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Abstract

Large Language Models (LLMs) are increas-
ingly being applied in education, showing sig-
nificant potential in personalized instruction,
student feedback, and intelligent tutoring. Gen-
erating hints for Math Word Problems (MWPs)
has become a critical application, particularly
in helping students understand problem-solving
steps and logic. However, existing models
struggle to provide pedagogically sound guid-
ance that fosters learning without offering di-
rect answers. To address this issue, we intro-
duce TMATH, a dataset specifically designed
to evaluate LLMs’ ability to generate high-
quality hints for MWPs. TMATH contains di-
verse mathematical problems paired with care-
fully crafted, human-generated hints. To as-
sess its impact, we fine-tuned a series of 7B-
scale language models using TMATH. Our re-
sults, based on quantitative evaluations and
expert assessments, show that while LLMs
still face challenges in complex reasoning, the
TMATH dataset significantly enhances their
ability to generate more accurate and con-
textually appropriate educational hints. The
dataset is available at https://github.com/qi-
github-ui/TMATH.

1 Introduction

In recent years, Large Language Models (LLMs)
have revolutionized natural language processing
(NLP), with applications in personalized instruc-
tion, real-time student feedback, and intelligent
tutoring systems (ITSs) (Hadi et al., 2024; Stamper
et al., 2024). These applications are particularly
transformative in education, where LLMs enhance
both the quality and accessibility of learning. A crit-
ical area of focus is the generation of educational
hints, especially for Math Word Problems (MWPs)
(Zhang et al., 2024; Srivatsa and Kochmar, 2024;
Ahn et al., 2024). By guiding students through
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problem-solving steps without revealing the an-
swers, LLMs can foster deeper understanding and
independent learning. However, current models of-
ten struggle to generate pedagogically sound hints,
especially in tasks involving complex logic and
problem-solving (Cohn et al., 2024).

While LLMs excel at generating fluent and co-
herent text, their ability to create high-quality ed-
ucational hints remains underexplored (Gattupalli
et al., 2023). Existing models frequently fail to
provide guidance that encourages critical thinking,
often producing hallucinations or irrelevant content
when dealing with more complex logical problems
(Azamfirei et al., 2023; Imani et al., 2023; Lin et al.,
2024). This limitation not only diminishes their ed-
ucational value but also raises questions about their
suitability for tasks requiring step-by-step reason-
ing. To address these challenges, we introduce
TMATH, a comprehensive dataset designed to rig-
orously evaluate the performance of LLMs in gener-
ating educational hints for MWPs. TMATH encom-
passes a wide variety of mathematical problems,
ranging from elementary to advanced levels, each
accompanied by human-generated, pedagogically
sound hints. By focusing on the generation of ed-
ucational hints, TMATH provides a much-needed
resource for evaluating the ability of LLMs to not
only solve mathematical problems but also offer
meaningful guidance that fosters student learning.
Our study makes several key contributions:

• We present TMATH, the first dataset specifi-
cally designed for evaluating LLMs’ ability to
generate educational hints in MWPs.

• We fine-tune several 7B-scale LLMs using
TMATH and demonstrate that TMATH signif-
icantly enhances their performance in gener-
ating accurate, contextually appropriate hints.

• Through quantitative metrics and expert as-
sessments, we identify critical areas for im-

https://github.com/qi-github-ui/TMATH
https://github.com/qi-github-ui/TMATH
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provement in LLMs’ reasoning and hint
generation abilities, particularly in complex
problem-solving contexts.

2 Related Work

2.1 The Evolution and Applications of LLMs

In recent years, the evolution of LLMs, such as
OpenAI’s GPT series, has led to significant ad-
vancements in NLP and other complex tasks. The
introduction of the GPT model (Radford et al.,
2018) with its transformer architecture marked a
breakthrough in unsupervised training, enabling
the generation of coherent and contextually rele-
vant text. Successive iterations, including GPT-2
(Radford et al., 2019) and GPT-3 (Brown et al.,
2020), further enhanced text generation and com-
prehension by increasing model size and training
data. GPT-3.5-turbo 1, for example, improved on
these foundations by combining chatbot interac-
tions with traditional text generation, allowing for
multi-turn conversations and dynamic context un-
derstanding. GPT-4 (Achiam et al., 2023) not only
improved the quality of multi-turn conversations
but also strengthened performance in more com-
plex tasks, such as mathematical reasoning and
programming problem-solving. GPT-4o 2 further
optimized processing efficiency, reducing cost and
latency while maintaining high-generation capabil-
ities. These models have been successfully applied
in areas such as text generation (Mo et al., 2024),
question-answering (Zhuang et al., 2024), auto-
matic programming (Nam et al., 2024), and mathe-
matical problem-solving (Yang et al., 2024b).

2.2 Proficiency of LLMs in Resolving
Mathematical Problems

The burgeoning recognition of LLMs’ potential
in education extends to complex query compre-
hension and meaningful response generation, no-
tably in MWPs solving. LLMs like Bloom were
transformed into adept math tutors through LoRA
fine-tuning strategies on an elementary school math
dataset (Mangrulkar et al., 2022). Notably, the Goat
model’s fine-tuning on synthetic arithmetic data led
to near-perfect large-number operation accuracy
(Liu and Low, 2023), outstripping preceding mod-
els such as Bloom (Scao et al., 2022), OPT (Zhang
et al., 2022), and GPT-NeoX (Black et al., 2022).

1https://chat.openai.com/
2https://www.techtarget.com/whatis/feature/GPT-4o-

explained-Everything-you-need-to-know

This included Goat-7B’s zero-shot learning surpass-
ing PaLM-540’s few-shot learning. To overcome
ITSs’ limitations with pre-registered problems and
student-generated issues, a novel approach using
LLMs to convert MWPs into Python code was
proposed, integrated into internal system represen-
tations, demonstrating high accuracy and signifi-
cant enhancement potential (Arnau-González et al.,
2023). Additionally, a 2024 study shows LLMs
have advanced in mathematical reasoning but still
struggle with complex quantitative tasks (Ahn et al.,
2024).

2.3 Applications of LLMs in Generating Hints

While LLMs have made significant strides in con-
tent generation, their primary focus has been on
generating direct answers (Imani et al., 2023;
Hasan et al., 2024) or programming prompts
(Leinonen et al., 2023; Jury et al., 2024). In ed-
ucational contexts, however, there are unique chal-
lenges. One major concern is that LLMs’ ability
to rapidly provide answers may hinder the devel-
opment of students’ critical thinking and problem-
solving skills, both essential for academic and life-
long success (Tang et al., 2023; Grande et al., 2024).
This highlights the need for research on how LLMs
can offer Socratic, indirect teaching hints. Partic-
ularly in the context of mathematical problems,
such hints can guide students to grasp the problem-
solving process, promoting independent thinking
rather than simply providing answers. Despite this
potential, LLMs still exhibit inaccuracies and hal-
lucinations when tasked with generating these ped-
agogical hints, raising concerns among educators.

3 Method

This study builds upon the MATH (Hendrycks
et al., 2021) dataset to construct the TMATH
dataset, which is designed to support the gener-
ation of problem-solving hints for MWPs using
LLMs, as shown in Fig.1. The construction of
TMATH follows a multi-stage analysis and design
process to ensure the scientific validity and effec-
tiveness of the generated hints. First, we conducted
an in-depth analysis of the problem-solving steps in
the original MATH dataset, extracting key informa-
tion and identifying potential difficulties. Based on
this analysis, we designed a hint generation mecha-
nism following the Socratic teaching method, en-
couraging students to progressively solve problems
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socratic_questions:

problem_solving_logic: "The logic behind this problem relies on grouping numbers that are divisible by 

16, which simplifies the computation of the remainder. Once divisible terms are removed, the remaining 

numbers are easy to handle using modular arithmetic.",

knowledge_point:"...",

step_complexity: "...",

potential_cognitive_obstacles: "...."

Problem: Find the remainder when the sum 75+76+77+78+79+80+81+82 is divided by 16.

Solution: 

problem_solving_logic: "...", knowledge_point:"...", step_complexity: "...",potential_cognitive_obstacles: "...."

S1: Recognize that 16 divides 78 + 82, 79 + 81, and 80

S2: Simplify the sum by removing terms divisible by 16

S3: Identify the remaining terms 75, 76, and 77

S4: Compute the modulo 16 of the remaining terms

Categorization:

level: "Level 2",

type: "Number Theory".

socratic_questions:

Can you describe the first step in solving this problem?

How did you determine that 16 divides 78+82 as well as 79+81 

and also 80?

What does it mean for two numbers to be congruent modulo 16?

How did you compute the sum of -5, -4, and -3 modulo 16?

Why is the remainder we seek equivalent to -12 modulo 16?

Can you think of any other types of problems where the concept 

of congruence modulo a certain number might be useful?

Categorization:

level: "Level 2",

type: "Number Theory".

Verification and Refinement:

Analysis Verification

Hint Verification

Categorization Verification

Refinement

Problem: Find the remainder when the sum 75+76+77+78+79+80+81+82 is divided by 16.

Solution: We notice that 16 divides 78+82 as well as 79+81and also 80. Therefore, the sum is congruent 

to 75+76+77(mod16). Since these numbers are congruent to −5, −4, and −3modulo 16, this can be 

computed as −5−4−3≡−12(mod16) .Finally, since −12≡4(mod16), the remainder we seek is 4.

Figure 1: The framework for constructing the TMATH
dataset involves several steps. First, the problem-solving
structure of the original dataset is analyzed. Then, hint
generation rules are designed based on the problem-
solving steps. Next, the problems are categorized by
difficulty and domain. Experts manually validate and
refine the generated hints. Finally, all verified data is
integrated to form a complete hint-based mathematical
problem dataset.

through guiding questions. The dataset is catego-
rized by difficulty and domain to comprehensively
evaluate the model’s performance across different
areas of mathematics. Finally, the hints were rig-
orously validated and optimized by mathematics
education experts to ensure their quality and guid-
ance effectiveness.

3.1 Solution Analysis

We first conducted a systematic cognitive analysis
of the problem-solving paths in the original MATH
dataset, aiming to analyze the problem-solving
logic, step complexity, and distribution of knowl-
edge points. By evaluating key steps and common
errors, we identified potential cognitive obstacles
students may face and quantified the complexity
of the steps to predict potential problem-solving
difficulties, providing a theoretical foundation for
hint generation.

3.2 Hint Generation Design

The hint generation design is based on the princi-
ples of Socratic teaching, aiming to guide students
step by step in understanding and solving problems.
Through analyzing each problem-solving step, we
identified key steps and potential cognitive barriers.
For these steps, hints are divided into three levels:
basic understanding hints, thought guidance hints,
and error correction hints. The generation of hints
follows strict rule-based design to ensure alignment
with educational guidance objectives.

3.3 Difficulty and Domain Categorization

We adopted a hierarchical difficulty model, divid-
ing the problems into five levels based on com-
plexity, corresponding to basic, intermediate, and
advanced problems. The classification criteria are
based on the number of required knowledge points,
the complexity of solution steps, and the likelihood
of common errors. Additionally, the problems are
categorized into seven domains, such as algebra
and geometry, to facilitate the evaluation of the
model’s generalization performance across differ-
ent areas.

3.4 Human Verification and Refinement

To ensure the effectiveness of the hints, we invited
experts in the field of mathematics education to
validate the strategy and outcomes of the hint gen-
eration process. Each hint was evaluated by the
experts to ensure that it guides students along the
correct thinking path, followed by further adjust-
ments and optimizations based on feedback. Ul-
timately, all hints underwent rigorous calibration
and quality checks.

4 Dataset and Evaluation Framework

4.1 Dataset

TMATH, which is constructed based on the pub-
licly available MATH dataset’s problems and solu-
tion steps. Comprising approximately 4000 mathe-
matical problems and Socratic-style hints, TMATH
spans various domains from elementary to ad-
vanced mathematics. Each problem is paired with
detailed step-by-step hints, providing a reliable
foundation for training models in answer deriva-
tion and explanation. The dataset is organized into
five levels of difficulty and categorized into seven
subjects including geometry, algebra, intermedi-
ate algebra, prealgebra, precalculus, counting &
probability, and number theory. Figure 2 presents
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1

Original 

Problem

Alice and Bob play a game with a baseball. On each turn, if Alice has the ball, there is a 1/2 

chance that she will toss it to Bob and a 1/2 chance that she will keep the ball. If Bob has the ball, 

there is a 2/5 chance that he will toss it to Alice, and if he doesn't toss it to Alice, he keeps it. 

Alice starts with the ball. What is the probability that Alice has the ball again after two turns?

Hint1
What is the initial probability of Alice having the ball at the start, and what is the probability of 

Bob tossing it back if she tosses it to him?

Hint2
If Alice keeps the ball on the first turn, what is the probability she keeps it again on the second 

turn?

Hint3
Can the total probability of Alice having the ball after two turns be calculated by considering 

these two scenarios separately?

Hint4 Calculate the probability for each scenario and explain the reasoning.

Hint5
How do we combine the probabilities of these scenarios to find the overall probability of Alice 

having the ball after two turns?

2

Original 

Problem

A cube with an edge length of 4 units has the same volume as a square-based pyramid with base 

edge lengths of 8 units and a height of h units. What is the value of h?

Hint1 Can you describe the basic concept of volume for both a cube and a square-based pyramid?

Hint2
How can we express the volume of the cube in terms of its edge length, and similarly, how can 

we express the volume of the square-based pyramid in terms of its base edge length and height?

Hint3 What does it mean for the two volumes to be equal in this problem?

Hint4
Can you write an equation that represents the relationship between the volume of the cube and the 

volume of the pyramid?

Hint5
How can we solve this equation to find the value of h, and what does the value of h represent in 

the context of the problem?

I have a question, and the content is "Alice and Bob play a game with a baseball. On each turn, if Alice has the 

ball, there is a 1/2 chance that she will toss it to Bob and a 1/2 chance that she will keep the ball. If Bob has the 

ball, there is a 2/5 chance that he will toss it to Alice, and if he doesn't toss it to Alice, he keeps it. Alice starts 

with the ball. What is the probability that Alice has the ball again after two turns?", can you help me with it?

I’m glad you asked me a question, but I’d like to pose a question to you first: What is the initial probability 

of Alice having the ball at the start, and what is the probability of Bob tossing it back if she tosses it to him?

At the beginning, Alice has the ball. If Alice passes the ball to Bob, the probability of Bob passing the ball 

back to Alice is 2/5.

So, if Alice holds the ball in the first round, what is the probability of her holding the ball again in the second 

round?

If Alice keeps the ball in the first round, the probability of her keeping the ball again in the second round is 1/2. 

Alice has a 1/2 chance of passing to Bob and a 1/2 chance of holding the ball herself.

I believe the total probability of combining these two scenarios gives the answer to the question, The first 

scenario is the probability of Alice passing the ball to Bob, and Bob passing the ball back to Alice (1/2 * 2/5 = 

1/5). The second scenario is the probability of Alice keeping the ball and keeping it again (1/2 * 1/2 = 1/4). 

and the answer should be 1/4+1/5=9/20.

√

!

Can you calculate the overall probability of Alice holding the ball after two rounds by considering each case 

separately?

T

T

Figure 2: Examples from the TMATH Dataset with Socratic-Style Hints. The left column illustrates the structured,
incremental hints designed to guide learners through the problem-solving journey, while the right column demon-
strates the interactive prompts crafted by the fine-tuned LLMs.

selected examples from the TMATH dataset as
well as instances of Socratic-style hints applied
by LLMs fine-tuned on TMATH.

To ensure a comprehensive understanding of the
mathematical problems and consider pedagogical
elements in our hint design, we collaborated with a
team of experts from relevant fields. Each problem
was thoroughly discussed to determine the optimal
hint design strategy, guided by the following core
principles:

• Fostering Thought Orientation: The design
of hints targets the stimulation of critical and
independent reasoning, rather than mere prob-
lem solution. Through guided exploration, we
aim to lead students to discern the core of
problems, thereby igniting curiosity and drive
for resolution.

• Clarity of Steps: The hints systematically elu-
cidate strategies to guide students through the
problem-solving process, facilitating the un-
derstanding of underlying concepts, princi-
ples, or algorithms, and steering the appli-
cation of appropriate mathematical skills or
tools.

• Problem Adaptability: The design of hints is
calibrated to the complexity of problems, pro-
viding detailed insight and explicit solution
paths for more intricate issues, while centering
on fundamental concepts and basic problem-
solving techniques for simpler tasks.

Principle FTO COS PA

Annotator A & B 0.83 0.87 0.82
Annotator A & C 0.86 0.89 0.84
Annotator B & C 0.82 0.85 0.80

Fleiss’ Kappa 0.84 0.88 0.81

Table 1: Inter-Annotator Agreement Results. FTO: Fos-
tering Thought Orientation; COS: Clarity of Steps; PA:
Problem Adaptability.

4.1.1 Inter-Annotator Agreement Analysis

To assess the consistency and reliability of the
TMATH dataset annotations, an Inter-Annotator
Agreement (IAA) analysis was conducted. Three
annotators with expertise in mathematics educa-
tion evaluated 100 pre-labeled problems annotated
according to core principles. After a two-hour train-
ing session, annotators rated each hint’s adherence
to three core principles: Fostering Thought Orien-
tation, Clarity of Steps, and Problem Adaptability.
Ratings were on a 5-point scale, where 1 indicated
poor adherence and 5 indicated excellent adher-
ence. The scores were analyzed to estimate inter-
annotator agreement, ensuring consistency and re-
liability. IAA was assessed using Fleiss’ Kappa
(Fleiss, 1971) for overall consistency and Cohen’s
Kappa (Fleiss and Cohen, 1973) for pairwise con-
sistency between annotators on the three principles.

Analysis results, as shown in Table 1, reveal rel-
atively strong consistency for Fostering Thought
Orientation across annotator pairs (A & B, A & C,
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B & C), with Cohen’s Kappa values ranging from
0.82 to 0.86. This suggests that the annotators had
a common understanding of how hints should pro-
mote independent reasoning. The slight difference
between Annotator B & C (0.82) may reflect subtle
differences in interpreting the application of this
principle to specific hints. The Fleiss’ Kappa values
for Fostering Thought Orientation (0.84), Clarity
of Steps (0.88), and Problem Adaptability (0.81)
indicate substantial inter-annotator agreement, with
all values exceeding 0.8. This strong agreement
demonstrates the annotators’ high level of consis-
tency and reliability in evaluating the alignment
of hints with the principles. The minor variation
in Problem Adaptability (0.81) may stem from nu-
anced differences in interpreting the appropriate
level of detail for more complex problems. Overall,
these results affirm the robustness and consistency
of the annotation process, providing a solid foun-
dation for the dataset construction.

4.2 Evaluation Framework

With the introduction of the TMATH dataset, we
designed a hybrid evaluation framework to assess
the ability of LLMs to generate hints for MWPs,
incorporating both quantitative evaluation metrics
and expert assessments.

4.2.1 Quantitative Evaluation

In the quantitative assessment, we utilized the
ROUGE metrics, a prevalent evaluation method
in Natural Language Generation (NLG) tasks like
summary and translation, to gauge the similarity
between the model-generated and human-created
reference hints. Specifically, we applied ROUGE-
N and ROUGE-L to evaluate the coherence at var-
ious levels, with higher scores reflecting greater
consistency and indicating superior model perfor-
mance: ROUGE-N measures the overlap of n-
grams, reflecting the consistency between gener-
ated hints and reference hints at the level of n-word
sequences. ROUGE-L measures the longest com-
mon subsequence, the consistency between the gen-
erated hints and reference hints at the subsequence
level. Additionally, we assessed the answer ac-
curacy (ACC) for each problem to ascertain the
efficacy of the generated hints in aiding correct
responses. A balanced sample of 100 questions
was extracted for each discipline, encompassing a
uniform distribution of difficulty levels.

4.2.2 Expert Evaluation
Quantitative evaluation metrics provide a conve-
nient way to generate tasks, but their relevance to
human evaluation in open-ended generation tasks
is relatively low. To mitigate this limitation, we
engaged experts in education and mathematics to
manually evaluate hints. Each expert evaluated
70 questions, with an average of 10 questions per
domain, selected from varying disciplines and lev-
els of difficulty. The evaluations were based on
three criteria: (1) Correctness, assessing the align-
ment with problem-solving strategies; (2) Clarity,
whether the hint is easy to understand; and (3)
Guidance, determining the hint’s ability to lead
students toward solutions without directly provid-
ing answers. These aspects were analyzed using a
five-point rating system, with the findings detailed
in Table 2. The consistency of the evaluations was
verified through an Inter-Rater Reliability Analysis,
detailed in Appendix A.

5 Experimental Results and Analysis

We evaluated five LLMs: GPT-3.5-turbo, GPT-4o,
ERNIE Bot 3, SparkDesk 4, and Qwen2 5 (Yang
et al., 2024a). We selected these models for compar-
ative experiments as they represent the most widely
used LLMs, each with a parameter size exceeding
one hundred billion. We adopted the Zero-shot
prompting (Alayrac et al., 2022) test method.

5.1 Quantitative Evaluation

Table 3 presents the performance of each model on
key metrics such as R-1, R-2, R-L, R-AVG, and
ACC. In terms of overall performance, we found
the GPT-4o model to excel. It demonstrated re-
markable performance in word-level matches, long
sequence matches, and answer accuracy. More-
over, it achieved the highest overall average match,
highlighting its superior capabilities in handling
various mathematical problems. However, despite
GPT-4o outperforming other models on most eval-
uation metrics, it lags behind the GPT-3.5-turbo
model in R-2. This suggests that while GPT-4o has
an advantage in generating text with better over-
all coherence, GPT-3.5-turbo is adept at capturing
and generating certain specific phrases or word
groups. Furthermore, we noticed that while ERNIE
Bot, SparkDesk, and Qwen2 lag behind GPT-4o in

3https://cloud.baidu.com/product/wenxinworkshop
4https: //xinghuo.xfyun.cn/
5https://tongyi.aliyun.com/
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Level Correctness
1 The hint does not accurately reflect the steps or strategies to solve the problem and the deviation is significant
2 The hint has some correlation with the steps or strategies to solve the problem, but there are obvious inaccuracies
3 The hint generally reflects the steps or strategies to solve the problem, but there is room for improvement
4 The hint accurately reflects the steps or strategies to solve the problem, with only a few inaccuracies
5 The hint very accurately reflects the steps or strategies to solve the problem, with no inaccuracies at all
Level Clarity
1 The hint is difficult to understand, too complex or semantically vague
2 The hint is somewhat difficult to understand and may require additional explanation to comprehend
3 The clarity of the hint is good, most students can understand it
4 The hint is clear and easy to understand, with only very few instances that may require additional explanation
5 The hint is very clear and all students can intuitively understand it
Level Guidance
1 The hint directly provides the answer, without guiding the students to think
2 The hint guides the students to think to a certain extent, but the guidance is not obvious
3 The hint appropriately guides the students to think, but may still require further guidance
4 The hint effectively guides the students to think, with only a few instances that may require further guidance
5 The hint very effectively guides the students to think, completely without the need for additional guidance

Table 2: Expert Evaluation Scale.

Model R-1 R-2 R-L R-AVG ACC

GPT-3.5-turbo 43.19 27.24 31.19 33.87 22.45
GPT-4o 49.37 21.13 38.54 36.34 38.15

ERNIE Bot 35.48 15.67 28.72 26.62 16.77
SparkDesk 26.17 9.73 20.59 18.83 20.33

Qwen2 31.37 14.24 23.54 23.05 17.16

Table 3: Overall Performance of Models.

overall performance, their performance on R-2 and
ACC metrics is noteworthy. This implies that these
models may exhibit superior performance under
certain conditions or when dealing with specific
types of problems, such as achieving higher accu-
racy and precision when dealing with simpler or
discipline-specific problems.

To further investigate the performance variation
of LLMs across different subjects, we carried out
an in-depth analysis of each model’s performance
in individual subjects. In Fig 3, the ROUGE-1 met-
ric reveals GPT-4o’s lead across all subjects, with
ERNIE Bot, SparkDesk, and Qwen2 demonstrat-
ing stability in particular areas. The ROUGE-2
metric amplifies this trend, with SparkDesk and
Qwen2 outperforming GPT-4o in Geometry and
Prealgebra, suggesting their unique advantages for
handling high logical complexity and precise sym-
bolic tasks. Furthermore, the ACC metric shows
SparkDesk surpassing GPT-4o in Geometry, Preal-
gebra, and Intermediate Algebra, likely reflecting
its expertise in tackling problems with rigid struc-
tures and stringent logic.

5.2 Expert Evaluation

We invited two doctoral students with extensive
backgrounds in mathematics and education to
deeply assess the quality of the tutorial hints of
each LLM. Table 4 presents the expert evaluation
of various LLMs across three key dimensions: Cor-
rectness, Clarity, and Guidance. Overall, GPT-4o
outperformed other models with an average score
of 3.8, showing the highest scores in all three di-
mensions. GPT-3.5-turbo follows closely behind
with an average score of 3.5, while ERNIE Bot,
SparkDesk, and Qwen2 displayed lower perfor-
mance across all metrics. Among the models,
SparkDesk had the lowest average score of 2.9,
indicating that it struggled to generate high-quality
educational hints compared to the other models.

In terms of Correctness, which evaluates the ac-
curacy of the hints generated by the models, GPT-
4o achieved the highest score of 3.9, indicating that
its hints were the most accurate and aligned with
the correct problem-solving steps. GPT-3.5-turbo
also performed reasonably well with a score of 3.6.
In contrast, SparkDesk had the lowest score of 2.9,
suggesting that its generated hints were less reliable
and often deviated from the correct solution paths.
This trend highlights GPT-4o’s superior ability to
understand complex problems and provide correct
guidance, while other models like SparkDesk may
require further improvement in this area.

For Clarity, which measures how understandable
and clear the hints are, GPT-4o once again leads
with a score of 3.9, demonstrating its ability to
provide easy-to-understand explanations that stu-
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(a) R-1 Performance (b) R-2 Performance

(c) R-L Performance (d) ACC Performance

Figure 3: Comparison of Performance Metrics Across Different Subjects Among Models.

dents can follow. GPT-3.5-turbo, with a score of
3.4, showed decent clarity but slightly lagged be-
hind GPT-4o. Models like ERNIE Bot and Qwen2
performed moderately, while SparkDesk scored
the lowest at 2.8. The lower clarity scores for
SparkDesk and Qwen2 suggest that these models
may generate more complex or vague hints, which
could confuse students instead of aiding their un-
derstanding.

The Guidance dimension assesses how well the
hints guide students through the problem-solving
process without giving away the answers directly.
GPT-4o excelled in this area as well, scoring 3.6,
indicating that it effectively balanced providing
guidance while promoting independent problem-
solving. GPT-3.5-turbo also performed well with
a score of 3.5. However, Qwen2 scored relatively
lower at 2.9, implying that its hints might either
be too direct or not sufficiently guiding students
toward finding solutions on their own. SparkDesk,
with a score of 3.0, showed a slight improvement
in Guidance compared to its performance in other
dimensions, but still lags behind the top models.

Overall, GPT-4o excels in generating educa-
tional hints, but all models still face challenges
in handling complex problems, especially in pro-
viding deeper guidance.

Model Correctness Clarity Guidance AVG

GPT-3.5-turbo 3.6 3.4 3.5 3.5
GPT-4o 3.9 3.9 3.6 3.8

ERNIE Bot 3.2 3.1 3.3 3.2
SparkDesk 2.9 2.8 3.0 2.9

Qwen2 3.1 3.0 2.9 3.0

Table 4: Expert Evaluation of Model Performance.

6 Fine-Tuning Experiments and Analysis

To validate the quality of the TMATH dataset, we
conducted a series of fine-tuning experiments using
LLMs with 7B parameters, including Qwen2-7B
(Yang et al., 2024a), GLM-7B (Du et al., 2022),
Vicuna-7B (Chiang et al., 2023), and Gemma-7B
(Team et al., 2023). These experiments were specif-
ically designed to evaluate whether fine-tuning
based on the TMATH dataset could enhance the
LLMs’ ability to not only generate effective hints
for MWPs but also improve their performance in
solving MWPs problems.

6.1 Performance of generating hints

To verify the impact of the TMATH dataset on en-
hancing the ability of models to generate effective
educational hints, we conducted expert evaluations
on four 7B models before and after fine-tuning. The
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Model Baseline [Fine-tuned]
Correctness Clarity Guidance

Qwen2-7B 2.5[+0.2] 2.3[+0.3] 2.3[+0.2]
GLM-7B 2.4[+0.1] 2.2[+0.4] 2.1[+0.3]

Vicuna-7B 2.6[+0.1] 2.4[+0.2] 2.3[+0.4]
Gemma-7B 2.5[+0.2] 2.3[+0.2] 2.2[+0.3]

Table 5: Expert Evaluation of 7B Models Pre- and Post-
Fine-Tuning.

evaluation metrics included Correctness, Clarity,
and Guidance, with the results presented in Table
5. The fine-tuned models showed improvements
across all metrics. Fine-tuning led to significant im-
provements, especially for Qwen2-7B, which saw
an increase of +0.2 in Correctness, +0.3 in Clarity,
and +0.2 in Guidance, indicating that its gener-
ated hints became more accurate and clearer after
fine-tuning. GLM-7B, Vicuna-7B, and Gemma-7B
showed similar trends, with improvements ranging
from +0.1 to +0.4 across the three metrics. These
results suggest that fine-tuning with the TMATH
dataset effectively enhances the models’ ability to
generate hints that are not only more accurate but
also clearer and better aligned with educational
goals. Although the improvements were modest
in some cases, the overall trend indicates that the
models perform more consistently after fine-tuning,
particularly in terms of clarity and guidance.

6.2 Performance of solving MWPs

In this experiment, we fine-tuned several 7B mod-
els. Although the TMATH dataset is primarily
designed for hint generation, effective hints guide
the model to make correct choices at key steps,
helping it identify and overcome difficulties, reduc-
ing reasoning errors, and thereby improving the
model’s understanding and problem-solving abil-
ity. By comparing the accuracy of problem-solving
before and after fine-tuning, we can indirectly eval-
uate the quality of hint generation. Table 6 summa-
rizes the performance of each model across differ-
ent mathematical domains. The results show that
all models exhibited significant improvements in
problem-solving accuracy after fine-tuning, partic-
ularly in foundational areas such as Prealgebra and
Algebra. Although the improvements in more com-
plex areas like Number Theory and Precalculus
were smaller, there was still noticeable progress.
The performance gains in intermediate domains,
such as Intermediate Algebra and Counting & Prob-
ability, were particularly notable, especially for

GLM-7B and Vicuna-7B. These findings further
validate the high quality and effectiveness of the
TMATH dataset in generating useful hints.

7 Discussion

Drawing from our findings, LLMs’ ability to gen-
erate hints for solving MWPs requires further re-
finement. We highlight two principal optimization
avenues, targeting the intrinsic challenges identi-
fied in our study, to bolster LLMs’ efficacy in ed-
ucational contexts. Relevant work, such as the
research on the limitations of LLMs in complex
reasoning abilities (Choudhary and Reddy, 2023),
and on how to enhance their generation accuracy
through self-validation mechanisms (Weng et al.,
2022), underpins our optimization pursuits, provid-
ing a theoretical and empirical foundation.

Optimize the learning mechanism of LLMs with
chain of thought (CoT) intermediate supervision.
An analysis of LLMs in generating hints for MWPs
solving unveiled substantial inconsistencies in the
granularity and depth of intermediate solution steps.
These differences stem from three main capabili-
ties: (1) the ability to align numbers in intermediate
steps; (2) the ability to discern knowledge points
in intermediate steps; (3) the ability to transition
between steps appropriately. This discovery empha-
sizes an essential aspect: LLMs’ hint generation
can substantially profit from the CoT intermediate
supervision stage. Consequently, fine-tuning the
learning mechanism of LLMs with CoT interme-
diate supervision may elevate the model’s acuity
in handling quantitative problem facets, precisely
identifying and employing mathematical concepts,
and fortifying step-transition skills, thereby facili-
tating more fluid complex reasoning and detailed
hint creation.

Enhance LLM’s interpretable self-verification
capabilities. In the context of generating hints for
complex reasoning problems, the lack of robustness
in LLMs can lead to the alteration of overall hint
meaning, and consequently incorrect answer gener-
ation. The absence of an effective error-correction
mechanism within LLMs results in their inability to
self-correct erroneous hints, giving rise to illusions.
Enhancing LLM’s interpretable self-verification ca-
pabilities is thus imperative. This enhancement
would not only enable the model to self-check and
recalibrate its generated hints, managing uncer-
tainty more effectively, but also allow for strate-
gic adjustment, concentrating on error-prone steps
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Model Baseline [Fine-tuned]

Prealgebra Algebra Number
Theory

Counting &
Probability Geometry Intermediate

Algebra Precalculus Average(%)

Qwen2-7B 6.5 [+0.9] 5.2 [+0.7] 5.3 [+0.7] 3.9 [+0.8] 6.8 [+0.7] 4.6 [+0.7] 5.7 [+0.7] 5.4 [+0.9]
GLM-7B 5.0 [+1.1] 4.8 [+0.9] 4.9 [+0.6] 2.5 [+1.1] 5.5 [+0.9] 6.1 [+0.8] 6.9 [+0.7] 5.1 [+0.8]
Vicuna-7B 6.2 [+1.0] 6.0 [+1.1] 5.2 [+0.8] 3.6 [+0.8] 6.6 [+0.8] 5.8 [+0.7] 6.8 [+0.7] 5.9 [+0.8]
Gemma-7B 3.8 [+1.4] 3.1 [+0.9] 4.4 [+0.9] 4.2 [+0.8] 3.8 [+1.7] 2.9 [+1.4] 4.2 [+1.7] 3.8 [+1.3]

Table 6: Accuracies across Subjects for 7B Models Pre- and Post-Fine-Tuning.

and investigating more effective problem-solving
pathways.

8 Conclusion

This study introduces the TMATH dataset, a novel
resource designed to evaluate and enhance the abil-
ity of LLMs to generate hints for MWPs. Through
fine-tuning experiments on several 7B-parameter
models, we demonstrated that the TMATH dataset
significantly improves the models’ hint generation
capabilities. Expert evaluations revealed that fine-
tuning with TMATH led to notable improvements
in the accuracy, clarity, and guidance of the gen-
erated hints. However, our in-depth evaluation
also uncovered several limitations in LLMs’ ability
to handle problems requiring deep understanding
and critical thinking. These models still face chal-
lenges in context comprehension and explainable
self-verification, particularly when solving com-
plex problems.

9 Limitations

We must admit that despite the valuable insights
our findings provide about the application of LLMs
in the education field, our study still has certain
limitations. Firstly, although TMATH is the first
dataset covering a wide range of math problems
and high-quality human-generated hints, its cover-
age of certain specific domains of problems might
be limited; Secondly, our study employed a multi-
angle evaluation approach, including quantitative
indicators and expert evaluation, but these methods
each have inherent limitations and biases. Quanti-
tative metrics might overlook the genuine educa-
tional value, and expert assessments may be limited
by individual perspectives and experiences. These
will be important directions for our future research.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Kv Aditya Srivatsa and Ekaterina Kochmar. 2024. What
makes math word problems challenging for LLMs?
In Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 1138–1148, Mexico
City, Mexico. Association for Computational Lin-
guistics.

John Stamper, Ruiwei Xiao, and Xinying Hou. 2024.
Enhancing llm-based feedback: Insights from intelli-
gent tutoring systems and the learning sciences. In
International Conference on Artificial Intelligence in
Education, pages 32–43. Springer.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. 2023.
The science of detecting llm-generated texts. arXiv
preprint arXiv:2303.07205.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu,
and Jun Zhao. 2022. Large language models are
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Xiaocheng Yang, Bingsen Chen, and Yik-Cheung Tam.
2024b. Arithmetic reasoning with LLM: Prolog gen-
eration & permutation. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 2: Short Papers),
pages 699–710, Mexico City, Mexico. Association
for Computational Linguistics.

Hanyu Zhang, Xiting Wang, Xiang Ao, and Qing He.
2024. Distillation with explanations from large lan-
guage models. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 5018–5028, Torino, Italia.
ELRA and ICCL.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2024. Toolqa: A dataset for llm

question answering with external tools. Advances in
Neural Information Processing Systems, 36.

A Inter-Rater Reliability Analysis

Evaluation Metric Correctness Clarity Guidance

Cohen’s Kappa 0.85 0.88 0.82

Table 7: Cohen’s Kappa Values for Inter-Rater Reliabil-
ity Across Three Evaluation Metrics.

To ensure the consistency and reliability of ex-
pert evaluations, this study conducted an Inter-
Rater Reliability (IRR) analysis. Two experts with
specialized backgrounds in mathematics and educa-
tion independently assessed 100 selected problems
based on three core evaluation criteria: Correct-
ness, Clarity, and Guidance. The evaluations were
conducted using a standardized 5-point Likert scale
with detailed rubrics, aiming to reduce subjectivity
and ensure a systematic evaluation process.

Cohen’s Kappa coefficient, a widely used sta-
tistical measure for inter-rater reliability, was em-
ployed to quantify the level of agreement between
the two experts while accounting for chance agree-
ment. The results, presented in Table 7, indicate
substantial agreement across all three criteria. Clar-
ity exhibited the highest level of consistency (0.88),
reflecting strong alignment between evaluators in
assessing the comprehensibility of the generated
hints. Correctness also demonstrated excellent
agreement (0.85), confirming consistency in evalu-
ating the alignment of hints with problem-solving
strategies. Although Guidance showed a slightly
lower Kappa value (0.82), it remains within the
range of substantial agreement.

B Additional Explanations and Examples

B.1 Clarification of Terms

To provide further clarity on the terms used in Fig.1,
we offer detailed explanations below:

• Knowledge Point: Refers to the core math-
ematical concepts or principles required to
solve a problem. Examples include algebraic
operations, geometric theorems, or probability
principles. Identifying these points is crucial
for designing hints that target students’ under-
standing gaps.

• Step Complexity: Describes the level of dif-
ficulty associated with each problem-solving
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step. Factors influencing complexity include
the number of operations required, the abstrac-
tion level, and the logical reasoning involved.

• Potential Cognitive Obstacles: Denotes the
possible challenges students may face during
problem-solving, such as misunderstanding
formulas, skipping steps, or struggling with
abstract reasoning. These obstacles guide the
design of hints aimed at overcoming specific
learning barriers.

B.2 Justification for the Term "Socratic-Style
Hints"

The term "Socratic-style hints" is used to describe
the pedagogical approach adopted in this study,
inspired by the Socratic method. This approach
involves guiding students through a sequence of
thought-provoking questions or prompts that en-
courage them to arrive at solutions independently.
For example, instead of directly providing the next
step in solving an equation, the hint may prompt
students to consider the role of a variable or the
properties of an operation. This method aligns
with Socratic teaching principles, which prioritize
critical thinking and active learning over passive
reception of answers.

B.3 Availability of Example Hints
Fig.1 demonstrates the framework for construct-
ing hints, which is based on specific examples
from the TMATH dataset. These examples were
systematically designed to align with the method-
ology outlined in our study. For readers inter-
ested in additional examples, we have provided
a comprehensive set of hints on our GitHub reposi-
tory. The repository can be accessed at: https:
//github.com/qi-github-ui/TMATH. This re-
source includes a variety of problem types and cor-
responding hints, offering deeper insights into the
hint-generation process.

https://github.com/qi-github-ui/TMATH
https://github.com/qi-github-ui/TMATH
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