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Abstract

Recently, deep graph neural networks (GNNs)
have emerged as the predominant architecture
for recommender systems based on collabora-
tive filtering. Nevertheless, numerous GNN-
based approaches confront challenges such as
complex computations and skewed feature dis-
tributions, especially with high-dimensional,
sparse, and noisy data, making it difficult to
accurately capture user preferences. To tackle
these issues, we introduce SVD-GCL, a stream-
lined graph contrastive learning recommenda-
tion model based on noise augmentation that in-
tegrates truncated singular value decomposition
in the feature engineering stage. This hybrid
optimization approach reduces the dimension-
ality and denoises the original data. Through
extracting self-supervised signals and gradu-
ally adding noise to embeddings in the training
phase to enrich data samples, the data spar-
sity is effectively alleviated. Experimental out-
comes on three large public benchmark datasets
illustrate that SVD-GCL effectively manages
high-dimensional sparse data, remains stable
in the presence of noise, and provides signif-
icant advantages in computational efficiency,
recommendation performance, and robustness.

1 Introduction

Learning high-quality user and item representa-
tions from user-item interaction data constitutes
the theme of collaborative filtering. In recent years,
graph neural networks have been validated (Wang
et al., 2019; He et al., 2020; Peng et al., 2022; Gao
et al., 2022a) as being crucial in enhancing the per-
formance of collaborative filtering recommender
systems, given their capacity to capture complex re-
lationships among nodes and generate high-quality
embeddings for each node. They have substituted
deep neural networks (Chen et al., 2020; Wang
et al., 2018, 2020) as the mainstream architecture
in recommender systems (Gao et al., 2022b; Wu
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Figure 1: A contrastive learning architecture based on
graph augmentation.

et al., 2020). Simultaneously, contrastive learn-
ing (CL) has shown great promise across various
domains (Gao et al., 2021; You et al., 2020), par-
ticularly in GNN-based recommender systems. CL
effectively mitigates data sparsity by maximizing
similarity between different views of the same
node while minimizing similarity between differ-
ent nodes (Wu et al., 2021; Xia et al., 2021; Yu
et al., 2023; Lin et al., 2022). The traditional CL
enhances the user item bipartite graph by losing a
certain proportion of random edges / nodes, and
then learns to maximize representation consistency
under different views through a graph encoder. In
this paradigm, the CL task is utilized as an auxil-
iary for the optimization of the recommendation
task (Figure 1). Some studies have shown that even
extremely sparse graph enhancements in CL can
bring the required performance improvement (Lee
et al., 2021; Zhou et al., 2023; Yu et al., 2021a),
which is unexpected and counterintuitive. In graph
structures, edges carry important relationship infor-
mation between nodes, and random loss of edges
may damage the overall structure of the graph, mak-
ing it difficult for the model to capture the true
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relationships between nodes. Especially in sparse
graphs, random loss of edges can lead to infor-
mation loss, making the graph more sparse and
incomplete. And node loss directly damages the
local structure of nodes, which may result in the
model being unable to learn the features of certain
nodes and the relationships between their neigh-
bors. Recent studies (Yu et al., 2022) suggest that
graph augmentation plays a less significant role
compared to the CL loss function and feature dis-
tribution uniformity in boosting recommendation
performance. SimGCL, a novel approach intro-
duced by (Yu et al., 2022), only employs random
uniform noise rather than dropout-based augmen-
tation, achieving better results. Nevertheless, the
full potential of CL has yet to be tapped, neces-
sitating exploration of additional techniques that
could refine CL’s effectiveness in recommendation
tasks. To overcome these challenges, we propose a
novel recommendation model that integrates trun-
cated singular value decomposition (TSVD) with
graph contrastive learning (GCL) and utilizes vari-
ant noise based on the diffusion probability model
(DDPM) for data augmentation (Ho et al., 2020).
Our contributions are as follows:

• Introduced TSVD for feature engineering, op-
timizing embedding representation through
dimensionality reduction initialization.

• Enhanced data augmentation using a variant
noise model based on DDPM. Gradual noise
addition in forward diffusion generates richer
and more diverse samples, alleviating sparsity
issues.

• Designed a simplified model architecture to re-
duce the complexity of processing large-scale
data, resulting in improved computational ef-
ficiency and faster convergence.

• Extensive experiments on multiple publicly
available datasets show that our approach out-
performs state-of-the-art graph recommenda-
tion models in performance.

2 Related Work

2.1 Graph Neural Networks in Recommender
Systems

In recent years, graph neural networks (GNNs)
have significantly advanced recommender systems
through effective cross-layer information dissemi-
nation and aggregation for message passing. GNNs

construct user-item bipartite graphs to generate
latent representations via cross-layer information
propagation, as seen in NGCF (Wang et al., 2019),
LightGCN (He et al., 2020), and SHT (Xia et al.,
2022a). To enhance collaborative relationship
learning under social influence, some studies have
developed social relationship encoders based on
GNNs. For instance, GraphRec (Fan et al., 2019),
KCGN (Fan et al., 2019), and MHCN (Yu et al.,
2021b) employ GNNs to capture social influences
among users. Multimedia recommender systems,
such as GRCN (Wei et al., 2020) and DualGNN
(Wang et al., 2023a), also leverage GNNs to in-
tegrate multimodal information into recommenda-
tions. Furthermore, GNNs have proven effective
in encoding temporal patterns of item sequences
for time-aware recommendations, as demonstrated
by studies like SURGE (Chang et al., 2021) and
MAGNN (Fu et al., 2020).

2.2 Contrastive Learning
Contrastive learning, a self-supervised learning
paradigm, has gained significant attention for en-
riching user representation learning through self-
supervised signals. In recommender systems, con-
trastive learning becomes a powerful tool by com-
bining self-supervised signals for data augmenta-
tion with alignment between contrastive represen-
tation views. Numerous studies have proposed
various embedding contrastive graph augmenta-
tion schemes to address data sparsity. For exam-
ple, SGL (Wu et al., 2021), HCCF (Xia et al.,
2022b), and NCL (Lin et al., 2022) use random
node or edge dropout operations to generate views
for graph contrastive learning. HCCF introduces
local-global contrastive learning for self-supervised
augmentation based on a parameterized hyper-
graph structure. InfoNCE-based (van den Oord
et al., 2019) contrasts in these models enhance
the uniformity of embeddings. Additionally, con-
trastive learning is employed to strengthen knowl-
edge graph representation in recommender systems,
as seen in KGCL (Yang et al., 2022) and KGIC
(Zou et al., 2022).

2.3 Denoising Diffusion Probabilistic Models
Denoising diffusion probabilistic models (DDPMs)
(Ho et al., 2020) are generative models based
on probabilistic likelihood, originating from non-
equilibrium thermodynamics. DDPMs employ two
Markov chains to perturb data with increasing ran-
dom noise and then denoise it to generate new data
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samples. This process generates high-quality data
samples, enhancing user behavior data by improv-
ing diversity and scale, addressing data sparsity,
and enhancing the generalization ability of rec-
ommendation models. For instance, CODIGEM
(Walker et al., 2022) and DiffRec (Wang et al.,
2023b) utilize diffusion processes to model sequen-
tial user behavior and generate predictions through
denoising. BSPM (Choi et al., 2023) proposes
a fuzzy sharpening process model to perturb and
restore information, generating user data for recom-
mendations. Overall, DDPMs present a promising
approach for enriching and optimizing data to en-
hance recommendation quality.

3 Proposed Method

3.1 Embedding based on truncated singular
value decomposition

Singular value decomposition (SVD) is a funda-
mental matrix decomposition technique widely
used in recommender systems (Koren et al., 2009;
Hu et al., 2008). It factorizes the complex co-
occurrence matrix into matrices representing user
and item embeddings multiplied by singular val-
ues, thus capturing latent factors that represent user
preferences and item characteristics.

However, TSVD can be more effective in graph
contrastive learning. By using only the top K
largest singular values for efficient dimensionality
reduction, TSVD filters out data noise correspond-
ing to smaller singular values. This process aligns
with the goals of contrastive learning, as it enhances
the quality of the embeddings by retaining the most
significant features and removing noise.

R = Udiag (Sk)V
T ≈

K∑
k=1

SkUkV
T
k (1)

eu = Uk

√
Σk (2)

ei = V T
k

√
Σk (3)

R is the original user-item interaction matrix, U
and V ( Uk and V T

k ) and Sk are the left and right
singular vectors and singular values, respectively;
{s1, s2, · · · sk} are the singular values in descend-
ing order: s1 ≥ s2 ≥ · · · ≥ sk; diag() is the
diagonalization operation. eu and ei are the em-
beddings of users and items, respectively. Σk is
the diagonal matrix containing the top k singular
values, used to correct the original Uk and V T

k .

W = eieu (4)

A =

[
0 W

W T 0

]
(5)

W is a user-item interaction matrix generated us-
ing embedded outer products, and A is a user-item
bipartite graph constructed using W .

Traditional recommendation models often use
the decomposed vectors directly multiplied to pre-
dict user preferences, which means that the entire
recommender system only uses a single method for
recommendation tasks, with low accuracy and gen-
eralization ability. We focus on feature engineering
instead, using truncated singular value decomposi-
tion in the embedding layer to generate the initial
user-item interaction matrix, setting the truncated k
as embedding size, and correcting Uk and V T

k with
square root singular values. The revised Uk and
V T
k will respectively serve as the initial embedding

representations for users and items.

Figure 2: Data augmentation based on variant noise.

3.2 Data Augmentation based on Gaussian
Noise

When reviewing recent graph contrastive learning
recommendation models, most of them adopt Light-
GCN (He et al., 2020) as the backbone to con-
struct a graph neural network. Different node views
(Wu et al., 2021) are established by applying node
dropout, edge dropout, and random walk strategies
to the adjacency matrix representing the user-item
bipartite graph. The operators can be uniformly
represented as follows:

Z
(l)
1 = H

(
Z

(l−1)
1 , s1 (G)

)
Z

(l)
2 = H

(
Z

(l−1)
2 , s2 (G)

)
s1, s2 ∼ S

(6)

Z
(l)
1 and Z

(l)
2 are the node features at layer l.

Z1 and Z2 represent nodes of different types or
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Figure 3: The architecture of SVD-GCL.

nodes in different subgraphs, respectively. H is
an aggregation function, usually a neural network
layer such as a multi-layer perceptron (MLP) or
a convolutional layer, used to aggregate the in-
formation of neighboring nodes and the nodes
themselves.Z(l−1)

1 and Z
(l−1)
2 are the node fea-

tures at layer l − 1. The features at the current
layer are updated based on the features from the
previous layer. s1(G) and s2(G) are the sets of
neighbors of the nodes sampled from the graph
G, and s1 ∼ S and s2 ∼ S indicate that s1 and
s2 are sampled from a distribution S.These meth-
ods, while effective, introduce significant system
complexity and computational costs, and can some-
times disrupt the intrinsic structure of the graph,
leading to the loss of vital information.

To overcome these limitations, we introduce a
novel data augmentation strategy for our method.
we integrates the forward diffusion concept from
DDPM (Ho et al., 2020), unlike the original DDPM,
which involves a multi-step denoising process, we
apply a single-step Gaussian noise perturbation
to the embeddings. This streamlined application
retains the core idea of diffusion—introducing con-
trolled noise to make the representations more re-
silient—while avoiding the complexity and compu-
tational overhead of multi-step diffusion processes.

ni =
√
1− β · ei +

√
β ·Zi (7)

ni is noise used for data augmentation, ei is related

to zi Uniform random noise with the same shape,
Zi It is the original embedding representation, and
β is the hyperparameter that controls the ratio of
the original embedding to random noise.This vari-
ant of noise is relatively simple and uniform, in-
troducing subtle disturbances while additionally
enhancing the Zi The inherent characterization
makes Zi Further align with its own characteristic
distribution.

Z′ = Z + sign (Z) · n

∥ n ∥
· ϵ (8)

sign(Z) denotes the sign of each element in Z,
and n

∥n∥ represents the normalization of noise. ϵ is
a hyperparameter that controls the intensity of the
perturbation.We aim to strictly control the noise
intensity to avoid significant vector deviations that
could damage information.This ensures that the an-
gle deviation of the enhanced z in space remains
within θ, preserving most of the original features
while introducing some variation to enrich its rep-
resentation, bringing more uniformity to the aug-
mentation. In order to obtain perturbation represen-
tations, this noisy representation learning can be
represented as:

Z ′ =
1

L

L∑
l=1

(
A

l
Z(0) +A

l−1
n(1)+

. . .+An(l−1) + n(l)
)

(9)

Z ′ represents the noise-enhanced embeddings,
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Z(0) is the initial node embeddings, A is the nor-
malized adjacency matrix, and n(l) denotes the
random noise at the l-th layer.The enhanced em-
beddings are eventually substituted into the overall
loss function (Equation (6)) for computation, and
the Adam optimizer is used for optimization.

3.3 A Simplified Graph Contrastive Learning
Model

Recent GCL models like SGL (Wu et al., 2021)
and SimGCL (Yu et al., 2022) generate multiple
independent views of the same node for contrastive
tasks, which share a high degree of mutual informa-
tion, leading to suboptimal results. Moreover, these
models require additional forward and backward
passes during training, making them computation-
ally expensive compared to traditional recommen-
dation models (Yu et al., 2023).

The architectural design of SVD-GCL addresses
these issues. Instead of generating multiple similar
views solely for contrastive tasks, SVD-GCL con-
ducts cross-layer contrastive learning directly after
data augmentation. Enhanced embeddings from
specific layers and final embeddings are used for
contrastive loss calculation and backpropagation,
integrating the recommendation and contrastive
learning tasks, as shown in Figure 3. The final
user and item embeddings are used for recommen-
dations via inner product. The loss function of
SVD-GCL is defined as follows:

L = Lrec + λLcl (10)

Lrec = −
∑

(u,i)∈B

log
(
σ
(
z′⊤
u z′

i − z′⊤
u z′

j

))
(11)

Lrec uses BPR loss (Rendle et al., 2012), whose
core idea is to maximize the difference in user
ratings between known liked items (positive ex-
amples) and unknown or disliked items (negative
examples). By optimizing this loss function, the
model can learn a ranking that is more in line with
user preferences.

Lcl =
∑
i∈B

− log

exp

(
c′⊤i cl

∗
i

τ

)
∑

j∈B exp

(
c′⊤i cl

∗
j

τ

) (12)

Lcl is a contrastive loss InfoNCE (van den Oord
et al., 2019), which continuously learns and up-
dates the embedding representation of samples to

make the distance between similar samples (posi-
tive sample pairs) in the embedding space as close
as possible, while making the distance between
different samples (negative sample pairs) as far as
possible, ultimately obtaining a high-quality em-
bedding representation and enabling the model to
more accurately calculate the similarity between
users and items. It plays a key role in handling
sparse data and cold start with a small amount of
effective information.

L = −
∑

(u,i)∈B

log
(
σ
(
z′⊤u z′i − z′⊤u z′j

))

+ λ
∑
i∈B

− log

exp

(
c′⊤i cl

∗
i

τ

)
∑

j∈B exp

(
c′⊤i cl

∗
j

τ

) (13)

The loss is determined by Lrec and Lcl compo-
sition, (u, i) ∈ O+, (u, j) ∈ O−, O+ and O−

are positive and negative sample sets respectively.
z′
u and z′

i are the embedding of user u and item i,
σ(·) is the sigmoid function, and c′i and cl

∗
j are the

enhanced versions of the item i and item j embed-
ding. l∗ represents the specified number of layers
to compare with the final layer, τ is a temperature
hyperparameter used to adjust the smoothness of
the distribution, and λ is used to control the inten-
sity of the CL task.

Dataset Users Items Interactions Density
Yelp2018 31, 668 38, 048 1, 561, 406 0.13%

Douban-Book 13, 024 22, 347 792, 062 0.27%
Amazon-Kindle 138, 333 98, 572 1, 909, 965 0.014%

Table 1: Statistics of the datasets.

4 Experiments

4.1 Datasets
We carried out comprehensive experiments on
three widely utilized large-scale public datasets:
Yelp2018 (He et al., 2020), Douban-Book (Yu et al.,
2021a) and Amazon-Kindle (He and McAuley,
2016) to assess the effectiveness of our proposed
model. The partitioning of these datasets is pre-
sented in Table 1.

4.2 Baselines
In our experiment, we employed three types of
models for performance comparison: traditional
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Datasets Yelp2018 Douban-Book Amazon-Kindle

Method Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF 0.0510 0.0416 0.1241 0.1031 0.1509 0.0930
LightGCN 0.0639 0.0528 0.1527 0.1304 0.2062 0.1311
SGL-ED 0.0675 0.0555 0.1732 0.1551 0.2105 0.1341
SimGCL 0.0721 0.0601 0.1772 0.1583 0.2114 0.1363

XSimGCL 0.0724 0.0608 0.1918 0.1694 0.2153 0.1418
SVD-GCL 0.0746 0.0614 0.1926 0.1776 0.2363 0.1570

Table 2: Model performance comparison on public datasets.

Figure 4: Model performance comparison with different number of layers.

collaborative filtering (MF), a graph-based collabo-
rative filtering model (LightGCN), and graph-based
collaborative filtering models enhanced with con-
trastive learning (SGL-ED, SimGCL, XSimGCL).

MF (Koren et al., 2009) : A classic matrix fac-
torization model that predicts user preferences by
decomposing the user-item co-occurrence matrix
into user and item vectors.

LightGCN (He et al., 2020) : A state-of-the-
art graph collaborative filtering (GCF) model that
simplifies graph convolution by removing weight
matrices and activation functions, updating node
representations through neighbor aggregation.

SGL-ED (Wu et al., 2021) : A self-supervised
learning model with LightGCN as the backbone. It
uses random edge dropout for graph augmentation
in contrastive learning.

SimGCL (Yu et al., 2022) : A simplified graph
contrastive learning model that omits graph aug-

mentation. It injects uniform random noise into la-
tent embeddings for data augmentation, improving
embedding uniformity and training performance.

XSimGCL (Yu et al., 2023) : A SOTA GCL
model based on SimGCL. It employs noise for data
augmentation and cross-layer contrastive learning,
further enhancing training efficiency and recom-
mendation accuracy.

4.3 Main results
As demonstrated in Table 2, in contrast to GNN-
based models, traditional models like MF have
difficulties in capturing complex user-item rela-
tionships, thereby leading to lower performance.
GCF approaches, such as LightGCN, enhance per-
formance by capturing high-order relationships
in user-item bipartite graphs, yet they are com-
putationally costly. SGL-ED boosts performance
through contrastive learning, but it involves a com-
plex training process and the risk of information
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Datasets Yelp2018 Douban-Book

Methods Recall@20 NDCG@20 Recall@20 NDCG@20

SVD-GCL 0.0745 0.0614 0.1925 0.1776
-SN 0.0743 (-0.3%) 0.0613 (-0.1%) 0.1893 (-1.7%) 0.1683 (-5.2%)
-ON 0.0732 (-1.4%) 0.0601 (-2.1%) 0.1879 (-2.4%) 0.1679 (-5.4%)
-GN 0.0741 (-0.6%) 0.0612 (-0.2%) 0.1925 (-0.5%) 0.1716 (-3.3%)

Table 3: The results of ablation study.

loss. SimGCL and XSimGCL simplify these pro-
cesses and enhance efficiency and accuracy; how-
ever, they need to generate multiple views and the
enhancement method is overly simplistic.

Table 2 and Figure 4 depict the performance
comparison of different models. The proposed
SVD-GCL consistently outperforms all baseline
methods in Recall@20 and NDCG@20 across all
datasets. By integrating (TSVD) with various
noises and implementing cross-layer contrastive
learning, SVD-GCL effectively resolves the is-
sues of data sparsity and noise and generates high-
quality embeddings. The outstanding performance
on the Douban-book dataset is particularly conspic-
uous.

Furthermore, Figure 4 indicates that SVD-GCL
consistently maintains optimal performance over
different numbers of contrast layers, suggesting its
remarkable stability and effectiveness.

4.4 Ablation Study
We conducted ablation experiments on several
SVD-GCL variants to quantitatively assess the ef-
fect and influence of each component, and the corre-
sponding degradation results are presented in Table
3. In SN, random noise is utilized to substitute the
variant noise, and in ON and GN, random uniform
noise is employed respectively, with the variant
noise being used for data augmentation based on
TSVD removal. The results indicate that each com-
ponent improves the performance of the model to
a certain extent, and particularly verifies the fea-
sibility of the study. It is worth noting that the
performance deteriorates most significantly upon
eliminating TSVD, suggesting that the dimension-
ality reduction and denoising ability of TSVD can
be fully integrated with contrastive learning to en-
hance the performance.

Figure 5: Computational performance comparison of
the models.

4.5 Comparison of computational efficiency
We compared the total training time for various
models on devices with an Intel (R) Core (TM) i7-
12700H and GeForce RTX3060 GPU, using Python
implementations with optimal parameters.

According to Figure 6, despite LightGCN’s
lightweight architecture, it requires hundreds of
epochs to converge, resulting in the longest training
time. SGL-ED, with added self-supervised learn-
ing, ranks second.SimGCL, with its three encoders
and graph-free augmentation, outperforms the first
two. XSimGCL, with its cross-layer contrastive
structure, converges the fastest and has the shortest
training time. SVD-GCL, utilizing TSVD during
initialization, has a slightly longer training time but
remains significantly faster overall.

In summary, contrastive learning greatly accel-
erates training. Compared to traditional methods,
noise augmentation provides higher training effi-
ciency. Cross-layer contrastive learning not only
improves performance but also speeds up conver-
gence.
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Figure 6: The influence of β and ϵ.

4.6 Influence of β and ϵ

We use NDCG@20 to examine the impact of noise
generated by different values of β and ϵ during data
augmentation. ϵ explicitly controls the amplitude
of normalized noise while preserving symbols.

For experiments on ϵ, we set β to 0.1 (Figure
6).When ϵ is small, performance differences are mi-
nor. Performance peaks at ϵ = 0.2 across the three
datasets. However, increasing ϵ beyond this point
significantly degrades performance, likely because
larger ϵ causes excessive perturbation, blending
original features with noise and deviating from the
original representation.

For experiments on β, we set ϵ to 0.2, optimizing
performance close to its peak. Thus, NDCG@20
fluctuations with varying β are moderate. Optimal
performance occurs at β = 0.1, while too large or
too small β values harm recommendation perfor-
mance. Excessive β introduces a higher proportion
of random noise, damaging the embedded represen-
tation and causing instability. Conversely, too small
β provides insufficient learning signals, reducing
the model’s robustness and generalization.

4.7 Evaluate the quality of embedding
To explore the feature distribution during learn-
ing, we retrieve the user and item embeddings pro-
duced by SVD-GCL from the Yelp2018 dataset
and project them onto the spatial distributions in
both 2D and 3D as shown in Figure 7. The images
show a sufficiently uniform distribution of users
and items. This is consistent with the view in (Yu
et al., 2022) that the uniformity of distribution is the

core factor to improve the recommendation perfor-
mance, rather than redundant data augmentation.

Figure 7: Visualization of distributions learned by SVD-
GCL.

5 Conclusions

In this paper, we reveal the challenges that current
GNN-based recommendation systems face when
handling high-dimensional sparse data. We have
analyzed the limitations of traditional CL methods
and propose a novel recommendation framework
named SVD-GCL. By employing TSVD for dimen-
sionality reduction and denoising, we optimize the
initial embedding representation to achieve a more
uniform spatial distribution. Additionally, we intro-
duce an innovative noise enhancement paradigm
aimed at improving the effectiveness of data aug-
mentation, thereby making the model more ro-
bust and generalizable. A considerable number
of experimental results demonstrate that the pro-
posed method retains superior recommendation per-
formance in complex data environments, and the
lightweight architecture also holds advantages in
computational efficiency.
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Limitations

Although our model has achieved considerable re-
sults, there are still some limitations. Firstly, al-
though contrastive learning has been successfully
applied in recommender systems recently, it still
has a lot of room for exploration. Due to the limita-
tions of the bipartite graph structure, various data
augmentation strategies still introduce additional
noise.

Secondly, although TSVD contributes to dimen-
sionality reduction and denoising, when the data
size surpasses a certain critical value, TSVD itself
might introduce additional computational overhead.
Designing a more superior dimensionality reduc-
tion algorithm is also a problem worthy of study in
the future.
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cal guidelines.This study aims to improve the rec-
ommender system’s ability to maintain excellent
recommendation performance even when facing
complex sparse data by utilizing novel noise aug-
mentation techniques and embedding optimization
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We have clearly introduced the public datasets
used in the experiment in the article, which do not
have any serious ethical issues.

At present, the model has not been applied in
real-world business scenarios, but we plan to fur-
ther verify its effectiveness in practical applications
in future work.Before practical application, we sug-
gest conducting a comprehensive evaluation of the
model to ensure its reliability and effectiveness
in various business environments.We promise to
strictly adhere to data privacy and ethical standards
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