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Abstract

Despite the impressive performance of autore-
gressive Language Models (LM) it has been
shown that due to reporting bias, LMs lack vi-
sual knowledge, i.e. they do not know much
about the visual world and its properties. To
augment LMs with visual knowledge, existing
solutions often rely on explicit images, requir-
ing time-consuming retrieval or image gener-
ation systems. This paper shows that explicit
images are not necessary to visually augment
an LM. Instead, we use visually-grounded text
representations obtained from the well-known
CLIP multimodal system. For a fair compari-
son, we modify VALM, a visually-augmented
LM which uses image retrieval and representa-
tion, to work directly with visually-grounded
text representations. We name this new model
BLIND-VALM. We show that BLIND-VALM
performs on par with VALM for Visual Lan-
guage Understanding (VLU), Natural Lan-
guage Understanding (NLU) and Language
Modeling tasks, despite being significantly
more efficient and simpler. We also show that
scaling up our model within the compute bud-
get of VALM, either increasing the model or
pre-training corpus size, we outperform VALM
for all the evaluation tasks.

1 Introduction

Autoregressive Language Models, such as GPT-
4 (Achiam et al., 2023) and Llama (Dubey et al.,
2024), are the reference systems for Natural Lan-
guage Understanding and Generation. However,
due to reporting bias in textual corpora (Shwartz
and Choi, 2020), LMs lack visual knowledge,
which means that they do not know the visual prop-
erties of our world, struggling to predict the typical
colors, sizes and shapes of real objects, for instance
(Alper et al., 2023; Zhang et al., 2022; Liu et al.,
2022). Several researchers tried to overcome those
problems augmenting LMs with visual knowledge
(Tan and Bansal, 2020; Tang et al., 2021; Yang

et al., 2022; Lu et al., 2022), but focusing specially
on Masked Language Models (MLM). MLMs are
limited for text generation and are not as versatile
as autoregressive LMs. A recent example of vi-
sually augmenting autoregressive LMs is VALM
(Wang et al., 2022), which leverages image retrieval
and representation using a pretrained CLIP multi-
modal model (Radford et al., 2021) to improve next
token prediction. To effectively use visual infor-
mation, they add a Fusion Layer to a base LM,
allowing textual tokens to attend visual representa-
tions before next token prediction. They show that
VALM improves significantly the performance for
Visual Language Understanding (VLU), without
degrading the NLU and text generation capabilities
of the base LM.

But image retrieval and representation are very
resource intensive, significantly impacting training
and inference times. For a improved efficiency,
we propose to directly use visually-grounded
textual representations, obtained from the CLIP
model. Based on the VALM architecture, we in-
put visually-grounded textual representations to the
Fusion Layer, avoiding image retrieval and repre-
sentation. We name this new model BLIND-VALM.
As the result of our experiments we show that: i)
BLIND-VALM is orders of magnitude faster than
VALM for both training and inference; ii) BLIND-
VALM performs on par with VALM for VLU,
NLU and LM tasks; iii) maintaining within the
compute budget of VALM, but increasing the size
of the pretraining corpus or the base LLM, BLIND-
VALM improves the results of VALM for all the
evaluation tasks. All the code is publicly available1.

2 Related Work

There are several approaches in the literature to
augment Language Models with visual knowledge.
Most of them focus on Masked Language Mod-

1https://github.com/paulaonta/Blind-VaLM

https://github.com/paulaonta/Blind-VaLM
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Figure 1: Architecture comparison of the original VALM (left) and our proposed BLIND-VALM (right).

els (MLM) such as BERT (Devlin et al., 2018) or
RoBERTa (Liu et al., 2019), proposing different
approaches: Vokenization (Tan and Bansal, 2020),
VidLanKD (Tang et al., 2021), Z-LaVI (Yang et al.,
2022) and iACE (Lu et al., 2022) are good exam-
ples. Given the limitations of MLMs for text gener-
ation, Tang et al. (2023) explore encoder-decoder
architectures showing promising results for various
generation tasks. But to the best of our knowledge,
VALM (Wang et al., 2022) is the first work for aug-
menting decoder-only LMs with visual knowledge.
More concretely, they augment a decoder-only LM
with the so-called Visual Knowledge Fusion Layer,
where contextual text representations generated by
the LM are combined with the visual representa-
tions computed for retrieved images. VALM, simi-
larly to previous approaches, uses images for train-
ing and inference, adding a significant overhead
to the model. We use VALM as our base system,
since it provides a solid framework to validate our
hypothesis, i.e. LMs can be augmented without
time-consuming image retrieval and representation.
A similar idea is explored by concurrent work (Guo
et al., 2023), but they do not cover decoder-only
LMs.

3 BLIND-VALM architecture

The VALM architecture is composed of three main
modules (Figure 1 left): 1) a backbone autoregres-
sive LM (GPT2 (Radford et al., 2019)), 2) a text-
to-image retrieval module based on CLIP (Radford
et al., 2021), and 3) the Visual Knowledge Fusion
Layer (Fusion Layer for short), to fuse the contex-
tual text representations of the LM with the image
representations retrieved for the input text. The

intuition is that the retrieved visual representations
should help to better predict the next token. For fur-
ther details on the VALM architecture and Fusion
Layer, see Wang et al. (2022).

To show that image retrieval and representation
are not necessary to augment the backbone LM
with visual knowledge, we make one modifica-
tion to the VALM architecture: instead of using
the CLIP image encoder representations of the re-
trieved images, BLIND-VALM directly uses CLIP
text encoder representations of the text itself (see
Figure 1 right).

More formally, given an input text sequence
{xi}Ni=1, let H0 denote its corresponding embed-
ding sequence and let H l = LMl(H

l−1), l ∈
[1, L− 2] denote the contextual representations of
the backbone LM for the first L− 2 layers. Then,
let Hg = CLIPtext({xi}Ni=1) denote grounded rep-
resentations over the same input text sequence ob-
tained from CLIP. As in VALM, combine both
representations of the input using the Fusion Layer,
such that HL−1 = FusionLayer(HL−2, Hg),
and apply a final transformer layer to obtain the
final representation: HL = LML(H

L−1).

In other words, we remove the image re-
trieval aspect from VALM, where HL−1 =
FusionLayer(HL−2, {CLIPimg(Ii)}Ki=1), by re-
placing the retrieved image representations
CLIPimg(Ii) with a single textual CLIP represen-
tation, following the intuition that the latter already
encodes relevant visual information as the product
of the contrastive training process with images.
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Model Color (ACC ↑) Shape (ACC ↑) Size (ACC ↑) AVG
MemoryC ColorTerms VCT ShapeITC RelativeS TNWT

VALM 47.09 41.88 20.46 40.45 26.03 23.94 33.30
BLIND-VALM 47.20 46.37 22.60 40.07 25.43 25.18 34.48

Model Wikitext-103 Lambada SST-2 DBPedia AGNews MPQA
PPL ↓ PPL ↓ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

VALM 43.68 45.69 35.61 44.66 66.77 41.63 67.95
BLIND-VALM 43.46 45.78 39.06 44.71 73.65 44.97 71.65

Table 1: BLIND-VALM matches VALM on VLU, NLU and LM tasks when trained on the same setup, while being
significantly more efficient to train.

Model Color (ACC ↑) Shape (ACC ↑) Size (ACC ↑) AVG
MemoryC CTerms VCT ShapeITC RelativeS TNWT

VALM 47.09 41.88 20.46 40.45 26.03 23.94 33.30
BLIND-VALM 47.20 46.37 22.60 40.07 25.43 25.18 34.47
BLIND-VALM+ 45.97 48.71 20.51 43.64 25.33 25.40 34.93
BLIND-VALM-M 47.60 48.93 24.09 43.33 24.36 24.93 35.54

Model Wikitext-103 Lambada SST-2 DBPedia AGNews MPQA
PPL ↓ PPL ↓ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

VALM 43.68 45.69 35.61 44.66 66.77 41.63 67.95
BLIND-VALM 43.46 45.78 39.06 44.71 73.65 44.97 71.65
BLIND-VALM+ 40.95 43.83 39.05 44.66 74.42 50.44 78.10
BLIND-VALM-M 33.95 37.63 45.08 59.00 70.57 48.28 55.65

Table 2: When trained within the same compute budget by increasing either model size (BLIND-VALM-MEDIUM,
referred to as BLIND-VALM-M in the table) or pre-training compute (BLIND-VALM+), our approach outperforms
VALM on both VLU and NLU tasks.

4 Experimental setup

We want to show that actual retrieval and represen-
tation of images is not necessary to augment a LM
with visual knowledge, and that directly using tex-
tual representations from a visually grounded text
encoder instead is sufficient. To that end, we ini-
tially pre-train BLIND-VALM and VALM models
in a comparable setting, which we now describe.

Text Corpus. Following the original VALM
(Wang et al., 2022), we use the English corpus of
CC-100 (Conneau et al., 2020) as the pre-training
text corpus for all models. Due to limited access
to compute, we only consume 10.5B tokens for
pre-training, which accounts for around 19% of the
English portion of the corpus.

Image data and retrieval module. VALM re-
quires an image database and a vector retrieval
module. We use a FAISS (Johnson et al., 2019) in-
dex, trained on the exact same setup as the original

VALM, based on the GPT2-SMALL architecture,
as detailed in Appendix A.

Pre-training hyperparameters. We train both
models on the exact same setup, following a config-
uration similar to the original VALM. Details can
be found in Appendix A.

Due to the increased efficiency of our architec-
ture, our model employs significantly less compute
than the original: BLIND-VALM was trained on
530 GPU-hours, while the VALM baseline required
1.2K GPU-hours, making our approach 2.2x faster
to train. We train all our models on a cluster of 8
A100 GPUs.

Evaluation. We evaluate our models on VLU,
NLU and LM tasks (see Appendix B for details).

For VLU, we focus on three basic visual proper-
ties of objects: color, shape and size. We evaluate
color knowlege on the following datasets: Memory
Color (Norlund et al., 2021), Color Terms (Bruni
et al., 2012) and ViComTe (color subset) (Zhang
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et al., 2022). We evaluate knowledge about shape
on the ShapeITC (Alper et al., 2023) dataset, and
knowledge of size on the RelativeSize (Bagher-
inezhad et al., 2016) and Things Not Written in
Text (Liu et al., 2022) datasets.

We evaluate NLU capabilities on four down-
stream tasks: two sentiment analysis tasks on the
SST-2 and MPQA datasets (Socher et al., 2013;
Wiebe et al., 2005), and two topic classification
tasks on the AGNews and DBPedia datasets (Auer
et al., 2007; Zhang et al., 2015). Additionally, we
evaluate pure language modeling ability by measur-
ing perplexity on the Wikitext-103 and Lambada
datasets (Merity et al., 2016; Paperno et al., 2016).
For Lambada, we also report accuracy at predict-
ing the last word of each sentence, following the
original VALM work.

Scaling BLIND-VALM. It is important to note
that, since BLIND-VALM does not require an ac-
tual image retrieval step, it is significantly more ef-
ficient at both training and inference time.2 Taking
advantage of this increased efficiency, we explore
two ways of scaling up BLIND-VALM, within the
compute budget of our VALM baseline.

(i) Scaling model size. We train BLIND-VALM-
MEDIUM, by switching the LM backbone architec-
ture to GPT2-MEDIUM instead of GPT2-SMALL.
See Appendix A for details. This larger model was
trained on 595 GPU-hours, still within the compute
budget of the VALM baseline.

(ii) Scaling pre-training compute. We train
BLIND-VALM+, by simply continuing pre-
training the baseline BLIND-VALM for longer, un-
til we reach a total of 88255 steps, which corre-
sponds to 23.1B tokens (42% of CC-100). Again,
thanks to the increased efficiency of our approach,
this model is compute-matched3 to the original
VALM baseline, taking a total of 1.17K GPU-hours
to train.

5 Results

We next describe our main results.
2The efficiency gains are two-fold: 1) since we only use

a single CLIP text representation in the Fusion Layer, this
layer requires less floating-point operations (FLOPs), and 2)
since we do away with the dense vector database retrieval,
training and inference latency is significantly reduced, leading
to improved wall-clock efficiency.

3Note that we use compute-matched in the wall-clock time
sense here, not the FLOPs sense, since the time consum-
ing dense vector retrieval step we remove is not reflected
by FLOPs.

BLIND-VALM matches VALM on VLU, NLU
and LM tasks. Table 1 shows results for BLIND-
VALM and VALM trained on the same setup, as
described in §4. We observe that our approach
matches the original VALM on VLU tasks, as well
as NLU and LM tasks: it achieves an average score
1.18 points higher in VLU tasks, and outperforms
VALM on 6/7 NLU & LM tasks. This supports our
hypothesis that actually retrieving and encoding
images is not required for visual augmentation,
since simply utilizing textual representations from
an already visually grounded text encoder works
equally well. Additionally, as described in section
§4 BLIND-VALM is 2.2x faster to train, since
it skips the time consuming vector retrieval step.
Speedups are even more significant at inference
time, since generation is not as compute-bound and
retrieval latency plays a bigger role.

BLIND-VALM outperforms VALM, when
trained within the same compute budget. Ta-
ble 2 shows results for two scaled-up BLIND-
VALM variants, obtained through scaling either
pre-training compute or model size, as described
in §4. We observe that both variants outperform
VALM, while being trained within the same com-
pute budget as it. For example, in the case of
BLIND-VALM-MEDIUM, we outperform VALM
by 2.2 points on average for VLU tasks, and out-
perform VALM on 6/7 NLU & LM tasks.

6 Conclusions

In this work we test the hypothesis that explicit
image retrieval is not necessary to augment an LM
with visual information. To that end, we train a
modified variant of VALM (Wang et al., 2022),
which we call BLIND-VALM, by replacing the re-
trieved image encoding vectors with textual embed-
dings obtained from the visually grounded CLIP
encoder (Radford et al., 2021).

Our results show that BLIND-VALM matches
VALM when trained on the same data, while being
significantly more efficient to train. Additionally,
scaling up our model within the compute budget of
VALM, our approach outperforms VALM. Overall,
these results show that simply leveraging the tex-
tual encoding from an already visually grounded
CLIP encoder is enough to obtain the same gains on
visual tasks as VALM, supporting our hypothesis
that actual image retrieval is not essential.

These results open up new avenues in the line
of work of visually augmenting language models,
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beyond the paradigm of image retrieval. Our find-
ings allow for more efficient visual augmentations,
which will result on broader exploration capacity
for future works.

7 Limitations

Our work is focused on English only, due to the
size and accessibility of the resources, i.e. text
corpora, image-text datasets, different pre-trained
models and evaluation benchmarks. However, it
would be very interesting to extend the work to
other languages.

The VLU evaluation is limited to visual object
properties, such as color, shape and size. But, vi-
sual language is broader and extending evaluation
benchmarks would allow to better understand how
VLU evolves in pure and visually-augmented LMs.

Finally, we use the original CLIP model (Rad-
ford et al., 2021) to visually-augment LMs, as done
in VALM. Nowadays there are more powerful mul-
timodal models and it would be very interesting
to explore how those better models impact in the
knowledge acquisition of visually-augmented LMs.
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A Training hyper-parameters

We train all models using an inverse-square-
root learning rate schedule, the ADAM optimizer
(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.98,
a peak LR of 2e − 3, a weight-decay of 0.01,
dropout of 0.1, 4000 warmup steps, a global batch
size of 512, and a sequence length of 512 tokens.
We train both models for 40600 steps.

Since both BLIND-VALM and the original
VALM share the limitation of needing tokenization
to be compatible with the CLIP used for retrieval,
use use the same BPE tokenizer as CLIP and the
original GPT2.

VALM, BLIND-VALM and BLIND-VALM+
use the GPT2-SMALL architecture, comprising
124M parameters, for the LM backbone, and the
CLIP-RN50X16 model for the visually grounded
text-image encoder, with a total of 85M parameters
on the text encoder.

For BLIND-VALM-MEDIUM, we switch the LM
backbone architecture to GPT2-MEDIUM, with a
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total of 345M parameters. We switch the CLIP en-
coder to the CLIP-RN50X64 version with 151M
parameters, which employs the hidden-size cor-
responding to GPT2-MEDIUM, required by the
Fusion Layer.

B Evaluation details

To evaluate VLU and NLU capabilities we follow
the prompting approach designed by VALM (Wang
et al., 2022), with some slight modifications. Tables
3, 4 and 5 show the prompts we use for color, shape
and size evaluation. Similarly, Table 6 defines the
prompts for all the NLU tasks we consider. The
reported results in the paper are always the average
of the results obtained for all the prompts for a
given task, with the objective of avoiding any bias
towards different prompting choices.
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Task Dataset Prompt Labels

Object Color
Reasoning

Memory Colors
and Color Terms

Q: What is the color of [DESCRIPTOR] [ITEM]? A: It is [Label]

{red, white, orange,
green, blue, yellow,
purple, black, pink,
grey, brown}

Q: What is the colour of [DESCRIPTOR] [ITEM] ? A: It is [Label]
What is the color of [DESCRIPTOR] [ITEM]? It is [Label]
What is the colour of [DESCRIPTOR] [ITEM]? [Label]
The color of [DESCRIPTOR] [ITEM] is [Label]
The usual color of [DESCRIPTOR] [ITEM] is [Label]
[DESCRIPTOR] [ITEM] usually has the color of [Label]
What is the usual color of [DESCRIPTOR] [ITEM]? [Label]
What is the typical color of [DESCRIPTOR] [ITEM]? [Label]

ViComTe

[ITEM] can be of color

{red, white, orange,
green, blue, yellow,
purple, black, pink,
grey, brown, silver}

[ITEM] has color
The color of [ITEM] can be
The color of the [ITEM] is
[ITEM] is
This [ITEM] is
[ITEM] is of color

Table 3: The prompts and prediction labels used in object color reasoning.

Task Prompt Labels

Object Shape
Reasoning

[ITEM] can be shape of

{circle, rectangle,
triangle}

[ITEM] has shape of
[ITEM] is of shape
The shape of [ITEM] can be
The shape of the [ITEM] is
[ITEM] is
This [ITEM] is
[ITEM] can be shape
[ITEM] has shape

Table 4: The prompts and prediction labels used in object shape reasoning.

Task Prompt Labels

Object Size
Reasoning

Object prediction

Which is bigger? [ITEMA] or [ITEMB]

{ITEMA,
ITEMB}

Which is smaller? [ITEMA] or [ITEMB]
Which is larger? [ITEMA] or [ITEMB]
Which is tinier? [ITEMA] or [ITEMB]
Which has a bigger size? [ITEMA] or [ITEMB]
Which has a bigger size? [ITEMA] or [ITEMB]
Which has a smaller size? [ITEMA] or [ITEMB]
Which one is larger in size? [ITEMA] or [ITEMB]
Which one is smaller in size? [ITEMA] or [ITEMB]

Size prediction

[ITEMA] is larger or smaller than [ITEMB]?

{larger,
smaller}

[ITEMB] is larger or smaller than [ITEMA]?
The size of [ITEMA] is larger or smaller than [ITEMB]?
The size of [ITEMB] is larger or smaller than [ITEMA]?
[ITEMA] has a larger or smaller size than [ITEMB]?
[ITEMB] has a larger or a smaller size than [ITEMA]?

Table 5: The prompts and prediction labels used in object size reasoning.

Task Dataset Prompt Labels

Natural Language
Understanding

SST-2 Review: [Sentence] Sentiment: [Label] {Positive, Negative}
MPQA Review: [Sentence] Sentiment: [Label] {Positive, Negative}
AGNews input: [Sentence] type: [Label] {world,. . . , technology}
DBPedia input: [Sentence] type: [Label] {company, school,. . . , book}

Table 6: The prompts and prediction labels used in 4 natural language understanding datasets. The labels for
AGNews are {world, sports, business, technology} and the labels for DBPedia are {company, school, artist, athlete,
politics, transportation, building, nature, village, animal, plant, album, film, book}.
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