

Llama2-7B-Base 90.90 - - - - - -

PI 77.56 26.59 16.50 0.00 0.00 0.00 20.11
ABF Single-Stage 92.44 88.78 84.16 78.03 70.81 62.72 79.49(3rd)
ABF Multi-Stage 95.19 91.72 87.53 78.84 72.78 62.13 81.36(2nd)

YaRN 83.88 73.66 64.84 46.53 12.69 0.00 46.93

Self-Extend* 76.47 66.25 58.84 52.16 1.38 0.00 42.52

HARPE(ours) 97.03 96.88 93.72 86.66 79.41 67.19 86.82(1st)

Table 4: Upgraded Needle-in-a-Haystack Tests: Average scores for 8 NiaH tasks at various lengths. Asterisks (*)
denote training-free methods.

4.3 Evaluation Metric

Perplexity (PPL) is evaluated on the Proof-pile
(Zhangir Azerbayev, 2022) and GovReport (Huang
et al., 2021) datasets. Following the setup in Yarn,
for the Proof-pile dataset, we selected samples with
a minimum of 128k tokens and measured perplexity
for token lengths ranging from 2k to 128k in incre-
ments of 2k, averaging the scores for each length.
For the GovReport dataset, we reported the average
PPL scores for samples with a context window of
32k tokens. Evaluations are conducted using the
sliding window method proposed by Press (Press
et al., 2021), with a window size of 256 tokens.

Needle-in-a-Haystack is a task that assesses a

model’s ability to accurately locate and recite a spe-
cific sentence, referred to as the "needle", within
a lengthy document, known as the "haystack". To
provide a more comprehensive evaluation of a
model’s long-context capabilities, we extend this
method, inspired by RULER (Hsieh et al., 2024),
to include multi-key, multi-value and multi-query
scenarios, as well as diverse types of needles and
background documents in each scenario. A multi-
key task involves multiple keys, similar to ’the nee-
dle’, in the background, where the model must
find the target needle among the distractions. In a
multi-value task, multiple needles are inserted in
haystack, and the model earns one point for each
correct needle found.



4903

Method ABF ABF HARPE
Single-Stage Multi-Stage (Ours)

MMLU 40.87 41.10 40.74
Hellaswag 77.33 77.83 77.99

ARC-c 52.82 52.65 52.73
PIQA 78.56 78.56 78.56

TriviaQA 62.39 63.29 63.72

Avg. 62.39 62.69 62.75

Table 5: Short-Context Benchmark Results: Evalu-
ation Results of the Top 3 Long-Context-Performance
Models on 5 Short-Context Datasets.

Short-Context Benchmarks assess whether
short-context capabilities are preserved during
long-context training. We include five widely used
short-context evaluation datasets: 5-shot MMLU
(Hendrycks et al., 2020), 10-shot Hellaswag
(Zellers et al., 2019), 25-shot ARC-Challenge
(Clark et al., 2018), 0-shot PiQA (Bisk et al., 2019),
and 5-shot TriviaQA (Joshi et al., 2017).

4.4 Training Configuration

For continual pretraining, we follow the configu-
rations outlined in (Fu et al., 2024b), utilizing the
upsampling dataset from (Yaofu, 2023b). We em-
ploy the Llama2-7B-Base model as the pre-trained
backbone, with a learning rate of 2e−5 and AdamW
optimizer settings of β1 = 0.9 and β2 = 0.95. All
models were continually pre-trained with 6B to-
kens using these consistent settings.

5 Experimental Results

5.1 HARPE vs. Baseline Systems

We utilize HARPE to conduct a comparative evalu-
ation with the five long-context methods outlined
in Sec. 4.1, employing three evaluation metrics as
detailed in Sec. 4.3.

First, to evaluate the long context modeling ca-
pability of HARPE, we evaluate HARPE and the
competing methods with the PPL metric. As shown
in Tab. 3, on the tested Proof-pile and GovReport
datasets, our HARPE achieves comparable or even
better results compared to the state-of-the-art multi-
stage methods and various single-stage methods.
This indicates that the proposed HARPE has the
capability to handle long text sequences.

Furthermore, we employ the upgraded Needle-
in-a-Haystack test, as defined in the RULER
benchmark (Hsieh et al., 2024), to evaluate the
long-context relationship capturing performance of

HARPE and its competitors. As shown in Tab. 4,
HARPE significantly outperforms all listed meth-
ods. Notably, HARPE proves more effective than
multi-stage approaches, surpassing the multi-stage
ABF by 5.5%. While typical single-stage methods,
such as YARN and PI, fail as the context length
increases, HARPE successfully extends the effec-
tive context length to 128K tokens. More details on
the NiaH results, including scores for each of the
8 NiaH tasks (e.g., multi-key and multi-value), are
provided in the Appendix Tab. 8. Simultaneously,
we evaluate traditional NiaH tasks at a finer granu-
larity, following the code in (Liu et al., 2024b). As
shown in Fig. 2, HARPE achieves a 100% accuracy
rate across various lengths within 128k tokens.

We also evaluate HARPE on the short-context
benchmarks. Results in Tab. 5 show that HARPE
also yields comparable or even slightly better per-
formance than competing methods in terms of av-
erage accuracy across 5 short-context tasks.

5.2 Study of Various Base Schemes
In this section, we evaluate the performance of two
base selection methods for the head-specific RoPE
bases in HARPE: uniform distribution and peak-
valley opposition. For the uniform distribution
method, we conduct two experiments with uniform
ascending and descending intervals to analyze
the impact of different base orders on model perfor-
mance. For the peak-valley opposition method, as
described in algorithm 1 and Eq. (10), we test five
variations with different base strides (10k, 20k,
30k, 40k, 50k) to further explore their effects.

The results of various HARPE configurations,
along with the original LLaMA2 model, on the
upgraded Needle-in-a-Haystack test are presented
in Tab. 6. Under different RoPE base settings,
our HARPE consistently outperforms the original
LLaMA2-7B-Base model. Among the two meth-
ods evaluated, the peak-valley opposition approach
with stride = 30k demonstrates the best perfor-
mance, surpassing the next closest competitor by
1.25%. As a result, we adopt the peak-valley ap-
proach with a stride of 30k for HARPE.

5.3 Comparative Results on RULER
Evaluation

In this section, we evaluate HARPE against vari-
ous open-source pre-trained models on a range of
long-context tasks using the RULER benchmark.
RULER is a comprehensive and widely recognized
standard for long-context evaluation, comprising
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Method Model 4k 8k 16k 32k 64k 128k Avg.

RoPE Llama2-7B-Base 90.9 - - - - - -

peak&valley

stride = 10k 96.38 96.38 88.97 84.09 76.00 65.22 84.51
complementarity stride = 20k 96.97 96.78 91.69 85.97 74.44 67.59 85.57(2nd)

stride = 30k 97.03 96.88 93.72 86.66 79.41 67.19 86.82(1st)
stride = 40k 96.84 96.09 91.13 83.13 75.94 65.00 84.69
stride = 50k 92.75 92.4 87.31 83.97 75.31 70.34 83.68

same stride
ascending order 96.53 95.13 89.22 84.72 74.31 65.88 84.30
descending order 96.50 95.22 91.91 87.16 76.31 64.69 85.30(3rd)

Table 6: Upgraded Needle-in-a-Haystack Results of HARPE: Comparison of different base selection schemes in
HARPE models.

Model Size 4k 8k 16k 32k 64k 128k Avg.

Jamba (AI21, 2024) 52B 81.20 75.4 68.8 65.3 61.00 51.4 67.18
Mixtral (Mistral.AI, 2023) 7B 91.60 89.80 86.30 77.20 52.30 8.00 67.50

Llama2-7B-Base 7B 79.4 - - - - - -
Together (Together.AI, 2023) 7B 84.6 78.7 68.3 57.9 0.0 0.0 48.25

Yarn (Peng et al., 2023) 7B 77.30 67.50 59.00 47.30 38.60 13.90 50.60
LongLoRA (Chen et al., 2024c) 7B 81.90 80.4 75.6 65.1 60.80 0.0 60.63

LWM (Liu et al., 2024c) 7B 77.50 74.00 69.60 64.60 61.30 59.00 67.67(3rd)
llama-2-7b-80k (Yaofu, 2023a) 7B 87.95 80.68 72.70 63.47 54.62 47.65 67.85(2nd)

HARPE (ours) 7B 88.48 83.44 74.87 68.10 55.64 51.88 70.40(1st)

Table 7: RULER Benchmark Results: Comparison of HARPE and Open-Source Base Models Across All Lengths
for 13 RULER Tasks.

13 tasks that include "needle in a haystack" as well
as additional tasks such as Variable Tracing, Ag-
gregation Ability, and Question Answering.

As shown in Tab. 7, our comparison in 10 base
models primarily involves 7B models, along with
model using other architecture such as Jamba.
HARPE surpasses all LLaMA2-based models and
ranks 1st overall, surpassing the 2nd by 2.55%.
Notably, HARPE demonstrates a significant ad-
vantage in shorter context performance compared
to the multi-stage ABF-trained LWM with a 1M
fine-tuning length. Furthermore, HARPE consis-
tently outperforms the YaRN model with a 128k
fine-tuning length, achieving an average improve-
ment of nearly 20 points across various lengths.
Additionally, when compared to the llama-2-7b-
80k model, which has the same training parameters
and dataset but a shorter fine-tuning length of 80k,
HARPE still shows superior performance in shorter
context tasks with lengths less than 32k.

6 Conclusion

In this paper, we present a novel single-stage con-
tinual pretraining method, HARPE, to enhance
the long-context modeling capabilities of LLMs.
Specifically, our HARPE distributes the different
training stages across different attention heads, and
assigns different base values in the RoPE for dif-
ferent attention heads during continual pretraining
stage. Experimental results across 4 benchmarks
demonstrate that HARPE outperforming or match-
ing existing multi-stage methods in long-context
modeling tasks, while maintaining comparable per-
formance on short-context tasks. In practical ap-
plications, our HARPE breaks the stage barrier,
offering a simplified pipeline with minimal man-
ual tuning and expertise, thereby streamlining the
process of equipping LLMs with long-context ca-
pabilities.

7 Limitations

Despite that HARPE demonstrates promising re-
sults on benchmarks with long context lengths,
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limitation still remains. Our research is primar-
ily concentrated on the continual pretraining stage,
leaving its applicability to other stages, such as su-
pervised fine-tuning, unexplored. We will address
those limitations in our future research.
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Method Task 4k 8k 16k 32k 64k 128k Avg.

PI

niah_single1 94.00 35.00 20.00 0.00 0.00 0.00 24.83
niah_single2 99.00 46.00 21.00 0.00 0.00 0.00 27.67
niah_single3 99.00 45.00 29.00 0.00 0.00 0.00 28.83

niah_multikey1 88.00 39.00 26.00 0.00 0.00 0.00 25.50
niah_multikey2 85.00 14.00 5.00 0.00 0.00 0.00 17.33
niah_multikey3 55.00 2.00 0.00 0.00 0.00 0.00 9.50
niah_multivalue 32.25 16.25 17.00 0.00 0.00 0.00 10.92
niah_multiquery 68.25 15.50 14.00 0.00 0.00 0.00 16.29

ABF Single-Stage

niah_single1 100.00 100.00 100.00 99.00 89.00 91.00 96.50
niah_single2 100.00 100.00 100.00 100.00 99.00 93.00 98.67
niah_single3 100.00 100.00 100.00 100.00 100.00 88.00 98.00

niah_multikey1 92.00 93.00 89.00 91.00 86.00 86.00 89.50
niah_multikey2 95.00 98.00 94.00 82.00 70.00 37.00 79.33
niah_multikey3 63.00 54.00 31.00 16.00 6.00 3.00 28.83
niah_multivalue 92.00 72.25 66.00 51.50 34.75 44.00 60.08
niah_multiquery 97.50 93.00 93.25 84.75 81.75 59.75 85.00

ABF Multi-Stage

niah_single1 100.00 100.00 100.00 100.00 96.00 99.00 99.17
niah_single2 100.00 100.00 100.00 100.00 100.00 95.00 99.17
niah_single3 100.00 100.00 100.00 100.00 100.00 94.00 99.00

niah_multikey1 95.00 95.00 95.00 94.00 83.00 89.00 91.83
niah_multikey2 96.00 96.00 91.00 76.00 73.00 14.00 74.33
niah_multikey3 79.00 69.00 48.00 15.00 8.00 1.00 36.67
niah_multivalue 95.25 81.00 74.75 55.50 40.25 40.75 64.58
niah_multiquery 96.25 92.75 91.50 90.25 82.00 64.25 86.17

YaRN

niah_single1 100.00 100.00 100.00 100.00 95.00 0.00 82.50
niah_single2 100.00 100.00 100.00 87.00 0.00 0.00 64.50
niah_single3 100.00 100.00 97.00 65.00 0.00 0.00 60.33

niah_multikey1 79.00 69.00 51.00 30.00 1.00 0.00 38.33
niah_multikey2 81.00 64.00 42.00 12.00 0.00 0.00 33.17
niah_multikey3 79.00 69.00 48.00 15.00 8.00 1.00 36.67
niah_multivalue 86.00 75.00 59.50 34.50 3.50 0.00 43.08
niah_multiquery 84.00 72.25 67.25 42.75 2.00 0.00 44.71

Self-Extend

niah_single1 100.00 100.00 100.00 94.00 11.00 0.00 67.50
niah_single2 100.00 100.00 96.00 87.00 0.00 0.00 63.83
niah_single3 100.00 99.00 90.00 92.00 0.00 0.00 63.50

niah_multikey1 78.00 71.00 56.00 43.00 0.00 0.00 41.33
niah_multikey2 28.00 9.00 3.00 2.00 0.00 0.00 7.00
niah_multikey3 26.00 5.00 3.00 1.00 0.00 0.00 5.83
niah_multivalue 89.25 64.50 52.75 46.25 0.00 0.00 42.13
niah_multiquery 90.50 81.50 70.00 52.00 0.00 0.00 49.00

HARPE

niah_single1 100.00 100.00 100.00 100.00 100.00 100.00 100.00
niah_single2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
niah_single3 100.00 100.00 100.00 100.00 100.00 99.00 99.83

niah_multikey1 96.00 97.00 91.00 92.00 93.00 90.00 93.17
niah_multikey2 93.00 96.00 96.00 87.00 78.00 46.00 82.67
niah_multikey3 91.00 91.00 81.00 38.00 23.00 6.00 55.00
niah_multivalue 98.50 95.00 92.25 87.75 61.50 43.00 79.67
niah_multiquery 97.75 96.00 89.50 88.50 79.75 53.50 84.17

Table 8: Detail Scores of the 8 upgraded Needle-in-a-Haystack Tasks Across Different Lengths.
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