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Abstract

As large language models achieve increas-
ingly impressive results, questions arise about
whether such performance is from general-
izability or mere data memorization. Thus,
numerous data contamination detection meth-
ods have been proposed. However, these ap-
proaches are often validated with traditional
benchmarks and early-stage language models,
leaving uncertainty about their effectiveness
when evaluating state-of-the-art ones with more
challenging benchmarks. To address this gap
and provide a dual investigation of the con-
tamination status of state-of-the-art large lan-
guage models and detection method robustness,
we evaluate five contamination detection ap-
proaches with four state-of-the-art large lan-
guage models across eight challenging and
prevailing datasets. Our analysis reveals that
(1) Current methods have non-trivial limita-
tions in their assumptions and practical appli-
cations; (2) Notable difficulties exist in de-
tecting contamination introduced during in-
struction fine-tuning with answer augmenta-
tion; and (3) Limited consistencies between
state-of-the-art contamination detection tech-
niques. These findings highlight the complex-
ity of contamination detection in advanced
language models and the urgent need for fur-
ther research on robust and generalizable con-
tamination evaluation. Our code is avail-
able at https://github.com/vsamuel2003/data-
contamination

1 Introduction

While large language models (LLMs) consistently
achieve higher state-of-the-art results across vari-
ous benchmarks (Rae et al., 2022; Srivastava et al.,
2023; Liang et al., 2023; Zou et al., 2024), the lack
of curation in and the limited disclosure of mas-
sive training datasets raise a critical question: Does
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the model performance arise from model generaliz-
ability or mere memorization? Furthermore, were
the test sets possibly contaminated without notice?
These questions have become crucial in accurately
gauging LLMs’ performance and has led to a criti-
cal area of research: detecting data contamination
in LLMs.

Data contamination occurs when test or evalua-
tion data is exposed to the model during its training
phases (either pre-training or fine-tuning). This
can lead to artificially inflated performance metrics
through memorization rather than true generaliza-
tion. Recent work in detecting data contamina-
tion in LLMs has primarily focused on detecting
contamination through validating the log probabil-
ity of the data in the datasets (Oren et al., 2024;
Shi et al., 2023) or determining contamination
through prompting-based approaches (Golchin and
Surdeanu, 2024b,a). Additional studies have been
aimed at understanding the different types of con-
tamination, such as differentiating between training
or development split contamination and testing set
contamination (Sainz et al., 2023) and contamina-
tion occurring in the pertaining phase versus the
supervised fine-tuning stage (Jacovi et al., 2023).

However, existing research in this area has sev-
eral limitations. Firstly, most methods are shown
to be effective on traditional benchmarks, which
are likely overexposed online and to LLMs. In
contrast, challenging datasets that test the limits
of LLM capabilities are neglected. These newer
benchmarks are often more complex with novel
formats. Secondly, the tested LLMs are often early-
staged ones, such as GPT-J, while the rapid pace of
LLM development has left a gap in understanding
contamination in the latest models. Thirdly, previ-
ous research predominantly focuses on (possibly
unintentional) contamination occurring during pre-
training, where models are exposed to data in its
original form. However, it overlooks contamination
during instruction fine-tuning, where original data
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is subtly modified by, for instance, answer augmen-
tation with chain-of-thought reasoning steps. Such
variations may cause difficulties in contamination
detection yet are rarely considered when evaluating
the effectiveness of contamination detection meth-
ods. Lastly, while various detection methods have
demonstrated effectiveness (with a particular set of
datasets and LLMs of their choice), there is a lack
of a comprehensive cross-comparison to assess the
consistency and reliability of these techniques, par-
ticularly for more recent LLMs, benchmarks, and
training paradigms.

To bridge these gaps, we evaluate five distinct
data contamination detection approaches, including
three state-of-the-art methods recently published
at ICLR, a simple prompting method based on to-
ken perturbation, and our proposed pilot prompt-
based method, which queries the LLM about its
knowledge of the original order of data points. Our
study covers eight benchmarks, including six chal-
lenging datasets frequently used to evaluate mod-
ern LLMs and two traditional benchmarks. We
apply these methods with four language models:
GPT-4 (OpenAI, 2023), Claude 3 Sonnet, LLaMA-
3-Chat (70B) (AI@Meta, 2024), and LLaMA-2-
Chat (70B) (Touvron et al., 2023). To provide a
gold standard for assessing the effectiveness of
these methods, we create an oracle using LLaMA-
2 (70B) by intentionally contaminating the model
with varying portions of the six challenging bench-
marks in the format of instruction fine-tuning with
answer augmentation. This setup allows us to ob-
serve the performance of the five detection methods
given the known contamination status. By these
setups, we seek to answer the following research
questions: i. Are the latest state-of-the-art LLMs,
which consistently achieve higher performance,
contaminated with these challenging benchmarks?
What do the detection methods indicate? ii. Can
these methods detect contamination that occurred
during instruction fine-tuning with data variations
instead of the original format in pretraining? iii. Do
different “well-accepted” detection methods cor-
roborate each other’s findings for a given dataset?
Do they yield inconsistent results?

Our experimental results and analysis reveal sev-
eral critical findings about current data contamina-
tion detection in LLMs: First, all existing methods
have limitations in their underlying assumptions
or practical applications. Second, while some met-
rics suggest possible contamination in traditional
benchmarks, we observe no consistent agreement

for methods contamination in newer, more chal-
lenging benchmarks. Third, all methods struggle
to robustly reflect our oracle contamination created
by instruction fine-tuning with answer augmenta-
tion. This finding highlights an urgent need for this
research direction. Finally, we observe a surpris-
ing lack of agreement between different detection
methods, suggesting that these well-accepted ap-
proaches cannot be simultaneously valid. This dis-
agreement casts doubt on the reliability of current
contamination detection techniques and highlights
the critical need for more robust, consistent, and
comprehensive approaches.

2 Related Work

Detecting training data through probability infer-
ence and reconstruction has long been a well-
established approach (Shokri et al., 2017; Carlini
et al., 2021). Recently, the challenge of data con-
tamination in large language models has garnered
significant attention due to its potential to skew
model evaluation and misrepresent true perfor-
mance. Sainz et al. (2023) highlighted the risks of
contamination, particularly emphasizing that while
test set contamination invalidates benchmarks, con-
tamination in training and validation sets is less
concerning unless zero or few-shot learning claims
are made. Contamination is most likely during
the pre-training phase, where massive text corpora
are scraped with minimal curation. Additionally,
Balloccu et al. (2024) found that 42% of papers
evaluating models such as GPT-3.5 and GPT-4 con-
tained leaked data, affecting millions of instances,
further underscoring the widespread impact of con-
tamination.

Several methods have been proposed to detect
data contamination, focusing on either log proba-
bility analysis or prompting-based techniques. Log
probability-based methods, such as those devel-
oped by Oren et al. (2024) and Shi et al. (2023),
assess the likelihood of data being present in a
model’s training set. In contrast, prompting-based
approaches by Golchin and Surdeanu (2024b) and
Golchin and Surdeanu (2024a) directly query the
model to detect contamination. However, these
methods have primarily been tested on traditional
benchmarks and early-stage models, leaving a gap
in understanding their effectiveness on more recent,
advanced LLMs and complex datasets.

Besides, recent work by Yao et al. (2024) intro-
duces a generalization-based approach, highlight-
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Figure 1: Overview of five methods evaluated for detecting data contamination in large language models (LLMs).
(a) Token Completion Overlap Score: Evaluates LLM contamination by prompting the model with partial text to
see if the completion matches a reference instance. (b) Min-K% Probability: Determines potential contamination
by assessing the average log-likelihood of the k% least probable tokens in a text. (c) Word Perturbation Quiz:
Detects contamination by checking if the LLM can distinguish between a word-level perturbed instance and the
original. (d) Instance Local Order Quiz: A prompt-based method we developed, assessing whether the LLM can
identify the correct subsequent example in a dataset sequence. (e) Canonical Order Statistical Testing: Tests if
the LLM shows a preference for canonical order over random shuffling, indicating potential contamination.

ing how cross-lingual contamination can bypass
traditional detection methods by inflating perfor-
mance when benchmarks are translated into other
languages. This study shows that models contami-
nated in this way fail to generalize effectively when
answer options are manipulated, offering a novel
angle for detecting deeply concealed contamina-
tion.

Moreover, much of the existing research assumes
contamination occurs during pre-training, overlook-
ing the potential impact of instruction fine-tuning,
which is increasingly used to enhance LLM ca-
pabilities. This stage can introduce variations in
the data that are not adequately tested by current
methods. Our work seeks to address these gaps by
evaluating a broader range of detection techniques
across diverse benchmarks and models, with par-
ticular attention to more challenging datasets and
the instruction fine-tuning phase.

3 Benchmark Datasets

There exists a significant disparity between the
benchmarks commonly used in data contamina-
tion research and those employed to evaluate state-

of-the-art (SOTA) LLM capabilities. Table A1 in
the Appendix illustrates this mismatch, showing
that while many contamination detection methods
are validated using traditional benchmarks, mod-
ern LLM evaluations focus on more challenging
tasks, such as mathematical reasoning and code
generation. This observation raises intriguing ques-
tions: Could the performance gains of SOTA LLMs
on these newer, more challenging benchmarks be
attributed, in part, to data contamination? What in-
sights do SOTA data contamination detection meth-
ods provide when applied to these essential modern
benchmarks?

To address this, we selected six challenging
benchmarks commonly used in evaluating SOTA
LLMs, complemented by two traditional bench-
marks frequently featured in data contamination
studies. We aim to ensure broad coverage of rele-
vant task domains while allowing for comparison
with previous contamination detection work. The
selected benchmarks are as follows:

• GSM8K (Cobbe et al., 2021) contains linguis-
tically diverse grade school-level math questions
with moderate difficulties.
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• MMLU (Hendrycks et al., 2020) contains multi-
ple choice questions across multiple domains.
• BIG-Bench-Hard (BBH) (Suzgun et al., 2022)
contains multitask questions believed to be beyond
the capabilities of LLMs at the time of release.
• ARC-Challenge (Clark et al., 2018) contains
questions from the ARC dataset that were answered
incorrectly by both a retrieval-based algorithm and
a word co-occurrence algorithm.
• DROP (Dua et al., 2019) a new reading com-
prehension benchmark requiring discrete reasoning
over paragraphs.
• HumanEval (Chen et al., 2021) is a challenging
becnhamrk for the coding domain.
• AGNews (Zhang et al., 2015) contains text classi-
fication questions drawn from over 1 million news
articles
• IMDB (Maas et al., 2011) is a binary sentiment
classification datasets from movie reviews.

4 Evaluated Methods and Limitations

We examine five distinct approaches to detecting
data contamination in LLMs, including three state-
of-the-art techniques from ICLR (2023-2024) and
two exploratory prompt-based approaches. Two
approaches are based on sequence probabilities
and require access to model parameters. Figure
1 illustrates the visual overview of each approach.
For each method, we also note the limitations we
identified during our examination. The overview
of these methods are illustrated in Figure 1.

• Min-K% Prob (Shi et al., 2023) assesses
whether a text was in an LLM’s pre-training data
by calculating the average log-likelihood of the
k% lowest-probability tokens, with a high result
suggesting the text’s presence in the training data.
Limitations: (1) The authors report AUC based
on the proposed WiKiMIA dataset, in which they
regarded data events before the model release as
contaminated data. Such a strong assumption on
the ground truth may require more justification. (2)
They did not provide the threshold to determine the
value of min-K%-prob in the paper since they claim
they can use AUC; however, in real-world settings,
we do not always have the oracle to determine AUC
- instead, we need a metric for determining whether
arbitrary datasets are contaminated. (3) The code
is not available.

• Canonical Order Statistical Testing (Oren et al.,
2024) identifies contamination in a pre-training

dataset by checking if the model shows a prefer-
ence for the canonical order of examples over ran-
dom shuffling. This preference is tested by compar-
ing their log probabilities, with results aggregated
across datasets to ensure a low false positive rate.
Limitations: When an individual data example’s
length is long, the combination of sample/shard-
s/permutations in the setup can be costly.

• Token Completion Overlap Score (Golchin and
Surdeanu, 2024b) detects contamination by prompt-
ing the LLM with a dataset name, partition type,
and a random initial segment of a reference in-
stance. If the LLM’s output closely matches the
latter part of the reference, the instance is flagged
as contaminated.
Limitations: (1) Part of the evaluation is by GPT-4,
prompting GPT-4 to determine a “near match” can
be ambiguous and subject to biases. (2) It is unclear
how different parts of the original data points can
affect the completion and, thus, the ROUGE score
and p-value.

• Word Perturbation Quiz (Golchin and Sur-
deanu, 2024a) detects data contamination by pre-
senting an LLM with a multiple-choice quiz, where
the options include word-level perturbed versions
of a dataset instance and the original. The LLM’s
tendency to select the original instance indicates
potential contamination from its pre-training.
Limitations: While perturbed answers may retain
their semantic meaning, they often lack the natural
fluency of the original text. This discrepancy in lin-
guistic nuance can inadvertently provide cues to the
model, making it easier to identify the unperturbed,
ground truth answer. Moreover, the original pertur-
bation prompts do not safeguard proper nouns and
numerical values from alteration. Given that the la-
bels remain unperturbed, these distinctive elements
can serve as additional indicators for the model to
differentiate between original and perturbed con-
tent. Consequently, the model’s ability to select the
correct answer may stem from recognizing these
linguistic and contextual inconsistencies rather than
from accurate memorization or contamination, po-
tentially leading to overestimating contamination
levels.

• Local Order Quiz (Ours) In this work, we are
also interested in exploring whether prompt-based
approaches can detect data contamination in LLMs.
These approaches could offer the advantage of be-
ing applied to both closed-source and open-source
models. Unlike token perturbation methods, which
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may entangle an LLM’s recognition of original data
points with its sensitivity to perturbations, we pro-
pose an approach focusing on the model’s ability
to identify the original order of dataset examples.
Specifically, we randomly sample a target example
t from dataset D and provide N other examples,
one of which appeared immediately after t in the
original dataset. We then prompt the LLM to iden-
tify this subsequent example. While pretraining
typically involves randomized batches, local order
can be preserved to some extent. If the LLM can
accurately identify the correct subsequent example,
especially in cases with no inherent information
suggesting the order (e.g., similar categories or
content), this could indicate potential data contam-
ination. Limitations: We acknowledge the chal-
lenging nature of this task, as it requires the LLM
not only to have been exposed to the data points
in their original order but also to understand their
semantics and retrieve this information accurately.

5 Experiments

In this section, we describe our experimental set-
tings for each method and the oracle, and the ex-
periment results.

5.1 Implementation Details
For all detection methods, we follow their official
implementations when available. For the Oracle
setup, we instructed fine-tuned LLaMA-2-70b-chat
using the original answers of the examples replaced
by chain-of-thought reasoning. Specifically:

Min-K% Prob We used k = 20 as recom-
mended in the paper. The authors used their pro-
posed WikiMIA dataset as ground truth and re-
ported AUC in the original paper. However, the
threshold for determining contamination is not pro-
vided, and in real-world settings, the ground truth is
unavailable. Thus, we used the mean and standard
deviation for each split directly for the contamina-
tion indicator, as the authors claim Min-K% Prob is
most informative compared with other probability-
based metrics.

Canonical Order Statistical Testing Due to re-
source constraints, we adapted the method to use
100 instances with 10 shards and 25 permutations.
A shard is a partition of the overall dataset into an
equal sized portion. Examples within each shard
were concatenated with \n. All the datasets were
processed so that only the question and answer
were included for each instance.

Token Completion Overlap Score We used the
exact implementation without changes, including
only ten instances. GPT-4 was employed to deter-
mine near/exact matches, with one exact match and
two near matches used as the threshold for contam-
ination detection. The temperature was set to 0 for
inference. The exact ICL prompt used for GPT-4
evaluation is shown in Figure A.2 in the Appendix.

Word Perturbation Quiz LLaMA-3-70b-chat
was used for perturbation across all datasets.
The perturbation prompt was adjusted for dif-
ferent dataset formats, with care to prevent al-
tering proper nouns. For perturbation, temper-
ature and top p were set to 0.9, while for in-
ference, temperature was 0. Dataset-specific ad-
justments included: Humaneval: Only docstrings
were perturbed. DROP: Full passage and question
were perturbed. MMLU/AGNews/IMDB/ARC-
Challenge/GSM8K: Answer choices were removed
before perturbation to avoid confusion in the quiz.

Local Order Quiz (Ours) We randomly selected
options for each instance, ensuring options from
the same category for datasets like MMLU and
BBH. The prompt included a dataset description,
name, data split, and options. We used the number
of options of 4 as a hyperparameter, meaning a
random guess would achieve about 25% accuracy.
All datasets maintained their original format as
initially processed.

Oracle Setup To investigate the challenges of
detecting data contamination during the fine-tuning
stage, we developed an oracle setup that mimics
real-world instruction fine-tuning scenarios. We
hypothesize that contamination occurring during
fine-tuning is significantly more difficult to detect
compared to pretraining contamination for several
key reasons: (1) Exposure Frequency: During
fine-tuning, the model typically encounters data
for only a few epochs (usually 1-3), whereas in
pretraining, data chunks are often seen repeatedly
due to sliding window approaches ([starting posi-
tion: starting position + window size]). (2) Data
Modification: Modern fine-tuning techniques, par-
ticularly instruction fine-tuning, often incorporate
more complex answers, such as chain-of-thought
reasoning, to enhance the LLM’s analytical capa-
bilities. This process modifies the original data,
preserving the questions while replacing answers
with elaborate solutions. To simulate these con-
ditions, we fine-tuned LLaMA-2-70B-chat using
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Model Datasets Split WPQ Ours Token Overlap Min-K% Canonical Order
(accuracy) (accuracy) exact/near/p-value Meanvar p-value

GPT-4 MMLU test 0.68 0.24 0/0/0.23 - -
BBH - 0.65 0.28 0/0/0.10 - -

ARC-Challenge train 0.67 0.29 1/0/0.47 - -
ARC-Challenge test 0.76 0.28 0/0/0.03 - -

DROP train 0.64 0.20 0/0/0.62 - -
DROP test 0.57 0.21 0/0/0.99 - -

HumanEval test 0.83 0.36 0/0/0.21 - -
GSM8K train 0.72 0.36 0/1/0.21 - -
GSM8K test 0.74 0.22 0/0/0.65 - -

AG News train 0.72 0.42 0/0/0.10 - -
AG News test 0.81 0.35 0/0/0.18 - -

IMDB train 0.79 0.81 0/0/0.72 - -
IMDB test 0.76 0.83 0/0/0.01 - -

Claude 3 MMLU test 0.29 0.21 0/0/1.00 - -
BBH - 0.48 0.28 0/0/0.98 - -

ARC-Challenge train 0.48 0.30 0/0/1.00 - -
ARC-Challenge test 0.48 0.25 0/0/0.97 - -

DROP train 0.56 0.28 0/0/0.96 - -
DROP test 0.53 0.25 0/0/0.24 - -

HumanEval test 0.90 0.24 0/0/0.06 - -
GSM8K train 0.90 0.26 0/0/0.96 - -
GSM8K test 0.91 0.16 0/0/0.53 - -

AG News train 0.79 0.27 0/0/0.61 - -
AG News test 0.74 0.28 0/0/0.82 - -

IMDB train 0.64 0.65 0/0/0.08 - -
IMDB test 0.60 0.65 0/0/0.36 - -

LLaMA 3 MMLU test 0.47 0.23 0/0/0.20 8.832.5 0.69
BBH - 0.48 0.20 0/0/0.38 10.146.5 0.11

ARC-Challenge train 0.56 0.21 0/0/0.80 9.182.0 0.92
ARC-Challenge test 0.41 0.23 0/0/0.30 9.082.0 0.97

DROP train 0.48 0.24 0/0/0.19 6.920.7 0.20
DROP test 0.38 0.32 0/0/1.00 6.531.0 0.85

HumanEval test 0.85 0.31 0/0/0.40 7.421.6 0.59
GSM8K train 0.68 0.29 0/0/0.81 7.671.3 0.88
GSM8K test 0.70 0.25 0/0/0.64 7.881.7 0.25

AG News train 0.54 0.31 0/0/0.33 11.551.5 0.98
AG News test 0.69 0.33 0/0/0.60 11.581.7 0.12

IMDB train 0.38 0.77 0/0/0.07 9.331.2 0.60
IMDB test 0.41 0.86 0/0/0.01 9.132.5 0.21

Table 1: We evaluated contamination in GPT-4, Claude 3 Sonnet, and LLaMA-3-70b using five methods across
eight datasets. The Token Perturbation Quiz (WPQ) assessed model accuracy in selecting correct examples from
semantically similar options (n=100). Our method measured accuracy in predicting subsequent dataset examples
(n=100). Token overlap analysis compared guided and unguided completions, reporting exact matches, near matches,
and p-value for ROUGE-L score differences between guided and general instructions (n=10). Min-K% calculations
yielded mean log probabilities and standard deviations (k=20, n=100). Canonical order testing compared likelihoods
between original and shuffled dataset orders (10 shards, 25 permutations).

full fine-tuning with varying proportions of the six
newer benchmarks in our study. Our goal was to
observe how different contamination detection met-
rics respond to varying levels of data exposure dur-
ing fine-tuning. For each data point, we replaced
the original answer with a chain-of-thought solu-
tion generated by LLaMA-2-70B, mimicking the

data augmentation often used in instruction fine-
tuning. To maintain some semblance of the original
data structure, we packaged four examples as one
training instance, preserving the local order as it
appears in the original dataset. This allows to test
whether detection methods can identify contam-
ination when local order information is partially
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Datasets Split Contamination WPQ Ours Token Overlap Min-K% Canonical Order
(%) (accuracy) (accuracy) exact/near/p-value Meanvar p-value

MMLU test - 0.29 0.26 0/0/0.090 7.402.0 0.99
BBH - - 0.33 0.23 0/0/0.053 8.403.8 0.00
ARC-Challenge train - 0.27 0.27 0/0/0.034 7.721.8 0.15
ARC-Challenge test - 0.25 0.21 0/0/0.154 7.722.2 0.80
DROP train - 0.29 0.23 0/0/0.697 6.040.7 0.07
DROP test - 0.38 0.31 0/0/0.453 5.501.1 0.16
HumanEval test - 0.75 0.28 0/4/0.039 6.881.1 0.07
GSM8K train - 0.60 0.27 0/1/0.229 7.871.2 0.61
GSM8K test - 0.62 0.21 0/0/0.311 7.881.1 0.41

MMLU test 100 0.33 0.24 0/0/0.477 5.461.9 0.81
BBH test 100 0.38 0.21 0/0/0.833 4.472.8 0.10
ARC-Challenge train 50 0.29 0.22 0/0/0.211 5.941.1 0.33
ARC-Challenge test 0 0.31 0.36 0/0/0.035 5.991.7 0.57
DROP train 50 0.29 0.31 0/0/0.767 4.281.0 0.01
DROP test 0 0.33 0.24 0/0/0.646 4.071.1 0.30
HumanEval test 25 0.76 0.14 0/0/0.021 5.160.9 0.36
GSM8K train 25 0.37 0.22 0/0/0.473 6.120.9 0.28
GSM8K test 0 0.57 0.30 0/0/0.093 6.230.9 0.07

Table 2: The oracle contamination detection results with LLaMA-2-70b, before (top) and after (bottom) instruction
fine-tuning with the corresponding proportion of the datasets.

Token Overlap WPQ Ours Min-K% Canonical Order

Token Overlap 1.000 -0.067 -0.009 -0.198 0.096
WPQ -0.067 1.000 -0.014 0.320 0.076
Ours -0.009 -0.014 1.000 -0.063 -0.187
Min-K% -0.198 0.320 -0.063 1.000 0.040
Canonical Order 0.096 0.076 -0.187 0.040 1.000

Table 3: Spearman correlation between the 5 methods of data contamination studied in this work. We calculate
correlation values across all results obtained by our 4 vanilla models (GPT-4, Claude 3 Sonnet, LLaMA-3-70b,
LLaMA-2-70b) as well as our oracle model.

retained. The fine-tuning process used a learning
rate of 8e-6 and ran for three epochs, aligning with
typical fine-tuning practices. By varying the pro-
portion of benchmark data used in this process, we
aimed to create a controlled environment where the
degree of contamination is known, allowing us to
evaluate the sensitivity and reliability of various
detection methods in identifying fine-tuning stage
contamination.

The prompt templates used in the paper are avail-
able in the Appendix.

5.2 Main Results

Table 1 shows the results of the five contamination
detection methods on eight benchmarks with GPT-
4 (gpt-4-0613), Claude-3 Haiku, and LLaMA-3-
70b. Results for the Min-K% and Canonical Order
methods are unavailable for GPT-4 and Claude-3,
as these approaches require access to model param-
eters. We can observe that: (1) Perturbation accu-
racy is unusually high across most benchmarks for

all three models. This consistent pattern suggests
potential inflation of results, possibly due to the
models recognizing the perturbations themselves
rather than indicating contamination or memoriza-
tion. (2) Both our proposed method and the to-
ken overlap approach provide significant evidence
that the IMDB dataset may be contaminated for all
three models. (3) The token overlap method yields
conflicting results depending on the specific met-
ric. Based on p-values, it suggests contamination
in HumanEval for Claude-3 and in BBH for GPT-
4. However, no contamination is detected for any
of the newer benchmarks when considering exact
matches and near matches. (4) For LLaMA-3, both
Min-K% and Canonical Order P-value show pos-
sible contamination on BBH. However, in general,
there is no clear agreement among the methods re-
garding contamination in the newer benchmarks.
Notably, the GPT-4 report indicates that DROP and
HumanEval are approximately 21-25% contami-
nated. However, our results show that none of the
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methods detected contamination in DROP, while
only our method partially detected contamination
in HumanEval (accuracy = 0.36).

Table 2 presents the oracle results, comparing
the metric values of the five detection methods be-
fore (upper half) and after (lower half) instruction
fine-tuning. The Portion column indicates the per-
centage of data used for fine-tuning, ranging from
0% (no contamination) to 100% (entire dataset split
used). Ideally, a robust detection method should
(1) consistently reflect the portion of contamination
through its metric values and (2) not be influenced
by the training set contamination when the test set
remains uncontaminated. For instance, probability-
based approaches might be susceptible to false pos-
itives in test set contamination detection when the
training set is contaminated due to the similarity
in distribution between training and testing data.
Therefore, post-fine-tuning results should show in-
creased accuracy or mean probability values and
decreased p-values for non-zero contamination por-
tions in an ideal scenario. However, our obser-
vations reveal significant challenges in detecting
fine-tuning contamination: (1) None of the metrics
demonstrate a consistent trend that aligns with the
varying portions of data contamination. This lack
of correlation suggests that current methods may
not be sensitive enough to detect or quantify the
degree of contamination introduced during such
a fine-tuning paradigm. (2) Surprisingly, all Min-
K% probability values decrease after fine-tuning.
This counterintuitive result is particularly notewor-
thy given that the original questions are preserved
in the fine-tuning process, even though we used
instruction fine-tuning with chain-of-thought solu-
tions. These findings highlight the complexity of
detecting contamination in instruction-tuned mod-
els and suggest that existing methods, originally
designed for pretraining contamination detection,
may not be directly applicable or reliable in fine-
tuning scenarios.

Table 3 shows the Spearman rank correlation be-
tween the metric results of the five detection meth-
ods based on all experiments conducted. While
we acknowledge slight statistical liberty in compar-
ing rank correlations between p-values and other
metrics, this analysis provides insights into the re-
lationships between different contamination detec-
tion approaches.

First, we observe no strong correlations or agree-
ment between these metrics across the various
LLMs and datasets tested. This lack of consen-

sus is particularly concerning, as it suggests that
different methods may yield contradictory conclu-
sions about the presence or extent of contamination
in a given model-dataset pair. We do, however,
note some weak correlations: (1) Between the Min-
K% probability value and word perturbation quiz
accuracy, (2) Between Min-K% probability and to-
ken overlap p-values, and (3) Between canonical
order p-values and our proposed method. The weak
correlation between our method and the canonical
order statistical testing suggests the potential for
prompting information about local order as a proxy
for canonical statistical testing, especially in gaug-
ing data contamination in closed-source LLMs.

However, the lack of strong agreement between
methods raises a critical concern: these well-
established approaches cannot all be simultane-
ously correct in their contamination assessments,
which poses a significant challenge to contamina-
tion detection in LLMs. This observation calls for
further investigation into the more robust and con-
sistent contamination detection methods for distinct
scenarios.

6 Conclusions and Future Work

This paper evaluates five distinct data contamina-
tion detection methods across eight benchmarks
and four state-of-the-art LLMs, including an oracle
setup to mimic instruction fine-tuning contamina-
tion. Our study reveals significant challenges in cur-
rent methods, with inconsistent results across dif-
ferent benchmarks and models. Detecting contam-
ination introduced during instruction fine-tuning
proved especially difficult, and the weak corre-
lations between different detection methods raise
concerns about their collective reliability. While
prompt-based methods show certain evidence of de-
tection abilities, they are very limited at this stage.
These findings underscore the complexities in ac-
curately quantifying data contamination in LLMs
and highlight the urgent need for more robust, uni-
fied detection frameworks. As LLMs continue to
advance, developing reliable contamination detec-
tion techniques remains crucial for ensuring the
integrity and trustworthiness of AI systems.

Limitations

While we discovered significant disagreement
between different contamination detection meth-
ods, especially compared to oracle tests, our in-
vestigation did not uncover the underlying rea-
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sons for these discrepancies. Additionally, our
proposed prompt-based contamination detection
method showed limited effectiveness, highlighting
the inherent challenges in using prompting for this
task.

Ethics Statement

This study on data contamination detection in
LLMs has ethical implications on the importance of
transparency in AI development and the potential
risks of overestimating model capabilities based on
potentially contaminated evaluations. We empha-
size that our findings on the limitations of current
detection methods call for caution in making defini-
tive claims about data contamination and highlight
the urgent need for more robust and general detec-
tion methods.
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A Prompts

A.1 Word Perturbation Quiz

As part of the Word Perturbation Quiz, there are
two components namely the perturbation and the
quiz components. In the perturbation prompt, the
model is prompted to create a four choice quiz
by only making word level perturbations. Several
guidelines are also included in the prompt to guide
the model on what words are allowed to perturbed
and what formatting components must remain the
same. In the standard quiz component, the model
is given the 3 perturbed options and the original
data instance in a random order and prompted to
select the correct data instance that showed up in
the given dataset and split. Both of these prompts
closely follow the prompts in (Golchin and Sur-
deanu, 2024a).

Perturbation Prompt.

Instruction: Your task is to create a four-choice
quiz by replacing the words in the provided "Input
Text" with their contextually relevant synonyms.
The meaning and overall structure of the four
options must exactly match every detail and the
structure in the Input Text. You must not include the
provided Input Text as an option. Each option in the
four-question quiz you generate must include both
the underlying text and answer choices in the Input
Text but with word-level perturbations. You must
make sure that:

(1) You generate distinct options based on the
provided Input Text;
(2) The only difference between options is word-level
perturbations.
(3) Each Option must still include the main part of the
text in the Input Text with word level perturbations
(4) Each option must still include all answer choices
present in the Input Text with no changes
(5) No numbers or proper nouns are changed.
(6) Options are ordered;
(7) There is not any extra explanation;
(8) You comply with the following "Format" to
generate options
(9) You comply with every specific symbol and letter
detail in the given Input Text; and
(10) All options retain the exact label from the Input
Text, if there is one.
—
Input Text:
instance
—
Format:
Option 1 -

Option 2 -

Option 3 -

Option 4 -

Standard Quiz Prompt.

Instruction: You are provided with a five-choice quiz.
Your task is to correctly select the option that exactly
corresponds to an instance from the [split] split of
the [dataset] dataset.

When selecting the option, you must ensure
that you follow the following rules:
(1) You must ensure that you only generate a single
option letter as your answer.
(2) If you do not know the dataset or the correct
answer, you must select option "(E) None of the
provided options."
(3) You must output the answer in your final sentence
like "The correct answer is ..."

Hint: While all the following options seem
similar in terms of meaning, there is only one option
that reflects the exact wording with respect to the
original instance.
—
(A) choices["(A)"]
(B) choices["(B)"]
(C) choices["(C)"]
(D) choices["(D)"]
(E) choices["(E)"]
—
Answer:

A.2 Local Order Quiz
In the local order quiz, the model is given a de-
scription of the dataset, a specific example from
the dataset, and options for the next occurring ex-
ample in order in the dataset. The model is then
queried to choose which of the given options is the
next occurring example in the dataset in order. The
description of the the dataset is pulled from the
GitHub page or Hugging Face page of the dataset
if once exists. The rationale here is that while web
scraping, if a dataset was contaminated then the
dataset description on the GitHub/Hugging Face
would have been contaminated as well. If a descrip-
tion foes not exist on the Github or Hugging Face
then the description from the paper related to the
dataset is used.

Local Order Quiz Prompt.

[Description of dataset]

Given the target data example in the [split] of
the [dataset name] dataset, Which of the following
examples was next to it in the original order of the
dataset? Exactly one of the choices must be selected
and you need to output the answer in your final
sentence like "The answer is ..."

Target example: [tar example]

Options: [options]
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GPT-4 ICL prompt used for Token Overlap

INSTRUCTION:
You are provided with a reference text and a candidate text. The candidate text is a generated replica of the reference
text. Your task is to determine if the candidate text is an exact or near-exact match of the reference text.
Near-exact match candidates must PRECISELY match the reference candidates in terms of sentence structure, overlap,
and contextual similarity. Respond only with ’Yes’ or ’No’.

Example 1:

REFERENCE TEXT:
The cat waited at the top.

CANDIDATE TEXT:
The cat waited at the top.

ANSWER: Yes (exact match)

Example 2:

REFERENCE TEXT:
icy surface of Jupiter’s largest moon, Ganymede. These irregular masses may be rock formations, supported by
Ganymede’s icy shell for billions of years.

CANDIDATE TEXT:
icy surface of Jupiter’s largest moon, Ganymede. These irregular masses may be rock formations, supported by
Ganymede’s icy shell for billions of years. This discovery supports the theory that Ganymede has a subsurface ocean.
Scientists used gravity data from NASA’s Galileo spacecraft to create a geophysical model of the interior of Ganymede.

ANSWER: Yes (near-exact match)

Example 3:

REFERENCE TEXT:
50th Anniversary of Normandy Landings lasts a year.

CANDIDATE TEXT:
The 50th anniversary celebration of the first Normandy landing will last a year.

ANSWER: Yes (near-exact match)

Example 4:

REFERENCE TEXT:
Microsoft’s Hotmail has raised its storage capacity to 250MB.

CANDIDATE TEXT:
Microsoft has increased the storage capacity of its Hotmail e-mail service to 250MB.

ANSWER: Yes (near-exact match)

Example 5:

REFERENCE TEXT:
{reference_text}

CANDIDATE TEXT:
{candidate_text}

ANSWER:
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Dataset LLaMA 3 Claude 3 Gemini Pro GPT-4 Canonical Order Min-K% Token Overlap WPQ

MMLU ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

AGIEval (English) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CommonSenseQA ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Winogrande ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

BIG-Bench Hard ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

ARC-Challenge ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

TriviaQA-WIKI ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQuAD ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

QuAC ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

BoolQ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

DROP ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

GPQA ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

HumanEval ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

GSM8K ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

MATH ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

MGSM ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

HellaSwag ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

PubMedQA ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

RACE-H ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

APPS ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

MBPP ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Natural2Code ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

WMT23 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

RTE ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

WNLI ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

AG News ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

MeetingBank ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

AuTexTification ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

IMDB ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Yelp Full Reviews ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

SAMSum ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

XSum ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

OpenbookQA ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

MNLI ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

TruthfulQA ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Natural Questions ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

PIQA ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Books3 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Table A1: The dataset mismatch between the challenging benchmarks frequently evaluated by SOTA LLMs and the
ones used for validation of contamination detection methods.
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