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Abstract
Comparing the test scores of different NLP
models across downstream datasets to deter-
mine which model leads to the most accurate
results is the ultimate step in any experimental
work. Doing so via a single mean score may
not accurately quantify the real capabilities of
the models. Previous works have proposed di-
verse statistical tests to improve the comparison
of NLP models; however, a key statistical phe-
nomenon remains understudied: variability in
test scores. We propose a type of regression
analysis which better explains this phenomenon
by isolating the effect of both nuisance factors
(such as random seeds) and datasets from the
effects of the models’ capabilities. We show-
case our approach via a case study of some
of the most popular biomedical NLP models:
after isolating nuisance factors and datasets,
our results show that the difference between
BioLinkBERT and MSR BiomedBERT is, ac-
tually, 7 times smaller than previously reported.

1 Introduction

Proper comparison of NLP models is a cornerstone
area of research in the NLP field. Comparing the ef-
ficacy of different models via an average test score
across downstream datasets has been shown to be
an oversimplistic evaluation that may not properly
take into account nuisance factors affecting the
scores such as noise, randomness, or hyperparame-
ter values, and therefore such average scores may
not reflect the true capability of the proposed mod-
els (Søgaard, 2013; Dror et al., 2019; Reimers and
Gurevych, 2018). Previous efforts have improved
the rigour of the comparison of NLP models (and
in general the comparison of classifiers) by propos-
ing statistical tests that aim to account for these
nuisance factors in order to better see the real ef-
ficacy of the models (Demšar, 2006; Zhong et al.,
2021; Dror et al., 2017).

However, an important statistical phenomenon
inherent to model comparison has been understud-

Figure 1: Boxplot of test score distributions of biomedi-
cal models across the BLURB benchmark’s datasets.

ied: explaining the variability in test scores. To
exemplify this phenomenon, let us revisit the case
study proposed by Sanchez Carmona et al. (2024).
Figure 1 shows the test score distributions of a base-
line model and 3 of the most popular biomedical
models from the BLURB benchmark (Gu et al.,
2021).1 These distributions are formed by fine-
tuning each model with varying hyperparameter
values (random seeds, learning rates, batch sizes,
number of epochs) on a set of 13 downstream
datasets across different tasks.

In the BLURB leaderboard, BioLinkBERT is
positioned as a top model due to its average test
score. However, from Figure 1 we observe both a
very similar performance to that of MSR Biomed-
BERT and a huge variability that ranges from low
to high test scores. This variability, also present
in the other models’ distributions, and the mod-
els’ average scores are derived not only from the
true differences in the models’ abilities to solve the
datasets, but are also derived from differences in
the datasets (different datasets may have different

1https://microsoft.github.io/BLURB/
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difficulty) and from fine-tuning nuisance factors
such as random seeds, or learning rates, among
others. So, how can we disentangle and isolate the
effects of the models’ capabilities from effects of
both datasets and nuisance factors to see the real
mean test scores due to the ability of the models
while explaining the variability observed? This
problem remains as an open challenge, and while
the work of Sanchez Carmona et al. (2024) is the
work closest to addressing this problem it has some
drawbacks.

In this paper, we present a type of regression
analysis for robustly comparing NLP models: a
Cross-classified Mixed Effects model (CCMEM),
a model widely used in the Social Sciences
(Nieuwenhuis et al., 2021; Rasbash et al., 2010),
Psychology (Claus et al., 2020; Brown, 2021), and
Health Sciences (Barker et al., 2020; Doedens et al.,
2022) to analyze diverse social and health phenom-
ena. In a nutshell, a CCMEM can not only disentan-
gle and isolate the effects of datasets and nuisance
factors from the effects of the capabilities of NLP
models, it can also test for interactions between
models and datasets while explaining variation on
test scores. We compare our CCMEM to the ap-
proach from Sanchez Carmona et al. (2024) on
the case study shown in Figure 1. We show that
our model achieves smaller cross-validation error
and improves by 4% the amount of variability ex-
plained. Moreover, our CCMEM shows that the
difference in test scores between BioLinkBERT
and MSR BiomedBERT is only 0.33 points–a dif-
ference 7 times smaller than previously reported.

2 Comparing NLP Models: Previous
Works

2.1 Statistical Tests

Diverse statistical tests have been proposed that are
able to control for the effect of some nuisance fac-
tors which can be confounded with the true effect
of the models’ capabilities. For example, para-
metric and non-parametric tests such as ANOVA
(and variants) and the Friedman’s test (Demšar,
2006; Yıldız et al., 2011; Rainio et al., 2024), as
well as Bayesian tests (Corani et al., 2017); these
tests compare differences in scores, in their vari-
ability, or in the models’ performance ranking, and
estimate the probability that these differences are
not just by chance. Other works have provided
improved statistical tests such as comparisons of
score distributions (Reimers and Gurevych, 2018),

comparisons at the instance level (Zhong et al.,
2021), and methods adapted from other disciplines
such as Meta-analysis (Søgaard, 2013) and Almost
Stochastic Dominance (Dror et al., 2019).

However, we believe none of these approaches
completely resolves the question we posed in Sec-
tion 1. Some approaches account for the effects
of nuisance factors by aggregating scores across
them, but this does not isolate their effect from the
models’ effects. And while some works isolate
the effect of some nuisance factors, or explain the
variance of test scores, no single approach can iso-
late and estimate the effects of fine-tuning factors
and datasets while explaining their variance in test
scores for several NLP models at once.

2.2 Regression Analysis

Sanchez Carmona et al. (2024) proposed a regres-
sion analysis to predict the score of any model
when given as input information about pretrain-
ing, fine-tuning hyperparameters, and the choice of
downstream dataset. In this way, the learned coef-
ficients represent the isolated effects of the input
features on the test scores, and the effects of the
models’ contributions are compared. However, this
analysis assumes a dependency, in the form of a
statistical interaction, between models and datasets
which if false would render incorrect results; and
moreover, it forbids to estimate the variability due
to models and datasets separately. Thus, we pro-
pose a regression analysis–a CCMEM–that does
not make such an assumption and can estimate vari-
ation due to model and dataset choice separately.

3 Cross-classified Mixed Effects Model to
Compare NLP Models

3.1 Mathematical Formulation

A CCMEM is a type of regression model which
learns two types of effects in the form of coeffi-
cients or intercepts: fixed and random. Based on
the work of Fielding and Goldstein (2006) and
Garson (2020), we derive our mathematical formu-
lation as follows:

y = β0 +
∑
fixed

βixi +
∑

random

αijxi

+ um + ud + umd + e (1)
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where

αij ∼ N(0, σ2
αij

)

um ∼ N(0, σ2
model)

ud ∼ N(0, σ2
dataset)

umd ∼ N(0, σ2
model∗dataset)

e ∼ N(0, σ2
e)

Test scores are represented by y. The intercept
is β0. The summation of fixed effects corresponds
to input variables xi weighted by their coefficients
βi which are interpreted as the isolated mean effect
of xi on test scores. The summation of random
effects can be interpreted as deviations from the
fixed-effects coefficients of variables xi according
to a specific model, dataset, or interaction of these
two; thus, the final effect of a variable xi is equal
to the sum of its fixed and random coefficients:
βi+αij according to model or dataset with index j.
Terms um, ud, and umd correspond to random in-
tercepts which are interpreted as the isolated effect
that models, datasets, and their interaction have on
test scores. All random terms are random variables
assumed to be drawn from normal distributions and
their corresponding variance (σ2) is the amount of
variation on test scores explained by these terms; in
this way, we can explain the variability observed in
Figure 1 while isolating the effects of nuisance fac-
tors. Term e is the residual. All fixed and random
effects are parameters to be estimated.

3.2 A Working Example: Using a CCMEM
To predict the test score of, for example, BioBERT
on the BioASQ dataset after fine-tuning for 15
epochs using random seed=20, batch size=16,
learning rate=1e-05, one possible way to instan-
tiate Equation 1 is as follows:

y = β0 + β1(seed_20) + β2(batch_16)

+ β3(lr_1e− 5) + β4(num_epochs)

+ α1,BioBERT (seed_20)

+ α2,BioBERT (batch_16)

+ α3,BioBERT (lr_1e− 5)

+ α4,BioBERT (num_epochs)

+ uBioBERT + uBioASQ

+ uBioBERT∗BioASQ (2)

β0 represents the mean baseline score for any
fine-tuned model. All variables xi are binary indi-
cators, except for num_epochs which is numeric.

Thus, each fixed and random effect provides a spe-
cific contribution to the test score (y). As we see,
the random intercept uBioBERT shows the effect
of BioBERT, disentangled from any other effect,
which when added to the intercept will result in
the mean score of this model which we can use to
compare against the other models. Furthermore,
we can estimate the effect that each nuisance factor
has on the test score by adding its fixed and ran-
dom coefficients; for example, the random seed’s
effect accounts for β1 + α1,BioBERT points.2 The
logic behind this formulation is that by modeling
test scores of fine-tuned models via the additive
composition of nuisance factors, model choice, and
dataset choice, we are able to see the amount of
points that each of these factors contribute to those
scores as shown by their learned coefficients.

4 Comparing NLP Models via CCMEM:
Analyses and Results

We revisit the case study introduced in Section 1
and show results from our lowest-error CCMEM.
All results and their statistical significance code:
p=0 ’***’, p<0.001 ’**’, p<0.01 ’*’ are obtained
via the statistical software R (see Appendix A).

4.1 Case Study

In the case study proposed by Sanchez Carmona
et al. (2024), three biomedical models and one
baseline are compared against each other on 13
downstream datasets via a regression analysis. The
dataset generated to fit a regression model com-
prises 5154 instances where each instance corre-
sponds to one fine-tuned model: the dependent
variable is a test score on a downstream dataset;
independent variables are a) the main pretraining
contribution of each model (for BioBERT it is
using Domain Adaptive Pretraining (DAPT), for
MSR BiomedBERT it is pretraining BERT from
scratch using biomedical documents, and for Bi-
oLinkBERT it is using the Link function), b) fine-
tuning (nuisance) factors: random seed, learning
rate, batch size, and number of epochs, and c) the
choice of downstream dataset. We use the same
dataset to fit our CCMEM.

2The subscript BioBERT in the random coefficients
αi,BioBERT indicates that these will vary according to the
choice of NLP model; thus, each coefficient will be adjusted
according to each model. This modeling choice of coefficients
follows the hypothesis that nuisance factors will have different
effects for each model whether due to chance or due to the
idiosyncrasies of each model.
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Variable Coeff. (β) SE t
Intercept 77.21*** 2.94 26.24
seed_20 0.47 0.71 0.66
seed_47 0.21 0.88 0.24
lr_1e-5 -0.96** 0.36 -2.65
lr_2e-5 0.63 0.56 1.13
lr_3e-5 0.60 0.47 1.28
lr_4e-5 0.06 0.22 0.30
batch_16 0.51** 0.18 2.81
num_epochs 0.10** 0.03 2.94

Table 1: Fixed effects of intercept and nuisance factors.
Coeff : coefficient. SE: Standard Error. t: t-value. Vari-
ables used as reference to avoid collinearity: seed_59,
lr_5e-5, batch_32. Values truncated at the hundredths.

Variable Coeff. SE t
DAPT 4.48** 1.38 3.25
Pretrain_from_scratch 6.99** 2.08 3.35
Link function 0.33 1.38 0.24

Table 2: Fixed effects of main pretraining contributions
from each NLP model. Coeff : coefficient. SE: Standard
Error. t: t-value. Values truncated at the hundredths.

4.2 Research Questions
We decompose our question posed in Section 1 into
the following research questions that we consider
to be fundamental for robustly comparing models.

1. Do fine-tuning factors play a role on the test
scores?

2. How effective are the main contributions of
each NLP model?

3. What portion of variability in tests scores is
due to model choice, dataset choice, and fine-
tuning factors?

4. Is there any interaction between the choices
of model and dataset?

5. Which model is the most accurate, in average,
in the BLURB benchmark?

4.3 Answers to Research Questions
Answer 1: Always isolate the effects of fine-
tuning factors. In Table 1 we can see the fixed
effects of nuisance factors on test scores; as
noted, only 3 factors are statistically significant,
i.e. their effect is consistent across all models and
datasets: learning rate 1e-5, batch size 16, and
number of epochs. We can interpret the effect

Variable Variance Std. Dev.
model choice 9.79** 3.12
dataset choice 70.86*** 8.41
model*dataset 19.81*** 4.45
seed_20 23.41*** 4.83
seed_47 37.89*** 6.15
lr_1e-5 2.81*** 1.67
lr_2e-5 9.91*** 3.14
lr_3e-5 7.75*** 2.78
lr_4e-5 0.00 0.00
batch_16 0.28* 0.53
num_epochs 10.27** 3.20
residual 27.67 5.26

Table 3: Random effects: intercepts and coefficients
(vary with respect to model*dataset interaction). Vari-
ables seed_59, lr_5e-5, batch_32 used as references to
avoid collinearity. Values truncated at the hundredths.

of factor batch_16 as increasing scores by 0.51
points, in average, whenever used instead of using
batch_32. Similarly, we interpret the coefficient of
num_epochs as increasing scores, in average, by
0.1 points for each epoch added to the fine-tuning
of a model. Moreover, we allowed random coef-
ficients of these factors to be adjusted according
to the choice of model and dataset; as shown in
Table 3, the random effects of all fine-tuning fac-
tors (except for lr_4e-5) are statistically significant
which means that they will have a different effect
on the scores depending on the choice of model and
dataset; for example, whenever random seed 47 is
used for fine-tuning we can expect an average shift
on test scores of (±) 6.15 points, a shift that we
would wrongly attribute to the models capabilities.

Answer 2: Not every model has the expected
effect. To measure the effect of the main pretrain-
ing contribution from each model on test scores we
added such factors to our cross-classified model
to estimate their fixed-effect coefficients. Table 2
shows these effects; as noted, the contribution from
BioBERT, namely DAPT, has a statistically signifi-
cant mean effect of 4.48 points across all datasets;
i.e. using DAPT increases test scores across all
datasets, in average, by 4.48 points with respect to
vanilla BERT. Similarly, pretraining BERT from
scratch with biomedical documents (MSR Biomed-
BERT’s contribution) improves scores, in average,
by almost 7 points. However, BioLinkBERT’s con-
tribution, the Link function, is rather small (0.33
points) and not statistically significant which means
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that this effect is not systematic across all datasets.

Answer 3: Explaining variability in test scores.
In Table 3, we can observe the amount of variance
in test scores attributed to the choice of NLP model:
σ2
model = 9.79, which is the variance of the distri-

bution from where um is drawn in Equation 1, and
can be interpreted in two ways: 1) as a standard de-
viation: the expected amount of points (±3.12) that
test scores will vary due to model choice, and 2) as
a measure of impact on test scores: this amount of
variance in proportion to the total variance from all
the random effects in Table 3 (i.e. adding all vari-
ances), results in 4.44% representing the approx-
imate3 amount of variability on scores due to dif-
ferences in the models’ capabilities.4 On the other
hand, the variability in test scores attributed to the
choice of downstream dataset is σ2

dataset = 70.86
–the largest variance– explaining 32.13% of such
variability. In addition, most of the nuisance fac-
tors significantly contribute to variation in scores.
For example, the proportion of variability due to
random seed 47 is 17.18%, almost 4 times the vari-
ation due to model choice.

Answer 4: Different models perform different
according to the dataset. An interaction term
of the form model ∗ dataset indicates whether the
effect of a model on test scores differs according
to the choice of dataset. As observed in Table 3,
the interaction between models and datasets is sta-
tistically significant, explaining almost 9% of the
variability in test scores (σ2

model∗dataset = 19.81);
this could mean that some datasets may be more dif-
ficult than others and some models perform better
on some datasets than on others due to their specific
characteristics. For example, while the combined
effect of BioLinkBERT with BIOSSES data is
uBioLinkBERT∗BIOSSES = 9.58 points, the effect
with BC2GM data is uBioLinkBERT∗BC2GM =
−0.37 points; clearly, BioLinkBERT is better
suited for solving the former dataset.

Answer 5: There is a winner by a narrow mar-
gin. By estimating the random effect of each
model (um) and adding it to the intercept, we obtain
the following average scores across datasets after
isolating the effects of all nuisance factors (βi +
αij), datasets (ud), and interactions (umd): vanilla

3The exact proportion of variance follows an slightly more
complex equation (Leckie et al., 2020).

4We note that the CCMEM does not explicitly include the
fixed-effects of the pretraining contributions of the models
since these are implicitly included in their random intercepts.

BERT: 73.22; BioBERT: 76.99; MSR Biomed-
BERT: 79.15; BioLinkBERT: 79.48. All models
surpass vanilla BERT, and though BioLinkBERT
is the best model, its difference with MSR Biomed-
BERT is only 0.33 points, which is, in fact, much
smaller than reported in the literature: 2.23 points.5

But, if the main contribution of BioLinkBERT is
very small and not statistically significant, how
come BioLinkBERT is the best model? That is be-
cause BioLinkBERT was pretrained from scratch in
the same way as MSR BiomedBERT; thus, it takes
the benefit of using MSR BiomedBERT’s contri-
bution, and the difference in mean score between
these two models, 0.33 points, is exactly the points
contributed by the Link function. We note that for
a more detailed comparison between models on a
dataset basis, interaction effects should be taken
into account.

4.4 Evaluation of our Cross-classified Model

While the regression model from Sanchez Carmona
et al. (2024) obtains a Mean Absolute Error of
MAE=2.28 on cross-validation data and is able
to explain R2 = 78.55% of the variability in test
scores, our CCMEM obtains a MAE=2.22 points
while explaining R2 = 82.77% of the variability;
i.e. our CCMEM reduces cross-validation error
and improves by 4.22% the variance explained.6

5 Conclusions

We presented a Cross-classified Mixed Effects
model (CCMEM) which can robustly compare
NLP models by isolating the effects of fine-tuning
factors and datasets from the effects of the true
models’ capabilities while explaining the variabil-
ity in test scores according to the choice of model,
dataset, and fine-tuning factors. Our CCMEM esti-
mated a more accurate picture of the mean scores
of 3 of the most popular biomedical models in
the BLURB benchmark showing a different picture
than previously portrayed: differences in test scores
previously obtained are not only due to models’ ca-
pabilities but also due to datasets and fine-tuning
factors; after isolating these factors, the scores dif-
ference between BioLinkBERT and MSR Biomed-
BERT becomes 7 times smaller than previously
thought: only 0.33 points of difference.

5https://microsoft.github.io/BLURB/leaderboard.html
BioLinkBERT-Base’s score compared against that of MSR
BiomedBERT (uncased; abstracts).

6This variance includes also the variability explained by
fine-tuning fixed-effects terms.
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Limitations

Our approach has some limitations. First, this ap-
proach is better suited for comparing several NLP
models since it needs to estimate variances of nor-
mal distributions. Second, we tested our approach
on one case study; to fully appreciate its usefulness
it is advisable to use it on more case studies with
other types of pretrained models such as LLama
or Mistral, which we leave for future work. Third,
the proportion of variation in the test scores ex-
plained by our CCMEM is 82.77%, which means
that 17.23% of the variation goes unexplained; i.e.
there seem to be more factors contributing to this
variation that we could not identify; nevertheless,
future works can propose more factors and test with
a CCMEM whether they play a role on test scores.
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A Appendix

A.1 Statistical Software
We use the R statistical framework to carry out all
analyses. In particular, we use the lmerTest pack-
age (Kuznetsova et al., 2017) to train CCMEMs and
to obtain statistical significance of both fixed and
random terms; we train our CCMEMs using REML
(restricted maximum likelihood); statistical signifi-
cance of random terms is obtained via likelihood-
ratio tests; we use the cvms package (Olsen and
Zachariae, 2023) to compute cross-validation error
(MAE); we use the MuMIn package (Bartoń, 2023)
to compute R2 effects.
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