
Proceedings of the 31st International Conference on Computational Linguistics, pages 4920–4937
January 19–24, 2025. ©2025 Association for Computational Linguistics

4920

SEED: Accelerating Reasoning Tree Construction via Scheduled
Speculative Decoding

Zhenglin Wang*, Jialong Wu∗, Yilong Lai, Congzhi Zhang, Deyu Zhou†

School of Computer Science and Engineering, Key Laboratory of Computer Network
and Information Integration, Ministry of Education, Southeast University, China
{zhenglin, jialongwu, yilong.lai, zhangcongzhi, d.zhou}@seu.edu.cn

Abstract

Large Language Models (LLMs) demonstrate
remarkable emergent abilities across various
tasks, yet fall short of complex reasoning and
planning tasks. The tree-search-based reason-
ing methods address this by encouraging the
exploration of intermediate steps, surpassing
the capabilities of chain-of-thought prompting.
However, significant inference latency is intro-
duced due to the systematic exploration and
evaluation of multiple thought paths. This pa-
per introduces SEED, a novel and efficient in-
ference framework to improve both runtime
speed and GPU memory management concur-
rently. Based on a scheduled speculative exe-
cution, SEED efficiently handles multiple iter-
ations for thought generation and state evalu-
ation, leveraging a rounds-scheduled strategy
to manage draft model dispatching. Extensive
experimental evaluations on three reasoning
datasets demonstrate the superior speedup per-
formance of SEED1.

1 Introduction

Despite Large Language Models (LLMs) have
shown remarkable emergent abilities across a vari-
ety of tasks (Ouyang et al., 2022; OpenAI, 2022;
Touvron et al., 2023a,b; Achiam et al., 2023),
their performance on the complex reasoning and
planning tasks remains suboptimal (Zhang et al.,
2024b). Traditional or simple prompting tech-
niques (Wei et al., 2022; Kojima et al., 2022),
which have been widely leveraged, are insufficient
for the tasks that require exploratory actions or
strategic lookahead (Liao et al., 2024).

Tree-Search-Based (TSB) reasoning methods
effectively harness the planning and reasoning
capabilities of LLMs by decomposing the prob-
lems and subsequently orchestrating a structured

* Equal Contribution.
† Corresponding Author.
1 https://github.com/Linking-ai/SEED

(a) Serial (d) Parallel(c) Scheduled SD

GPU HBM

(b) Serial SD

Target Draft

Figure 1: Illustration of four LLM execution strategies
for generating 3 sequences in Reasoning Tree construc-
tion: (a) Serial, where executions are operated one after
another, simplifying resource management but increas-
ing overall execution time; (b) Seiral SD, where specula-
tive decoding is used for each execution; (c) Scheduled
SD, which involves several parallel draft models and
one target model; (d) Parallel, where multiple execu-
tions run concurrently, reducing completion time but
increasing GPU HBM.Latency

(a) Serial (b) Parallel (c) Schedule

Target DraftGPU HBM
refers to a large target model,

Latency

(a) Serial (b) Parallel (c) Schedule

Target DraftGPU HBM signifies a smaller draft model, Latency

(a) Serial (b) Parallel (c) Schedule

Target DraftGPU HBM represents a
unit length of execution time.

plan (Hui et al., 2024). These methods not only
leverage the inherent strengths of LLMs in process-
ing vast datasets but also address their limitations
in dynamic problem-solving scenarios (Hao et al.,
2023; Guan et al., 2023). For example, Yao et al.
(2024) introduced Tree-of-Thoughts (ToT) prompt-
ing, which generalizes beyond Chain-of-Thought
(CoT) prompting by fostering the exploration of
intermediate thoughts that serve as crucial steps in
general problem-solving with LLMs. Following
this way, subsequent works, such as Reasoning via
Planning (RAP) (Hao et al., 2023) and Refection
on search Trees (RoT) are proposed (Hui et al.,
2024). These approaches leverage the capabilities
of LLMs to generate and evaluate the intermediate
thoughts and then integrate them with search algo-
rithms to improve the problem-solving efficiency.

https://github.com/Linking-ai/SEED

4921

However, such methods introduce a serious issue
of inference latency due to the requirement for sys-
tematic exploration of thoughts with lookahead and
backtracking. TSB reasoning methods primarily
consist of two key parts, tree construction and the
search algorithm. Recent studies have enhanced
the efficiency of the search algorithms by incorpo-
rating diversity rewards or pruning techniques (Yan
et al., 2024; Hui et al., 2024). To the best of our
knowledge, no prior work explored the accelera-
tion of tree construction, which is the focus of this
paper.

Traditional Sequential execution of LLMs neces-
sitates repeated executions, leading to long execu-
tion time, as shown in Figure 1 (a). For instance,
when applying ToT prompting to execute a single
sample in the GSM8K dataset, the average total run-
time is approximately 100 seconds using sequential
processing with a 7B model on consumer GPUs.
If the execution of LLMs shifts from sequential
to parallel processing, it could pose challenges
for end-users or researchers only with consumer
GPUs, as illustrated in Figure 1 (d). Such con-
dition typically exacerbates the issues related to
hardware limitations, necessitating strategies for
efficient resource management and optimization.
Speculative decoding is now widely used to accel-
erate inference (Xia et al., 2024), which involves
employing a small draft model with a larger target
model, as depicted in Figure 1 (b). Intuitively, these
draft models achieve rapid inference speeds owing
to their small size. If they are executed in paral-
lel, concerns about the GPU memory constraints
become negligible, allowing for the speed perfor-
mance comparable to the scenarios illustrated in
Figure 1 (d). Moreover, speculative decoding em-
ploys a draft-then-verify two-stage paradigm, and
the target model is not fully utilized when the ac-
ceptance rate of drafted tokens is relatively high.
By increasing the number of draft models, the po-
tential of a single target model can be effectively
harnessed, ensuring its capacity is optimally uti-
lized.

Therefore, we propose a novel and efficient in-
ference framework, SEED, to address both runtime
speed and GPU memory resource management con-
currently in reasoning tree construction. SEED
effectively handles two scenarios: (1) executing
multiple iterations with the same prompt; (2) eval-
uating multiple iterations with different prompts.
We utilize scheduled speculative decoding to man-
age the scheduling of parallel draft models. As

depicted in Figure 1 (c), given that there is only
one shared target model, which can not simulta-
neously verify multiple draft models, we address
this limitation by drawing inspiration from process
scheduling in operating system management (Zhao
and Stankovic, 1989; Siahaan, 2016). To this end,
the Rounds-Scheduled strategy which uses a First-
Come-First-Serve (FCFS) queue, is employed to
control and maintain the overall execution flow.

SEED achieves excellent speed performance on
three reasoning and planning datasets: GSM8K,
Creative Writing and Blocksworld. It also provides
a viable path for conducting batched inference in
training-free speculative decoding while preserv-
ing the original distribution, ensuring a lossless
outcome.

Our contribution can be summarized as follows:

• An efficient inference framework, SEED, is
proposed to accelerate the both Thought Gen-
erator and State Evaluator in reasoning tree
construction.

• Speculative Scheduled Execution that inte-
grates parallel drafting with speculative de-
coding is proposed, employing an effective
Rounds-Scheduled strategy to manage paral-
lel drafting devoid of verification conflicts.

• Empirically, extensive experiments and anal-
ysis studies are conducted to demonstrate
the effectiveness of SEED. SEED achieves
1.1−1.5× speedups, generating up to 20 ad-
ditional tokens per second across three rea-
soning datasets.

2 Related Work

2.1 Tree-Search-Based Reasoning
Recently, TSB reasoning methods have been
widely leveraged to augment the reasoning capa-
bilities of LLMs such as RAP (Hao et al., 2023),
ToT (Yao et al., 2024), RoT (Hui et al., 2024).
These methods craft a reasoning tree allowing con-
sider multiple reasoning paths and self-evaluate the
choices to determine the next course of action. At
each reasoning step, the popular tree search algo-
rithms such as Breadth-First Search (BFS) (Bundy
and Wallen, 1984) and Monte-Carlo Tree Search
(MCTS) (Kocsis and Szepesvári, 2006) are inte-
grated to explore the tree in search of an optimal
state. Also, the construction or search of the tree
requires more iterations than single sampling meth-
ods (e.g., Input-output prompting and CoT (Wei
et al., 2022)), leading to higher inference latency.

4922

To address this, some studies introduce diversity re-
wards (Yan et al., 2024) or pruning techniques (Hui
et al., 2024) to mitigate inefficient searches during
iterations, improving search efficiency. However,
these methods still overlook the inference latency
caused by the iterative process of tree construction.
Instead, we focus on tree construction, leveraging
speculative scheduled decoding to accelerate the
process and reduce inference latency.

2.2 Parallel Decoding

The inference latency of LLMs has emerged as a
substantial obstacle, restricting their remarkable
reasoning capabilities in downstream tasks (Xia
et al., 2024). One major factor contributing to
the high inference latency is the sequential de-
coding strategy for token generation adopted by
almost all LLMs (Lu et al., 2024b). There are
numerous studies have explored this challenge
through parallel decoding strategies, such as Spec-
ulative Decoding (SD) (Zhou et al., 2023; Cai et al.,
2024), Early Exiting (EE) (Del Corro et al., 2023;
Elhoushi et al., 2024), and Non-AutoRegressive
(NAR) (Ghazvininejad et al., 2019; Lu et al.,
2024a). In this paper, we focus on the study of
Speculative Decoding. Within SD, one line of
work falls into the training-free category (Sun et al.,
2024b; Liu et al., 2023). This plug-and-play ap-
proach seamlessly integrates with other modular
inference methods (e.g., CoT, TSB), significantly
enabling direct inference acceleration and reducing
inference latency on open-source models. As far
as we know, we are the first to explore a scheduled
SD execution to integrate with the TSB framework,
without modifying LLM architecture or requiring
additional training and maintaining lossless output.

3 Preliminaries

3.1 Speculative Decoding

The core technique of speculative decoding in-
volves using a small draft model to generate to-
kens sequentially, with a larger target model vali-
dating these tokens (Leviathan et al., 2023). Specif-
ically, let c be the input tokens, Md and Mt be
the draft and the target model respectively, and
k be the number of draft tokens generated per
step. Speculative decoding is a Draft-then-Verify
two-stage decoding paradigm. 2 In the draft

2In the following paper, we define “Verification” as the
“Verify” mentioned here, which includes both the verify and
resampling phases.

stage, Md samples a draft sequence of tokens
autoregressively, denoted as x̂1, . . . , x̂k, where
x̂i ∼ pd(x|x̂1, . . . , x̂i−1, c) for i = 1, . . . , k. In
the verification stage, the draft sequence of to-
kens along with c, are passed to Mt to obtain
their output distribution pt(x|x̂1, . . . , x̂i−1, c) in
parallel, and then verified from x̂1 to x̂k. The
draft token x̂i is accepted with the probability
min(1, pt(x|x̂1,...,x̂i−1,c)

pd(x|x̂1,...,x̂i−1,c)
). Once a token is rejected,

the verifying terminates and a resampling phase fol-
lows to return a new token by Mt. This new token
is then used as the end-generated point following
the accepted tokens. As is proven in Leviathan
et al. (2023), this method is equivalent to sampling
directly from the target LLM. SEED adopts this
method, ensuring that the distribution of the gener-
ated text remains unchanged for both the greedy
and non-greedy settings.

3.2 Tree Attention
Current speculative decoding studies have demon-
strated that when the draft model samples multi-
ple candidates per position in the draft sequence,
the expected acceptance length per step can be en-
hanced during the verification stage (Chen et al.,
2023a). Additionally, the tree attention technique
enables multiple candidate draft sequences to share
the caches of generated tokens, further improving
the efficiency of the verification stage (Cai et al.,
2024). By utilizing tree attention, the verification
acceptance of speculative decoding is increased.
We illustrate the detailed tree attention mask strat-
egy in Appendix B. Our proposed SEED can lever-
age this approach to achieve further speedup.

3.3 TSB Task Formulation
Given an initial input question I , a reasoning tree is
constructed with the relatively common search al-
gorithm BFS following Yao et al. (2024), as shown
in Figure 2. In the constructed reasoning tree, each
node represents a distinct state Si, which includes
a partial solution with the input c and the pro-
gressively elaborated thoughts proposal z1, · · · , zn.
During the expansion of each node, the Thought
Generator G(·) produces multiple reasoning paths
to decompose the intermediate process from the
current state. Once these thoughts are generated,
the State Evaluator E(·) assesses the contribution
of each path toward solving the problem, serving as
a heuristic for guiding the search algorithm. This
evaluation aids in determining which states to con-
tinue exploring and in establishing the order of ex-

4923

Initial Input
*n

n

Thought Generator

State Evaluator

S0

S1

S2

Figure 2: Two main components in reasoning tree con-
struction, which are Thought Generator and State Eval-
uator, respectively.

ploration. Taking the root node S0 as an example in
Figure 2, it first generates n reasoning paths based
on the same input c, which is the initial prompt I
and subsequently selects the middle path by the
State Evaluator for these n paths.

4 Method

Our proposed SEED is an efficient inference frame-
work designed to accelerate the construction of a
reasoning tree. Different generation executions in
the Thought Generator or the State Evaluator are
conducted in distinct branches, ensuring that they
do not interfere with each other. Consequently, the
Speculative Scheduled Execution is implemented
in both the Thought Generator and the State Evalu-
ator, enabling parallel processing to accelerate the
overall reasoning tree construction, as detailed in
Algorithm 2.

We first introduce two phases in the Speculative
Scheduled Execution in §4.1. Subsequently, we de-
pict the Rounds-Scheduled Strategy designed to ef-
fectively manage parallel drafting without conflicts
in §4.2. The technical principle of SEED is inspired
by the operation system schedule. The detailed
analogy between the operation system scheduling
with SEED is presented in §4.3. Finally, the com-
bined algorithm is elaborated in §4.4.

4.1 Speculative Scheduled Execution

We further detail the speculative scheduled execu-
tion algorithm within SEED. To enhance clarity,
we delve the algorithm into two phases: the paral-
lel drafting phase and the sequential verification
phase.

Parallel Drafting Phase The model size signifi-
cantly impacts memory usage and inference time.
In light of this, given the small size and rapid in-
ference speed of the draft models, we can directly
initialize multiple draft models corresponding to

the number of thoughts, enabling parallel processes.
To be specific, if the number of thoughts Nt is set
to n, the draft models Md1 ,Md2 , · · · ,Mdn take
c1, c2, · · · , cn as input tokens respectively in the
drafting phase. Note that, during the Thought Gen-
eration, the input instructions are the same, i.e.,
c1 = c2 = · · · = cn; during the State Evaluation,
they may differ, denoted as c1 ̸= c2 ̸= · · · ̸= cn.

As illustrated in Figure 3 (a), three draft models
initiate sampling simultaneously when the queue
Q is initially empty. In the subsequent stage, the
draft models enter the queue according to which
completes the generation first. In Figure 3 (a), Draft
Model first completes the drafting process and
is the first to enter the queue Q, followed by Draft
Model and Draft Model . Each draft model
is generating its own tokens while the target model
Mt is verifying the tokens of other draft models.
In this way, we can leverage the potential of small
draft models to complete their drafting processes
simultaneously, while the larger target model only
needs to verify them sequentially.

Sequential Verification Phase Only one single
target model is employed for the sequential verifi-
cation of multiple draft sequences in SEED. The
target model first verifies the tokens generated by
the draft model at the front of the queue. During
the verification phase, two scenarios may occur:
acceptance and rejection. If the tokens generated
by the draft model are accepted by the target model,
they are retained, as exemplified by Draft Model

in Fugure 3 (a). If rejected, one new token is
resampled by the target model, as demonstrated
by Draft Model and Draft Model . Tak-
ing Draft Model as an example, it drafts two
tokens, “many” and “duch”, which are rejected by
the target model. Target Model then resamples
a new token “much”. Furthermore, when accepted,
the target model only requires the execution time

, when rejected, it incurs additional time for re-
sampling .

4.2 Rounds-Scheduled Strategy

With the integration of parallel drafting and se-
quential verification, it is crucial to optimize the
scheduling to ensure the correctness of specula-
tive execution while effectively utilizing the target
model and reducing the overall execution latency.

Inspired by process scheduling in operating sys-
tem management, which utilizes the First-Come-
First-Serve (FCFS) scheduling policy for all re-

4924

v1v1

c3 + How many duck
much

c1 + How many eggs

c1 + How many eggs

Draft Model 1 Draft Model 2 Draft Model 3

c1

Queue
（FCFS）

Target Model Target Model Target Model

c2

c2 + What is total c3 + How many duck

c3

c1 + How many eggs c2 + What is total c3 + How many duck

c2 + What is total
the

Draft
Model 2

Draft
Model 3

Target
Model

Draft
Model 1 it0

it0

v1

it1 it2

it0

it1

v3

it1

v2 v1

it2

v3

it2

it3

v2v2 v3

it3

v3v2

it3

it4

v3

Time

(a) (b)

Figure 3: (a) The scenario where the target model manages the verification of target models at the beginning; (b)
Overall scheduling diagram for one target model and three draft models. , , represent Draft Model 1,
Draft Model 2, Draft Model 3, respectively. , , denotes the execution times of drafting for each corresponding

draft model. refers to Target Model. represents the execution time of the verification phase, while specifies
the resampling time in cases of rejection.

quests, ensuring fairness and preventing starva-
tion (Zhao and Stankovic, 1989; Siahaan, 2016),
we leverage a Rounds-Scheduled Strategy inte-
grated with the FCFS scheduling policy to manage
the verification process efficiently. When a draft
model completes its drafting phase and is ready for
verification, the draft sequences along with c are
placed into a queue.

As depicted in Figure 3 (a), when the queue Q is
not empty, a sequence of draft tokens is dequeued
in the FCFS manner. Target Model first verifies
the tokens generated by Draft Model , followed
sequentially by tokens generated by Draft Model

and Draft Model , adhering to FCFS. Upon
completion of the verification of a draft sequence
associated with a draft model, the draft model pro-
ceeds to the drafting process in the next iteration.

The overall scheduling diagram is shown in Fig-
ure 3 (b), each draft model displays a series of iter-
ations to complete the overall drafting progress for
the Thought Generator or the State Evaluator. The
target model is consistently active across the over-
all scheduling timeline. This continuous activity
ensures that the target model is utilized efficiently,
addressing issues related to idle time when accep-
tance rates are relatively high. Once all drafting
and verification processes are completed, the entire
execution concludes, resulting in the generation of
n sequences.

4.3 Technical Principle
Previous research has adapted the principle of the
operating system (OS) scheduler for efficient pro-

OS

Mt

Rounds-Scheduled
 Execution

Process Scheduling CPU

Target
Model

Processes

Drafts

CPU Time

Verification
Time

SEED

Figure 4: Analogy between the Operation System sched-
uler with our proposed SEED.

cess management (Kwon et al., 2023). As shown in
Figure 4, each component in SEED can be mapped
to a corresponding component in the operating sys-
tem scheduler. We elaborate on each component
individually as below:

• The rounds-scheduled execution in SEED cor-
responds to the process scheduling in OS.
Both use an FCFS queue to control and main-
tain the overall execution flow. A key dis-
tinction exists: in SEED, after the drafting
tokens are processed by the verification phase,
the draft model is returned to the queue, i.e.,
“rounds”. In contrast, in OS scheduling, a
process that has been handled by the CPU is
marked as completed.

• The verification of draft tokens X̂ mirrors an
operating process in OS scheduling.

• The target model serves Mt analogously to
the CPU.

• The total verification time of Mt resembles
the CPU time in OS process scheduling.

4925

Algorithm 1 Speculative Scheduled Execution
with a Rounds-Scheduled Strategy
1: Input: Draft models {Md1 , · · · ,Mdn}, prefixes
{c1, · · · , cn}, target model Mt, max new length l, draft
length k, auto-regressive drafting pdi and length of current
validated token Li of the i-th draft model Mdi , i ∈ [1, n];

2: Initialize: Prefill {Md1 , · · · ,Mdn}with prefixes; Create
a verify queue Q and a draft label map γ[i] of length
n, with each element set to 1, i ∈ [1, n]; Li ← 1 ,
i ∈ [1, n]; Define X̂i[1 : k] represents x̂1, . . . , x̂k the
sequence of draft tokens generated from pdi , i ∈ [1, n];
Start n draft processes D(n) and 1 verification process V
Synchronously;

3: Processes D(n): ▷ Prallel Drafting
4: while ∃i ∈ [1, n] : Li < l do
5: if γ(i) then
6: X̂i[1 : k]← pdi(Mdi , ci, X̂i[1 : Li], k)

7: Q← X̂i[1 : k] ▷ Add draft tokens to the queue
8: γ[i]← 0 ▷ Draft Process D(i) wait
9: end if

10: end while
11: Process V: ▷ Sequential Verification
12: while ∃i ∈ [1, n] : Li < l do
13: if Q is not empty then
14: X̂i[1 : k]← queue(Q) ▷ FCFS
15: t1, · · · , tk ← E(Mt, ci, X̂i[1 : k])
16: for j = 1 to k do
17: if tj is acceptance then
18: X̂i[Li + 1]← x̂j

19: Li ← Li + 1
20: else
21: X̂ [Li + 1]←R(Mt, ci, X̂i[1 : Li])
22: Li ← Li + 1
23: Break
24: end if
25: end for
26: γ[i]← 1 ▷ Draft Process D(i) continue
27: end if
28: end while
29: Wait for all D(n) and V to finish
30: return [response1, . . . , responsen]

4.4 Algorithm

The core acceleration mechanisms of SEED, which
combines speculative scheduled execution with the
rounds-scheduled strategy, is presented in Algo-
rithm 1.

At its essence, the parallel drafting is realized
by multiple parallel processes D(n), while the se-
quential verification is realized by a verification
process V that cyclically verifies from the verify
queue Q. The verification process has two phases,
which are the verify phase E and the resampling
phase R. To maintain the asynchronous nature of
the draft-then-verify event loop, leveraging a draft
label map γ ensures each draft process waits for
verification before proceeding with new drafts. At
the initial stage, each element in the draft label map
γ is set to 1, indicating all draft models can per-
form drafting. After completing the verification of

a draft model, the corresponding label in γ changes
to 0, awaiting for re-drafting. Notably, D(n) and
V are synchronized. The termination condition for
both process D(n) and process V is that all current
validated token Li, i ∈ [1, n] equals the max new
length l. When all the processes are finished, we
can obtain a list containing n response.

5 Experiments

5.1 Datasets

Three widely used reasoning and planning datasets
are chosen for our experiments. To assess the ef-
fectiveness of creativity and planning tasks, we
leverage the Creative Writing dataset (CW) (Yao
et al., 2024), where the input is four random sen-
tences and the output should be a coherent passage
with four paragraphs that end in the four input sen-
tences respectively, with a ToT tree depth T of
2. For mathematical reasoning, GSM8K (Cobbe
et al., 2021) is a dataset comprising high-quality
grade-school math word problems that require
multi-step reasoning, with a tree depth T of 4.
This task is open-ended and exploratory, posing
significant challenges to creative thinking and
high-level planning. To better demonstrate the
speedup performance in solving more complex
planning problems, we select the Blocksworld
dataset (BW) (Valmeekam et al., 2023). We set
the tree depth T to 7 for this task to allow for more
iterations. Specifically, we utilize 1319 samples
from the GSM8K test set, 100 random samples
from the CW dataset following (Yao et al., 2024),
and 145 samples from the BW step-6 dataset.

5.2 Baselines

This study focuses on accelerating the reasoning
tree construction process rather than the search
algorithm or advanced prompting methods. The
selection of baselines will be discussed in Ap-
pendix A.1. We consider the following decoding
paradigms as our baselines: (1) AR denotes the
original ToT (Yao et al., 2024) that employing stan-
dard autoregressive generation as shown in Figure 1
(a); (2) SD presents the application of speculative
sampling which is detailed in 3.2 on the basis of
ToT as shown in Figure 1 (b); (3) MCSD utilizes
multi-candidate sampling and employs a advanced
verifying algorithm to improve the acceptance rate
and enhance the speed of SD (Yang et al., 2024).
Similar to SD, it adheres to only one single-sample
serial execution process. Notably, both SD and

4926

Temp. kconfig Methods CW(T = 2) GSM8K(T = 4) BW(T = 7)
Tokens/s Speedup Tokens/s Speedup Tokens/s Speedup

0.2

- AR 38.42 1.000× 42.31 1.000× 34.19 1.000×

(1,1,1)

SD 39.96 1.040× 51.11 1.208× 36.28 1.061×
w. SEED 41.53 1.081× 53.14 1.256× 36.93 1.080×

MCSD 40.19 1.046× 52.42 1.239× 36.04 1.054×
w. SEED 41.46 1.079× 53.78 1.271× 36.96 1.081×

(2,2,1)

SD 46.22 1.203× 60.63 1.433× 40.04 1.171×
w. SEED 48.60 1.265× 65.24 1.542× 44.24 1.294×

MCSD 46.80 1.218× 60.88 1.439× 40.79 1.193×
w. SEED 48.79 1.270× 65.58 1.550× 44.75 1.309×

1.0

- AR 39.47 1.000× 47.81 1.000× 34.62 1.000×

(1,1,1)

SD 45.90 1.163× 55.32 1.157× 35.14 1.015×
w. SEED 46.77 1.185× 61.01 1.276× 38.94 1.125×

MCSD 45.63 1.156× 58.47 1.223× 38.05 1.099×
w. SEED 46.54 1.179× 65.50 1.370× 40.02 1.156×

(2,2,1)

SD 57.39 1.454× 66.74 1.396× 45.98 1.328×
w. SEED 58.89 1.492× 72.62 1.519× 47.22 1.364×

MCSD 56.24 1.425× 67.36 1.409× 46.18 1.334×
w. SEED 59.76 1.514× 74.44 1.557× 47.71 1.378×

Table 1: The speedup performance of our proposed SEED and baselines, with settings of SEED for Md and Mt

being LLaMA-68M and LLaMA2-7B, respectively. The illustration of kconfig=(2,2,1) is presented in Appendix B.
All speedups are relative to the vanilla AR. The best results among all methods are in bolded.

MCSD are orthogonal to our proposed SEED. We
apply our framework within these two decoding
approaches to validate SEED’s effectiveness across
different accetance rates.

5.3 Setup

Model Suite Our evaluation is based on the pub-
licly available LLaMA Chat suite (Touvron et al.,
2023b), which has shown strong performance in ex-
ecuting instructions and in TSB scenarios. We uti-
lize (Md, Mt) following previous work (Chen et al.,
2023b; Yang et al., 2024): (LLaMA-68M-Chat3 ,
LLaMA-2-Chat-7B4) and (LLaMA-160M-Chat5 ,
LLaMA-2-Chat-13B6). To validate the extensibility
of our framework, we also conducted experiments
using the QWen suite (Bai et al., 2023). Detailed
information and results for both the other LLaMA
pair and QWen suite can be found in Appendix A.2.

Hyperparameters We perform a BFS algorithm
as the search strategy. Temperatures are set to 0.2

3
https://huggingface.co/Felladrin/Llama-68M-Chat-v1

4
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

5
https://huggingface.co/Felladrin/Llama-160M-Chat-v1

6
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

and 1.0 to evaluate under different conditions.7 The
detailed prompts for the Thought Generator and the
State Evaluator, along with the ToT setup for each
task are provided in Appendix D.

Environment The experiments are conducted on
a single NVIDIA RTX A100-80G or a single node
which is equipped with four NVIDIA RTX 3090-
24GB GPUs. Subtle differences in hardware per-
formance between these platforms are discussed in
Appendix A.4.

6 Results and Analysis

6.1 Main Results
Table 1 presents a comprehensive analysis of our
proposed SEED and baselines applied to three rea-
soning datasets. If each element in kconfig is 1, we
use the traditional single sampling at each position
of the draft sequence. Otherwise, we employ tree
attention, which represents sample multiple candi-
date tokens at each position and verify in parallel
(details in Section 3.2). A greater number at each
position in kconfig signifies that more candidates,

7We avoid the temperature 0 because greedy decoding is
not meaningful in Thought Generator.

https://huggingface.co/Felladrin/Llama-68M-Chat-v1
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/Felladrin/Llama-160M-Chat-v1
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

4927

0.275 0.30 0.325 0.35 0.375 0.40
Acceptance

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

CW, [SD] vs [SD w/ SEED]
SD
SD w/ SEED

0.30 0.325 0.35 0.375 0.40 0.425
Acceptance

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

GSM8K, [SD] vs [SD w/ SEED]
SD
SD w/ SEED

0.225 0.25 0.275 0.30 0.325 0.35 0.375 0.40
Acceptance

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Sp
ee

du
p

BW, [SD] vs [SD w/ SEED]
SD
SD w/ SEED

0.275 0.30 0.325 0.35 0.375 0.40
Acceptance

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

CW, [MCSD] vs [MCSD w/ SEED]
MCSD
MCSD w/ SEED

0.30 0.325 0.35 0.375 0.40 0.425
Acceptance

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

GSM8K, [MCSD] vs [MCSD w/ SEED]
MCSD
MCSD w/ SEED

0.225 0.25 0.275 0.30 0.325 0.35 0.375 0.40
Acceptance

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Sp
ee

du
p

BW, [MCSD] vs [MCSD w/ SEED]
MCSD
MCSD w/ SEED

Figure 5: The variation of speedup performance across three datasets at different acceptance rates α.

BW GSM8k CW
0.20

0.25

0.30

0.35

0.40

0.45

Ac
ce

pt
an

ce

Thought Generator
State Evaluator

BW GSM8k CW
1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

Thought Generator
State Evaluator

Figure 6: The acceptance rate α and the speedup perfor-
mance of the Thought Generator and the State Evaluator.

generally yield higher speedups. MCSD achieves
better speedup than SD by using an advanced ver-
ifying algorithm that results in higher acceptance
rates. With our SEED, the performance of these
two baselines is further improved, demonstrating
its effectiveness across different acceptance rates.
Across all datasets across various reasoning depths
T , our framework, consistently outperforms the
baselines across different settings and configura-
tions, including temperature and kconfig, in terms
of speedup, achieving the further speedup. Specifi-
cally, on the GSM8K dataset, using tree attention,
MCSD in our proposed SEED framework achieves
up to 1.5× speedup compared to AR, generating
nearly 30 additional tokens per second.

6.2 Analysis
We use the SEED (with MCSD) to conduct the
following analytical experiment to answer the fol-
lowing research question (RQ) using under the con-
dition kconfig = (2,2,1) and temperature = 1.0.

RQ1: How does SEED perform at different accep-
tance rates? We sampled data points from three

datasets within different acceptance rate ranges, we
separately reported the speedup achieved by SEED
and the baseline for these samples in Figure 5. It is
evident that under the same acceptance rate, SEED
outperforms the baseline in terms of speedup. This
improvement is attributed to our framework, which
achieves speedup not by increasing the acceptance
rate but by scheduling draft models. Additionally,
as the acceptance rate increases, both SEED and
the baseline exhibit a noticeable upward trend in
speedup, which is the inherent characteristic of the
speculative decoding method.

RQ2: Does SEED exhibit different acceleration
effects on different components of ToT? SEED
accelerate two components in reasoning tree con-
struction, which are the TG and the SE. Figure 6
presents the acceptance rate α and the speedup per-
formance of two main components of the SEED
method on the GSM8K dataset, confirming that
the answer to the RQ2 is Yes. The TG executes
multiple iterations with the same prompt while the
SE refers to evaluates multiple iterations with dif-
ferent prompts. The TG component consistently
outperforms the SE component in terms of both
α and speedup, possibly because the SE is rela-
tively harder compared to the TG. The proficiency
between the target model and draft model may be
more closely aligned in the proposal of thoughts,
compared to decision-making capability.

RQ3: How does the speedup and GPU utilization
scale with the number of thoughts? In specula-
tive decoding, both the target and draft model pa-

4928

TimeG
PU

-U
ti

l(
%

) (a)

SD

TimeG
PU

-U
ti

l(
%

)

SEED

2 3 4 5 6
Number of Thoughts

0.8

1.0

1.2

1.4

Sp
ee

du
p

(b)

50

60

70

80

90

100

G
PU

-A
U

C(
%

)

AR (Speedup & GPU-AUC)
SEED (Speedup)
SEED (GPU-AUC)

Figure 7: (a) The comparison visualization of GPU uti-
lization between SD and SEED over the 120 seconds
under n = 3. (b) The variation of speedup and accep-
tance rate α with the number of reasoning paths n.

rameters are loaded into GPU memory. We record
the GPU utilization over the same durations for the
SD and SEED on a GSM8K instance to visualize
the effectiveness of parallel drafting in Figure 7 (a).
The upper part illustrates the GPU utilization of
SD fluctuates intermittently, primarily due to the
target model being idle during drafting, while the
lower part shows SEED exhibits stable utilization,
attributed to the active engagement of the target
model in the verification phase. As the number
of thoughts n increases within a certain range, the
idle time of the target model decreases, leading
to higher GPU utilization and speedup, as shown
in Figure 7 (b). However, when the number of
thoughts becomes too large (e.g., n=6), the target
model’s fixed verification capacity leads to SEED
speedup saturation. This manifests as more draft
models being placed in a waiting state, reducing
draft parallelism and causing bottlenecks that lower
utilization and acceleration.

7 Conclusion and Discussion

In this paper, we introduce SEED, a novel inference
framework designed to optimize the runtime speed
and manage GPU memory usage effectively during
the reasoning tree construction for complex rea-
soning and planning tasks. SEED employs sched-
uled speculative execution to enhance the perfor-
mance of LLMs by integrating the management of
multiple draft models and a single target model,
based on principles similar to operating system
process scheduling. This strategy not only miti-
gates the inference latency inherent in tree-search-
based reasoning methods but also efficiently uti-
lizes the available computational resources. Our
extensive experimental evaluation across three rea-
soning demonstrates that SEED achieves signifi-
cant improvements in inference speed, generating
up to 20 additional tokens per second.

Our work accelerates the development of ToT,
offering the potential for seamless extension to fur-
ther advance the test-time scaling of LLMs (Zhang
et al., 2024a; Xie et al., 2024; Zhang et al., 2024c;
Snell et al., 2024; Wu et al., 2024). This frame-
work and vision represent a promising direction
for improving the efficiency of LLM reasoning in
real-world applications.

Limitations

Although SEED already achieves exceptional
speedup performance in the experiments, our work
also has the following limitations.

• Our frameworks introduce parallel drafting,
involving n − 1 additional drafting models,
which inherently necessitates the addition of
an equivalent number of KV-Cache. Given
the increase attributed to small draft models
(68M/160M) is relatively minimal, we do not
optimize the management of the KV-Cache in
this work.

• This study focuses solely on optimizing the
inference speed of the tree construction for
the TSB reasoning task and does not optimize
the search speed for these tasks. Our frame-
work uses the relatively simple search algo-
rithm BFS. In fact, SEED can seamlessly inte-
grate more advanced search algorithms, such
as A∗ (Hart et al., 1968) and MCTS (Kocsis
and Szepesvári, 2006), etc., which we leave
for future research.

• We employ the most widely used scheduling
algorithm, FCFS. Future work may explore
the integration of more advanced scheduling
algorithms, such as those used in real-time
systems, to further enhance the responsiveness
and efficiency of SEED.

In the future, SEED can be compatible with
vLLM (Kwon et al., 2023) and FlashAttention-
2 (Dao, 2024), enabling more memory-efficient
inference on longer sequences. Additionally, the
extra KV-Cache could be reduced by caching the
common prefix during reasoning tree construction,
which would lower the parallel overhead in later
iterations.

Moreover, our method offers a potential imple-
mentation of batched speculative decoding from
the execution scheduling perspective, which could
be integrated with other KV-Cache based batch
speculative decoding methods (Ni et al., 2024), as
further discussed in Appendix A.5.

4929

Acknowledgement

The authors would like to thank the anonymous
reviewers for their insightful comments. This work
is funded by the National Natural Science Founda-
tion of China (Grant No.62176053). This work is
supported by the Big Data Computing Center of
Southeast University.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
e-prints, pages arXiv–2309.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry
Mason, Mohammad Rastegari, and Mahyar Najibi.
2024. Speculative streaming: Fast llm inference with-
out auxiliary models. arXiv e-prints, pages arXiv–
2402.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Alan Bundy and Lincoln Wallen. 1984. Breadth-first
search. Catalogue of artificial intelligence tools,
pages 13–13.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Forty-first
International Conference on Machine Learning.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv e-prints,
pages arXiv–2302.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,
Jie Huang, and Kevin Chen-Chuan Chang. 2023b.
Cascade speculative drafting for even faster llm infer-
ence. arXiv preprint arXiv:2312.11462.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tri Dao. 2024. Flashattention-2: Faster attention with
better parallelism and work partitioning. In The
Twelfth International Conference on Learning Repre-
sentations.

Luciano Del Corro, Allison Del Giorno, Sahaj Agarwal,
Bin Yu, Ahmed Hassan Awadallah, and Subhabrata
Mukherjee. 2023. Skipdecode: Autoregressive skip
decoding with batching and caching for efficient llm
inference.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, Ahmed Aly, Beidi Chen, and Carole-Jean
Wu. 2024. LayerSkip: Enabling early exit inference
and self-speculative decoding. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12622–12642, Bangkok, Thailand. Association for
Computational Linguistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6112–6121.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,
and Subbarao Kambhampati. 2023. Leveraging pre-
trained large language models to construct and utilize
world models for model-based task planning. Ad-
vances in Neural Information Processing Systems,
36:79081–79094.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154–8173.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968.
A formal basis for the heuristic determination of min-
imum cost paths. IEEE transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding. arXiv e-prints, pages arXiv–2311.

Wenyang Hui, Yan Wang, Kewei Tu, and Chengyue
Jiang. 2024. Rot: Enhancing large language mod-
els with reflection on search trees. arXiv preprint
arXiv:2404.05449.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In European conference
on machine learning, pages 282–293. Springer.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://aclanthology.org/2024.acl-long.681
https://aclanthology.org/2024.acl-long.681

4930

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In Forty-first Interna-
tional Conference on Machine Learning.

Haoran Liao, Jidong Tian, Shaohua Hu, Hao He, and
Yaohui Jin. 2024. Look before you leap: Problem
elaboration prompting improves mathematical rea-
soning in large language models. arXiv e-prints,
pages arXiv–2402.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica,
Zhijie Deng, Alvin Cheung, and Hao Zhang. 2023.
Online speculative decoding.

Bo-Ru Lu, Nikita Haduong, Chien-Yu Lin, Hao Cheng,
Noah A Smith, and Mari Ostendorf. 2024a. Encode
once and decode in parallel: Efficient transformer
decoding. arXiv e-prints, pages arXiv–2403.

Jinghui Lu, Ziwei Yang, Yanjie Wang, Xuejing Liu, and
Can Huang. 2024b. Padellm-ner: Parallel decoding
in large language models for named entity recogni-
tion. arXiv e-prints, pages arXiv–2402.

Yunsheng Ni, Chuanjian Liu, Yehui Tang, Kai Han, and
Yunhe Wang. 2024. Ems-sd: Efficient multi-sample
speculative decoding for accelerating large language
models. arXiv e-prints, pages arXiv–2405.

OpenAI. 2022. Introducing ChatGPT.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Andysah Putera Utama Siahaan. 2016. Comparison
analysis of cpu scheduling: Fcfs, sjf and round robin.
International Journal of Engineering Development
and Research, 4(3):124–132.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong
Tian, and Beidi Chen. 2024a. Triforce: Lossless
acceleration of long sequence generation with hierar-
chical speculative decoding. In First Conference on
Language Modeling.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-
mad Beirami, Himanshu Jain, and Felix Yu. 2024b.
Spectr: Fast speculative decoding via optimal trans-
port. Advances in Neural Information Processing
Systems, 36.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models-a criti-
cal investigation. Advances in Neural Information
Processing Systems, 36:75993–76005.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Siwei Wu, Zhongyuan Peng, Xinrun Du, Tuney Zheng,
Minghao Liu, Jialong Wu, Jiachen Ma, Yizhi Li, Jian
Yang, Wangchunshu Zhou, et al. 2024. A compara-
tive study on reasoning patterns of openai’s o1 model.
arXiv preprint arXiv:2410.13639.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
7655–7671, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. 2024. Monte carlo tree search boosts
reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451.

Hanqi Yan, Qinglin Zhu, Xinyu Wang, Lin Gui, and
Yulan He. 2024. Mirror: A multiple-perspective
self-reflection method for knowledge-rich reasoning.
arXiv preprint arXiv:2402.14963.

https://openreview.net/forum?id=1NdN7eXyb4
https://openreview.net/forum?id=1NdN7eXyb4
https://openai.com/blog/chatgpt
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456

4931

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen.
2024. Multi-candidate speculative decoding. arXiv
e-prints, pages arXiv–2401.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yuqiang Li, et al. 2024a. Llama-berry: Pair-
wise optimization for o1-like olympiad-level mathe-
matical reasoning. arXiv preprint arXiv:2410.02884.

Linhai Zhang, Jialong Wu, Deyu Zhou, and Guoqiang
Xu. 2024b. STAR: Constraint LoRA with dynamic
active learning for data-efficient fine-tuning of large
language models. In Findings of the Association for
Computational Linguistics ACL 2024, pages 3519–
3532, Bangkok, Thailand and virtual meeting. Asso-
ciation for Computational Linguistics.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei
Gao, and Min Lin. 2024c. Chain of preference opti-
mization: Improving chain-of-thought reasoning in
LLMs. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Wei Zhao and John A Stankovic. 1989. Performance
analysis of fcfs and improved fcfs scheduling algo-
rithms for dynamic real-time computer systems. In
1989 Real-Time Systems Symposium, pages 156–157.
IEEE Computer Society.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-François Kagy, and Rishabh Agarwal.
2023. Distillspec: Improving speculative decoding
via knowledge distillation. In The Twelfth Interna-
tional Conference on Learning Representations.

https://aclanthology.org/2024.findings-acl.209
https://aclanthology.org/2024.findings-acl.209
https://aclanthology.org/2024.findings-acl.209
https://openreview.net/forum?id=2cczgOfMP4
https://openreview.net/forum?id=2cczgOfMP4
https://openreview.net/forum?id=2cczgOfMP4

4932

A Discussions

A.1 Selection of Baselines

See Section 5.2, where we list all the baselines
used to compare with our proposed SEED in this
study. However, several other speculative decod-
ing strategies have not been explored as baselines.
We do not conclude these strategies based on the
following considerations as shown in Table 4:

(1) Training-free indicates whether the method
requires training.

∗ Medusa (Cai et al., 2024) adds extra FFN
heads atop the Transformer decoder, allowing
for parallel token generation at each step;

∗ Eagle (Li et al., 2024) performs the drafting
process autoregressively at a more structured
level, specifically the second-to-top layer of
features;

∗ SS (Bhendawade et al., 2024) integrates draft-
ing phase into the target model by modifying
the fine-tuning objective from the next token
to future n-gram predictions.

These methods all require training and are not
plug-and-play, since they train the LLM to serve
as both the target model and the draft model, which
classifies them as self-drafting ■ according to Xia
et al. (2024); in contrast, our method employs inde-
pendent drafting ▲ (draft-and-target), placing it in
a different SD type. Therefore, we do not consider
them as baselines.

(2) Extra-knowledge-free indicates whether the
SD process uses additional knowledge modules.

∗ CS-drafting (Chen et al., 2023b) resorts to
a bigram model based on the probability dis-
tribution of Wikipedia as the draft model at a
more basic level.

∗ REST (He et al., 2023) retrieve from exten-
sive code and conversation data stores to gen-
erate draft tokens.

The two approaches introduce external knowledge
modules, making it significantly dependent on the
effectiveness of the external knowledge modules
and unfair to compare us with draft-and-target mod-
els.

(3) Lossless indicates whether the method gen-
erates the same output distribution as AR decoding
does in the backbone model.

SS (Bhendawade et al., 2024) and Medusa (Cai
et al., 2024), which are inherently not lossless,

Temp. kconfig Methods Tokens/s Speedup

0.2
- AR 31.22 1.000×

(1,1,1,1) SD 32.91 1.054×
w. SEED 34.62 1.109×

0.6
- AR 37.93 1.000×

(1,1,1,1) SD 39.22 1.034×
w. SEED 41.91 1.105×

1
- AR 33.86 1.000×

(1,1,1,1) SD 34.91 1.031×
w. SEED 39.35 1.162×

Table 2: Speedup performance on Creative Writing
dataset of SEED within using QWen1.5-0.5B-Chat as
Md and QWen1.5-7B-Chat as Mt. The vocabularies of
these two models are identical, allowing for speculative
sampling.

are unsuitable for comparison with our proposed
SEED, which maintains losslessness consistent
with SD in a single draft-then-verify.

A.2 Scalability and Extensibility

LLaMA Suite Table 3 shows the performance
of each method when using LLaMA-160M-Chat8

as draft model Md and LLaMA-2-Chat-13B9 as
target model Mt.

QWen Suite Our framework is based on spec-
ulative decoding, so the model setup of the draft
model and the target model can be consistent with
it. Consequently, any LLM suite can be integrated
into our framework. We also conducted experi-
ments using the QWen1.5 suite.10 Specifically, we
use QWen1.5-0.5B-Chat11 as the draft model Md

and use QWen1.5-7B-Chat12 as the target model
Mt. The results are presented in Table 2. The
results align with the findings presented in Sec-
tion 6.1, demonstrating the superior performance
of our framework. It also highlights the scalabil-
ity of our framework to the LLM suite (Bai et al.,
2023).

A.3 Task Performance

Accuracy Leviathan et al. (2023) has proved the
outputs of AR and SD are the same. We separately
evaluated the performance of the GSM8K dataset
using the AR with QWen1.5-7B and SEED with

8
https://huggingface.co/Felladrin/Llama-160M-Chat-v1

9
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

10
https://qwenlm.github.io/zh/blog/qwen1.5/

11
https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat

12
https://huggingface.co/Qwen/Qwen1.5-7B-Chat

https://huggingface.co/Felladrin/Llama-160M-Chat-v1
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://qwenlm.github.io/zh/blog/qwen1.5/
https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat
https://huggingface.co/Qwen/Qwen1.5-7B-Chat

4933

Temp. kconfig Methods CW(T = 2) GSM8K(T = 4) BW(T = 7)
Tokens/s Speedup Tokens/s Speedup Tokens/s Speedup

0.2

- AR 32.33 1.000× 32.08 1.000× 32.91 1.000×

(2,1,1)

SD 33.14 1.025× 34.97 1.090× 33.17 1.008×
w. SEED 33.82 1.046× 36.80 1.147× 33.54 1.019×

MCSD 33.27 1.029× 35.71 1.113× 33.37 1.014×
w. SEED 36.18 1.119× 36.28 1.131× 34.36 1.044×

(4,2,1)

SD 34.23 1.059× 38.95 1.214× 36.04 1.095×
w. SEED 38.57 1.193× 41.06 1.280× 36.76 1.117×

MCSD 35.56 1.100× 41.09 1.281× 37.58 1.142×
w. SEED 40.28 1.246× 44.11 1.375× 38.70 1.176×

1.0

- AR 39.57 1.000× 31.54 1.000× 32.87 1.000×

(2,1,1)

SD 40.28 1.018× 35.23 1.117× 34.32 1.044×
w. SEED 42.74 1.080× 36.71 1.164× 35.37 1.076×

MCSD 40.68 1.028× 35.26 1.118× 35.01 1.065×
w. SEED 43.37 1.096× 37.15 1.178× 35.86 1.091×

(4,2,1)

SD 43.69 1.104× 36.87 1.169× 37.83 1.151×
w. SEED 47.25 1.194× 40.66 1.289× 38.56 1.173×

MCSD 45.19 1.142× 36.90 1.170× 39.28 1.195×
w. SEED 49.74 1.257× 41.54 1.317× 40.43 1.230×

Table 3: Speedup performance of our proposed SEED and baselines, with settings of SEED for Md and Mt being
LLaMA-160M and LLaMA2-13B, respectively. All speedups are relative to the vanilla AR. The best results among
all methods are in bolded.

the aforementioned QWen1.5 suite using QWen1.5-
0.5B and QWen1.5-7B, and found that the perfor-
mance difference was within ±1.5%, which is ac-
ceptable and substantiates that the performance is
effectively lossless.

Performance on Non-Reasoning Tasks SEED
is a versatile method that can be applied not only
in reasoning tasks involving TSB but also in non-
reasoning tasks. Its general applicability makes it
a robust solution for various scenarios. We specifi-
cally applied SEED to the TSB in reasoning tasks
based on several key considerations:

• Practicality of TSB: The TSB method allows
the generation of multiple sequences simul-
taneously in both identical and varied input
scenarios. This makes it a practical choice for
efficient processing.

• Efficiency on Consumer-Grade GPUs: Typ-
ically, TSB involves generating 2-6 reasoning
paths concurrently, which can be handled by
consumer-grade GPUs. By contrast, promt-
ping methods like Self-Consistency (Wang
et al., 2023) often require generating 10-20
sequences, parallelly placing a greater strain
on hardware resources.

• Relevance to Task Difficulty: Reasoning

tasks are challenging benchmarks for evalu-
ating LLMs. If our framework achieves ef-
fective acceleration under acceptance in these
tasks, it is likely to perform well on simpler
tasks, like translation, where the alignment
between the target and draft models is bet-
ter. In early exploratory experiments, SEED
achieved a 1.31x speedup over AR on the
WMT dataset (Bojar et al., 2014), demonstrat-
ing its efficacy.

A.4 Hardware Dependency

The experiments was conducted on a 4×3090
server in the earlier exploratory. From the experi-
ments on different hardware shown in Figure 5, our
method is still effective compared with SD with
the same setting. The speedup performance on
4×3090 is lower than on 1×A100, likely due to the
increased communication time between multiple
GPUs (Sun et al., 2024a). This is also evident from
the Qwen suite results, where SD performs worse
than AR on 4×3090.

A.5 Batch Inference

Batch inference processes multiple sequences of
varying lengths. In SD, each sequence in the same
batch requires extra padding due to different accep-

4934

Methods Training-free Lossless SD Type Extra-knowledge-free Speedup

Vanilla AR ✓ ✓ - ✓ ✗

SD (Leviathan et al., 2023) ✓ ✓ ▲ ✓ ✓

CS-Drafting (Chen et al., 2023b) ✓ ✓ ▲ ✗ ✓

REST (He et al., 2023) ✓ ✓ ▲ ✗ ✓

Medusa (Cai et al., 2024) ✗ ✗ ■ ✓ ✓

Eagle (Li et al., 2024) ✗ ✓ ■ ✓ ✓

SS (Bhendawade et al., 2024) ✗ ✗ ■ ✓ ✓

MCSD (Yang et al., 2024) ✓ ✓ ▲ ✓ ✓

SEED (Ours) ✓ ✓ ▲ ✓ ✓

Table 4: The comprehensive comparison of the listed methods and SEED. ■ represents draft-and-target SD method,
while ▲ represents self-draft SD method.

LLM Suite GPUs Methods Tokens/s Speedup

LLaMA2
160M/13B

4×RTX 3090s
AR 38.77 1.000×
SD 42.18 1.088×

w. SEED 44.93 1.159×

1×RTX A100
AR 39.57 1.000×
SD 43.69 1.104×

w. SEED 47.25 1.194×

Qwen1.5
0.5B/7B

4×RTX 3090s
AR 27.51 1.000×
SD 27.43 0.997×

w. SEED 29.57 1.075×

1×RTX A100
AR 33.86 1.000×
SD 34.91 1.031×

w. SEED 39.35 1.162×

Table 5: Speed performance of LLaMA2 suite on Cre-
ative Writing dataset under different hardware envi-
ronments with temperture = 1.0 and kconfig = (1,1,1,1),
as well as the performance of Qwen1.5 suite suite on
GSM8K dataset across different hardware environments
with temperture = 1.0 and kconfig = (4,2,1).

tance rates and sequence lengths, potentially lead-
ing to excessive storage and computation (Ni et al.,
2024). This can result in an overly long KV-Cache,
thereby slowing down the speedup effect due to
inconsistent acceptance lengths. Our SEED main-
tains the original length of KV-Cache without the
need for padding based on varying acceptance rates.
Each verified draft sequence corresponds directly
to a sequence in the batch (number of draft mod-
els n = batch size). Our parallel drafting approach
ensures efficient batch implementation while pre-
serving the acceleration benefits of SD.

B Details of Tree Attention

Setting kconfig to (2,2,1) indicates that each draft
phase generates a group of k = 3 tokens, with
the first two positions each sampling 2 candidates,
and the third position sampling 1. Figure 8 illus-

x22

x11

(2, 2, 1)

x21 x31Root

k_config(k=3)

x11 x21 x22 x31

x11

x21

x22

x31x24

x12 x23

x32

x33

x34

Figure 8: The tree attention used in SEED, multiple
tokens in single sequence concurrently are processed.
Root indicates previous tokens. ✓ indicates where atten-
tion is present, while the rest are masked. For simplicity,
we only visualize the tree attention mask of tokens in
yellow colors.

trates a case of tree attention with a configuration
of kconfig = (2, 2, 1).

C Reasoning Tree Construction

The process of constructing a reasoning tree using
the BFS Algorithm is outlined in Algorithm 2.

Algorithm 2 SEED(x, pθ, G, n, E, s, b)
1: Input: Initial prompt I, speculative scheduled execution

with a rounds-scheduled strategy pθ , thought generator
G(·) with a number of thought n, states evaluator E(·),
step limit T , breadth limit b.

2: Initialize: States S; S0 ← {I}
3: for i = 1, · · · , T do
4: S′

i ← {[c, zi] | c ← Si−1, zi ∈ G(pθ, c, n)}
▷ Generate thoughts in Parallel

5: Ei ← E(pθ, S
′
i) ▷ Evaluate states in Parallel

6: Si ← argmaxS⊂S′
i,|S|=b

∑
s∈S Ei(s)

7: end for
8: return G(pθ, argmaxs∈ST ET (s), 1)

4935

D Detailed Setup and Prompts

We implemented a simple and generic ToT-BFS
according to Yao et al. (2024). Within the Thought
Generator, we leverage a sampling strategy to gen-
erate thoughts for the next thought step. Within
the State Evaluator, we leverage a value strategy
to evaluate the generated thoughts and output a
scalar value (e.g., “1-10”) or a classification (e.g.,
“good/bad”) which can be heuristically converted
into a value. To introduce diversity in thought gen-
eration across all tasks, we set the generation tem-
perature as 0.2/1(>0) for the LLaMA suite models
and 0.2/0.6/1(>0) for the QWen suite models. The
tree depth T suggests that the operations with vary-
ing levels of complexity or iterations, with deeper
trees potentially representing more complex cal-
culations or decision-making processes. The ToT
setup of the three tasks SEED utilized is as follows:

• Creative Writing: We build a reasoning tree
with a depth T of 2 (with 1 intermediate
thought step) that generates 3 plans and pas-
sages. The State Evaluator assesses the plans
and outputs a coherency score with each plan
and passage.

• GSM8K: We build a reasoning tree with a
depth T of 4 (with 3 intermediate thought
steps) that generates 3 sub-questions and cor-
responding sub-answers. This setup aligns
with the findings from Hao et al. (2023),
which indicated that three steps are generally
sufficient to achieve a passable level of accu-
racy. The State Evaluator assesses them and
outputs a number representing the helpfulness
for answering the question. We select the one
with the highest values and add it to the previ-
ous sub-question and sub-answers.

• Blocksworld 6-step: We build a reasoning
tree with a depth T of 7 (with 6 intermedi-
ate thought steps) that generates 3 thoughts,
including action plans and current actions.
Due to the complexity of this task, demon-
strations are provided in the prompt, labeled
as “good/bad”, to assist the State Evaluator in
its assessment.

The prompts for the tasks described above are
presented below. The orange parts in prompts are
required for LLM completion. During the evalua-
tion, we require the LLM to generate both a score
and an explanation (a context with 128 new tokens),
rather than just a score. This approach promotes

the speedup in generation and makes the evaluation
of ToT more reasonable.

4936

Prompts for GSM8K

The Thought Generator

Given a question: {initial_prompt}, the previous
sub−question and sub−answer is:
{state_text}
Please output the next sub−question to further
reason the question.
The sub−question is: {sub-question}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Given a question: {initial_prompt}, the sub−
question is: {sub_question}
Please answer the sub−question based on the
question.
The sub−answer is: {sub_answer}

The State Evaluator

Given a question: {initial_prompt}, the sub−
question is: {sub_question}, the sub−answer is:
{sub_answer}
Please output a number between 1 and 10 to
evaluate the answer. The higher the number, the
more help there is in answering the question.

The number is: {value}

Prompts for Creative Writing

The Thought Generator

Write a coherent passage of 4 short paragraphs. The
end sentence of each paragraph must be:
{initial_prompt}
Make a plan then write. Your output should be of
the following format:

Plan:
Your plan here.

Passage:
Your passage here.

The output is:
{Plan}
{Passage}

The State Evaluator

Analyze the passage: {Passage}, then at the last line
conclude "Thus the coherency score is [s]", where [
s] is an integer from 1 to 10.
The coherency score is: {value}

4937

Prompts for Blocksworld

The Thought Generator

I am playing with a set of blocks where I need to
arrange the blocks into stacks. Here are the actions
I can do:

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
##Restrictions on Action##

<—Omit demonstrations—>

[STATEMENT]
{initial_prompt}

My plan is as follows:
{state_text}
The current action is:
{action}

The State Evaluator

I am playing with a set of blocks where I need to
arrange the blocks into stacks. Here are the actions
I can do:

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
##Restrictions on Action##

<—Omit demonstrations—>

Please evaluate whether the given action is a good
one under certain conditions.

[STATEMENT]
{initial_prompt}
[ACTION]
{state_text}
[EVALUATION]
The evaluation is:
{evaluation}

Restrictions on Action for Blocksworld

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is
empty.
I can only pick up a block if the block is on the
table and the block is clear. A block is clear if the
block has no other blocks on top of it and if the
block is not picked up.
I can only unstack a block from on top of another
block if the block I am unstacking was really on top
of the other block.

I can only unstack a block from on top of another
block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the
block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I
am holding the block being stacked.
I can only stack a block on top of another block if
the block onto which I am stacking the block is
clear.
Once I put down or stack a block, my hand
becomes empty.

	Introduction
	Related Work
	Tree-Search-Based Reasoning
	Parallel Decoding

	Preliminaries
	Speculative Decoding
	Tree Attention
	TSB Task Formulation

	Method
	Speculative Scheduled Execution
	Rounds-Scheduled Strategy
	Technical Principle
	Algorithm

	Experiments
	Datasets
	Baselines
	Setup

	Results and Analysis
	Main Results
	Analysis

	Conclusion and Discussion
	Discussions
	Selection of Baselines
	Scalability and Extensibility
	Task Performance
	Hardware Dependency
	Batch Inference

	Details of Tree Attention
	Reasoning Tree Construction
	Detailed Setup and Prompts

