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Abstract

Detailed descriptions of human motion are
crucial for effective fitness training, which
highlights the importance of research in fine-
grained human motion video captioning. Ex-
isting video captioning models often fail to
capture the nuanced semantics of videos, re-
sulting in the generated descriptions that are
coarse and lack details, especially when de-
picting human motions. To benchmark the
Body Fitness Training scenario, in this pa-
per, we construct a fine-grained human mo-
tion video captioning dataset named BoFiT
and design a state-of-the-art baseline model
named BoFiTGen (Body Fitness Training Text
Generation). BoFiTGen makes use of com-
puter vision techniques to extract angular repre-
sentations of human motions from videos and
LLMs to generate fine-grained descriptions of
human motions via prompting. Results show
that BoFiTGen outperforms previous meth-
ods on comprehensive metrics. We aim for
this dataset to serve as a useful evaluation set
for visio-linguistic models and drive further
progress in this field. Our dataset is released at
https://github.com/colmon46/bofit.

1 Introduction

In today’s fast-paced, high-stress lifestyles, many
people aim to stay fit and healthy through self-
training, either at the gym or at home. To get de-
tailed guidance, they often rely on video courses.
As we know, nuanced human motion descriptions
from exercise videos are helpful to follow these
videos and assess motion quality during training.
However, providing detailed guidance for each
body motion in videos can be costly and time-
consuming. To address this challenge, research
in fine-grained video captioning has become nec-
essary, as it can automatically generate accurate,
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Figure 1: One example in our dataset BoFiT. In previ-
ous work, only a one-sentence caption such as "A man
demonstrates how to do a single arm snatch" is provided
for the video.

detailed descriptions of human motions, making
high-quality fitness guidance more accessible.

Existing video captioning datasets involving hu-
man motions are mainly used in action recognition
tasks, where each video is classified into a specific
category (Kuehne et al., 2011; Soomro et al., 2012;
Kay et al., 2017; Carreira et al., 2018, 2019; Smaira
et al., 2020). Such video captioning can be seen as
operating at the keyword level, which falls short of
providing the fine-grained human motion descrip-
tions needed for instructional purposes, such as
detailed, step-by-step body motion analysis. Sub-
sequently, several sports-specific video captioning
datasets have been constructed, covering domains
such as basketball, volleyball, and football compe-
titions (Yu et al., 2018; Pasunuru and Bansal, 2018;
Qi et al., 2019; Suglia et al., 2022). However, these
datasets primarily focus on human interactions and
do not address the fine-grained motions of body
trunks.

Thus, in this paper, we propose a novel task of

https://github.com/colmon46/bofit
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fine-grained human motion video captioning to fill
in the blanks of previous works. To benchmark
the task, a video captioning dataset is necessary
which should ensure the qualities of the videos
and their corresponding fine-grained captions. On
one hand, the fitness training videos must be pro-
fessional, with high-caliber trainers. On the other
hand, the motion videos should be accompanied
by expert descriptions for guiding each body move-
ment, though this involves a high workload and
may be influenced by human subjectivity. With
the considerations above, we build a dataset named
BoFiT (Body Fitness Training Dataset), sourced
from a professional fitness training website Body-
Building1 since it has clear and professional train-
ing videos some of which are equipped with fine-
grained, body-trunk level descriptions. The main
issue is that not all videos come with annotated de-
scriptions. To address this, we use large language
models (LLMs) combined with manual proofread-
ing to generate fine-grained descriptions for those
videos lacking them.

Now, BoFiT can serve as a testbed for evaluat-
ing the performance of fine-grained descriptions
approaches. Our preliminary experiments show,
previous VLMs (Vision-Language Model) (Luo
et al., 2020; Lin et al., 2021; Tang et al., 2021;
Seo et al., 2022; Li et al., 2022; Ye et al., 2022;
Yan et al., 2022; Wang et al., 2022; ?) and models
enhanced with LLMs (Maaz et al., 2023; Zhang
et al., 2023; Lin et al., 2023) still underperform on
BoFiT by providing wrong depictions of human
motion. To solve fine-grained video comprehen-
sion issues and fully leverage LLM’s potentials on
text generation, we develop an intermediate repre-
sentation of human motion. This is achieved by
extracting information from videos using a State-
Of-The-Art 3D pose estimation model. This ap-
proach converts videos into systematic semantic
representation, while also providing interpretable
inputs for LLMs. Given LLMs’ proven proficiency
in reasoning over structured data such as tables and
graphs (Hegselmann et al., 2023; Chen et al., 2024;
Jin et al., 2024), it is plausible for us to formalize
angular representation as a substitute for human
motion in videos. We name this method of extract-
ing human pose representations for LLM analysis
as BoFiTGen. Based on BoFiT, we conduct in-
depth experiments to investigate the performance
of BoFiTGen and other video captioning models

1https://www.bodybuilding.com

on different aspects. Results show that BoFiTGen
outperforms others in comprehensive metrics.

Our contribution can be summarized as follows:

• We propose a novel fine-grained human mo-
tion video captioning task and correspond-
ingly construct a semi-automatically labeled
dataset BoFiT, which contains fitness training
videos and their fine-grained descriptions at
the body-trunk level.

• To address complex video captioning chal-
lenges, we propose the usage of human pos-
ture features as intermediate representations
between video and text, helping LLMs under-
stand videos more effectively.

• We design a few-shot LLM-based video cap-
tioning method called BoFiTGen, which suc-
cessfully generates fine-grained instructional
descriptions given fitness training videos. Re-
sults demonstrate the superior capability of
BoFiTGen on the video captioning task.

2 Related Work

2.1 Fine-Grained Video Captioning

The task of dense video captioning is introduced
by Krishna et al. (2017). It divides the untrimmed
video into clips with the start and end frame, and
attached captions related to a set of temporally lo-
calized activities. Among the existing dense video
captioning tasks, those focusing on the sports do-
main are the most relative to our research focus.
On one hand, some existing works formalize dense
video captioning as (Krishna et al., 2017) does, aim-
ing to generate short captions for trimmed video
clips. The overall video would then be paired with
aggregated dense captions as a whole. For example,
Qi et al. (2019); Suglia et al. (2022) are benchmarks
that pair trimmed football comment videos to cap-
tions with a length of one to two sentences. On
the other hand, some works generate a fine-grained
long caption for the entire video at once (Yu et al.,
2018; Qi et al., 2019). They are closer to our re-
search goal but fail to focus on describing body-
trunk-level human motions, generating action-level
sports descriptions instead. Here, we delve deeper
into the granularity of human body trunks by con-
structing BoFiT as a more challenging task than
before.
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2.2 LLMs for Multi-modal Tasks

Recently, many works intend to extend LLMs to un-
derstand visual inputs including images and videos.
Main approaches fall into two categories. The first
category is to use LLMs as an agent to schedule
and employ off-the-shelf expert models, such as
captioning, retrieval, and OCR models (Shen et al.,
2023; Wu et al., 2023; Surís et al., 2023; Yang et al.,
2023). The second category is to use LLMs as a
decoder. Fundamental large-scale vision-language
models (VLMs) usually consist of a vision encoder,
an LLM as a decoder, and a cross-modal interac-
tion module to achieve vision-language alignment.
For example, Flamingo (Alayrac et al., 2022) uses
perceiver resampler and gated-cross attention while
BLIP-2 (Li et al., 2023) uses Q-Former to adapt
visual features for LLM. Subsequently, Dai et al.
(2023); Liu et al. (2023); Zhu et al. (2023a) explore
methods for visual instruction tuning and making
VLMs more instruction-aware. Meanwhile, Zhang
et al. (2023); Maaz et al. (2023); Lin et al. (2023)
extend inputs from images to videos.

2.3 3D Human Pose Estimation

3D Human Pose Estimation focuses on extracting
three-dimensional human poses from monocular
RGB videos. Early works primarily explore single-
stage approaches, which directly extract 3D pose
information from input images (Sun et al., 2017;
Moon et al., 2019; Zhou et al., 2019). More re-
cently, two-stage methods have become widely
adopted (Pavllo et al., 2019; Zhao et al., 2019;
Zheng et al., 2021; Zhu et al., 2023b; Zhao et al.,
2023) These methods initially use 2D pose esti-
mators (Simonyan and Zisserman, 2014; He et al.,
2015; Newell et al., 2016; Pang et al., 2018, 2020),
followed by lifting these predictions to 3D poses.
Notably, (Zhao et al., 2019) and (Pavllo et al.,
2019) integrate semantic graphs and dilated tem-
poral information into convolution networks to im-
prove the estimation process. Moreover, Trans-
former (Vaswani, 2017) is also used to learn versa-
tile temporal features from video sequences (Zheng
et al., 2021; Zhu et al., 2023b; Zhao et al., 2023).

3 Task and Dataset Description

3.1 Fine-grained Video Captioning Task

Different from previous video captioning tasks in
the sports domain, we propose a video captioning
task which focuses on body-trunk-level human mo-
tion. Given a video clip Vi capturing the movement

Dataset Scenario Sentences
per sec

Words
per sec

MSR-VTT Open Domain 0.067 0.621
ActivityNet Open Domain 0.327 4.410
YouCook2 Cooking 0.051 0.449
FSN Basketball 0.556 4.901
SVCDV Volleyball 0.366 3.886
BoFiT Fitness Training 2.819 48.224

Table 1: Comparisons among video captioning datasets.

of an individual, our model is expected to generate
a fine-grained description Ii of the motion, includ-
ing the direction of movement for limbs and the
final position reached. Figure 1 demonstrates a fit-
ness training video with sequential human motions
and our corresponding fine-grained target caption.
Different from previous short captions, our BoFiT-
Gen generates long captions that depict detailed
human motion. To accompany the proposed task,
we construct a dataset named BoFiT.

3.2 BoFiT Dataset

We collect 2360 videos from BodyBuiding, a
professional fitness training instructional website.
These videos have been provided with professional
information including motion names, types, equip-
ment, benefits, short descriptions, detailed instruc-
tions, etc. To minimize the estimation bias intro-
duced by the vision model, we select those videos
featuring a single person exercising without fre-
quent switching from one shot to another. We care-
fully trim each video to contain only one cycle
of training movement, as the original video may
contain several ones.

We first considered getting annotated instruc-
tions from the BodyBuilding website to equip each
video with a fine-grained caption. These instruc-
tions are of high quality, including detailed de-
scriptions and tips for every step of the training
movement. However, only 920 videos have such
annotated and professional instructions among all
2360 items. For the 1440 videos without text in-
structions, it is difficult to manually compile profes-
sional instructions without expertise in the sports
field. To promote the efficacy of instruction edit-
ing, we make use of the strong generation ability
of ChatGPT and prompt it to generate instructions.
During the ChatGPT-driven instruction generation
process, we provide the motion name in the corre-
sponding video and an expected instruction length
in the prompt, which is set as the average length
of the existing annotated instructions. This will en-
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Figure 2: All properties featured in BoFiT. The video clips include different equipment and training types, mainly
worked muscle and training levels.

sure that all generated instructions are independent
of the visual content of the videos, sourced only
from the motion name.

To ensure the data consistency between gener-
ated and annotated instructions, we build a website
based on Label Studio to collect human feedback
on them. For data consistency evaluation, we gener-
ate extra instructions for the 920 videos that already
have expert-annotated instructions. For each video
clip, we have an annotated instruction and a gener-
ated instruction. We randomly sample 200 instruc-
tion pairs and recruit 20 people to evaluate each pair
twice. On the website, we ask the human judges to
check if the two instructions are consistent, gener-
ally consistent, or inconsistent in meaning. Results
show that 84.5% pairs are considered consistent
or generally consistent by human judges. There-
fore, we believe that our LLM-driven measure is
qualified to help construct BoFiT dataset.

3.3 Dataset Statistics

BoFiT has 2360 video clips with a resolution of
480 × 270 at 30 fps . Each video clip spans 2.94
seconds on average and is paired with 8.3 sentences
and 141.8 words on average. The comparison of
BoFiT with other video captioning datasets (Heil-
bron et al., 2015; Xu et al., 2016; Zhou et al., 2017;
Yu et al., 2018; Qi et al., 2019) is shown in Table 1.
To the best of our knowledge, BoFiT provides the
most abundant sentences and words per second
among all datasets in both the open domain and
sports domain.

The BoFiT dataset shows great diversity in its
properties, including different equipment, train-
ing type, main muscle worked and training level.
Detailed dataset composition is shown in Figure

2. In the collected 2,360 video clips, body-only
training movement accounts for the largest percent-
age, up to 1021 videos. Other equipment includes
dumbbell, barbell, and others. With regards to the
training type of the movements, they mostly fall
into the domain of strength training. Additionally,
it includes stretching, plyometrics, powerlifting,
Olympic weightlifting, cardio and strongman ex-
ercises. Furthermore, almost all muscles in the
human body are trained in our BoFiT dataset. Fi-
nally, the training level of the videos are catego-
rized into beginner, intermediate and expert levels,
with intermediate-level videos taking up the largest
proportion.

We believe our BoFiT dataset is effective in rep-
resenting diverse human motions by engaging all
body-trunks in the movements. Therefore, we be-
lieve methods built upon BoFiT dataset will have
the potential to generalize on other human motion
video captioning datasets and can also be devel-
oped for further practical use.

4 Method

We develop an LLM-based pipeline named BoFiT-
Gen to address the challenge of fine-grained human
motion video captioning. As demonstrated in Fig-
ure 3, it first extracts the angular data of the human
motion in a given video clip through a State-Of-
The-Art 3D human pose estimation model. It then
encodes the data into a carefully designed prompt
to generate fine-grained text descriptions through
an LLM.

4.1 3D Human Pose Estimation

Here we employ MotionBERT (Zhu et al., 2023b)
as the methodology for extracting 3D human mo-
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Context Description

Question

Additional Notes

Fitness Training Video

…
…

Zero-shot Prompt:

Frame 
Sampling

5 × Video Frame

MotionBERT

3D Pose Estimation

[[[-3.6   0.   -5. ]
[  0.     4.  -176. ]

   [ 11.     5.   -11. ]
…
[ 21.   -10.   -14. ]
[-20.    10.   -14. ]]]

Tait-Bryan 
Angle

Included 
Angle

Compute Matrix

Large
Language
Model

Using a barbell, perform the 
bodybuilding exercise as follows:

1. Start in a standing position 
with the pelvis slightly 
tilted forward and the spine 
straight.

2. Bend the knees and hips 
simultaneously, lowering the 
body into a squat position.

3. Maintain a neutral spine as 
you continue to squat down, 
keeping the knees aligned with 
the feet.

4. Return to the initial standing 
position by extending the 
knees and hips while keeping 
the torso upright.

5. Repeat the squat movement for 
the desired number of 
repetitions, ensuring proper 
form and control throughout.

Model Output:

Figure 3: An overview of BoFiTGen. The video clip in BoFiT is first sampled to 5 frames and then processed
by MotionBERT to access the 3D pose estimation information. Extracted information included angles and Tait-
Bryan angles, which are then computed into angular representation matrix and then used to generate fine-grained
description via prompting Large Language Models.

tion information from the fitness training videos.
This model can perform two key functions: On
one hand, it can regress the 3D coordinates of the
human joints at each frame. On the other hand, it
can predict the local rotations of joints around its
predecessors on the kinematic tree. Both the 3D
coordinates and local rotations of the human joints
are obtained for later use.

4.2 Included Angle Representation

We propose an angular representation system
named Included Angle Representation that directly
computes the angles between different pairs of
limbs, with an assumption that the human skele-
ton is a composition of rigid bodies. We define a
human coordinate system. The direction from the
right hip to the left hip is denoted as the Y-axis,
the direction from the midpoint of the pelvis to the
lumbar vertebrae is the Z-axis, and the direction
perpendicular to them is the X-axis.

All movements within this coordinate system
are defined as local human motion. We classify the
human joints into two categories according to their
degrees of freedom (Akhter and Black, 2015) and
employ different representation methods respec-
tively. Afterwards, we define global human motion
as a composition of jumping, rotating, and trans-
lating. The definition details of the included an-
gle representation is demonstrated in Appendix.A.

For each video Vi with N sampled frames, we ob-
tain an overall included angle representation matrix
Ri ∈ RN×22×3.

4.3 Tait-Bryan Angle Representation

In this section, we conduct another modeling sys-
tem called Tait-Bryan Angle Representation. As
per the definition of Euler Angles, we take a ro-
tation in the 3D coordinate system as a sequence
of three elementary rotations. In particular, Tait-
Bryan Angles are sequential rotations made around
three distinct rotation axis. Under our definition,
axis x, y, z are of the body frame.

With the assistance of visual models, we obtain
some local rotation quaternions predicted by the
MLP regressor of the MotionBERT (Zhu et al.,
2023b). These quaternions depict how each body
joint rotates around its precedent on the kinematic
tree. According to Berner et al. (2008), we trans-
fer quaternions to Tait-Bryan angles. Equations are
listed in Appendix.B. Additionally, we add a global
information vector that includes the 3D coordinates
of the pelvis (i.e. root node) in the global coordi-
nate system. Finally, we obtain the Tait-Bryan
representation matrix by concatenating the global
and local rotation information at the feature dimen-
sion. For each video Vi withN sampled frames, we
obtain an overall Tait-Bryan Angle Representation
matrix Ri ∈ RN×17×3.
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4.4 Fine-grained Text Generation via
Prompting LLMs

In the text generation scenario, we choose different
backbones for our prompting pipeline BoFiTGen,
as they stand out as the most cutting-edge Large
Language Models. Our prompt is composed of four
sections. For each video Vi, we set up a context
description c to give thorough explanations of the
following matrix Ri. Next, we append the prompt
with a universal question q about the task to be
accomplished in its answer. Afterwards, notes n
are given to BoFiTGen, specifically on the equip-
ment type, text length, granularity limitation, style
of writing, and its persona (i.e. a fitness training
coach). Finally, we add the angular representation
matrix Ri to the prompt. Overall, the assembled
prompt Pi for the zero-shot prompting scenario
can be summarized as the string-concatenation of
c, q, n,Ri. We denote (R0, I0) as a data pair, pre-
sented here as an in-context example, where R0 is
the angular representation of the given video and
I0 is its annotated text description. In the one-shot
prompting scenario, we can formalize the prompt
as Pi = [c, q, n,R0, I0, Ri]. We obtain Îi from
BoFiTGen(Pi), representing the generated text
description of the given video Vi by BoFiTGen
with prompt Pi.

5 Experiment

We evaluate BoFiTGen on its capability of describ-
ing fine-grained human motions under zero-shot
and one-shot prompting scenarios. Experiments
are conducted on BoFiT. Comprehensive evalua-
tion metrics and in-depth implementation details
are provided below.

5.1 Metrics

Performance on BoFiT is evaluated according to
different metrics that demonstrate the text gener-
ation capability. The evaluation metrics used in
our experiments are all supervised metrics that
compute the text-to-text similarity between gen-
erated sentences and reference sentences: BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), BERTScore (Zhang et al., 2019)
and FCE-Motion. While BERTScore evaluates sim-
ilarity using word embeddings, the other metrics
rely on n-gram-based token matching.

Specifically, FCE is an order-sensitive metric on
the evaluation of fine-grained motion description

(Yu et al., 2018). In this paper, we only evaluate
the accuracy of the verb, formalizing FCE as FCE-
Motion. It focuses on human motions and their
temporal order in text.

5.2 Implementation details
We compare the fine-grained human motion video
captioning ability of different VLMs and BoFiT-
Gen. Note that conventional video captioning meth-
ods without the assistance of LLMs have failed to
perform well on BoFiT, as the length of generated
text is too short for them to gain a reasonable value
on evaluation metrics.

In detail, we evaluate the performance of re-
cent VLMs, including Video-LLaMA (Zhang
et al., 2023), Video-ChatGPT (Maaz et al., 2023),
and Video-LLaVA (Lin et al., 2023). For
BoFiTGen, we employ different LLM backbones:
LLaMA2-13b (Touvron et al., 2023), LLaMA3.1-
8b(Dubey et al., 2024), Vicuna-13b(Chiang et al.,
2023), ChatGPT(gpt-3.5-turbo-1106) and Mistral-
7b (Jiang et al., 2023). Considering the high cost of
inference with GPT4 (Achiam et al., 2023), we only
conduct experiments on a subset of BoFiT with 378
samples. Concrete experimental data can be found
in Appendix.E. We design different prompts for
VLMs and BoFiTGen respectively. For VLMs,
we let the model describe the human motion in
the video as a professional training coach, limiting
the output text length to approximately 130 words,
matching the average length of ground truth de-
scriptions. For BoFiTGen, we sample an average
of 5 frames from each video and extract intermedi-
ate representations from this frame sequence. We
then prompt the model to describe the human mo-
tion based on the given angle matrix and additional
information such as the type of equipment. We
measure the results separately for both scenarios
that utilize different angle representations in mo-
tion data modeling. We also condition BoFiTGen
with the same text length limitation. To minimize
distractions caused by the given angle matrix, we
instruct the LLMs not to include specific numbers
in their response. For all models, we use off-the-
shelf pre-trained weights for fast inference, setting
the temperature to zero and other parameters to
default.

5.3 Performance Analysis
We evaluate the prompting performances of each
model under the combination of two factors. One
factor is the deployment of zero-shot or one-shot
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Method Backbone B@1 B@2 B@3 B@4 R M C FCE-M BERT
video and prompt inputs

Video-LLaMA - 0.167 0.052 0.017 0.006 0.156 0.079 0.003 0.198 -0.086
Video-LLaVA - 0.356 0.181 0.099 0.061 0.24 0.177 0.023 0.407 0.173

Video-ChatGPT - 0.212 0.089 0.043 0.023 0.172 0.092 0.010 0.311 0.081
prompt inputs only (zero-shot)

BoFiTGen-inc

LLaMA2-13B 0.274 0.143 0.077 0.047 0.225 0.173 0.016 0.338 0.085
LLaMA3.1-8B 0.278 0.137 0.070 0.039 0.230 0.143 0.020 0.364 0.162
Vicuna-13B 0.319 0.172 0.099 0.061 0.242 0.156 0.031 0.409 0.215
ChatGPT 0.295 0.150 0.077 0.044 0.234 0.174 0.016 0.372 0.153
Mistral-7B 0.262 0.138 0.076 0.046 0.213 0.195 0.003 0.323 0.082

BoFiTGen-tb

LLaMA2-13B 0.129 0.053 0.023 0.012 0.145 0.060 0.006 0.143 -0.072
LLaMA3.1-8B 0.295 0.147 0.079 0.048 0.231 0.145 0.023 0.359 0.150
Vicuna-13B 0.279 0.145 0.081 0.050 0.226 0.135 0.013 0.395 0.181
ChatGPT 0.293 0.163 0.097 0.063 0.245 0.148 0.018 0.422 0.236
Mistral-7B 0.254 0.127 0.068 0.041 0.216 0.186 0.002 0.314 0.104

prompt inputs only (one-shot)

BoFiTGen-inc

LLaMA2-13B 0.327 0.185 0.109 0.070 0.256 0.164 0.031 0.448 0.253
LLaMA3.1-8B 0.299 0.147 0.079 0.048 0.231 0.146 0.023 0.359 0.150
Vicuna-13B 0.354 0.201 0.120 0.076 0.259 0.172 0.036 0.429 0.213
ChatGPT 0.384 0.219 0.130 0.083 0.272 0.183 0.068 0.438 0.257
Mistral-7B 0.286 0.156 0.089 0.055 0.228 0.199 0.005 0.355 0.090

BoFiTGen-tb

LLaMA2-13B 0.351 0.184 0.104 0.065 0.228 0.177 0.021 0.380 0.193
LLaMA3.1-8B 0.354 0.194 0.111 0.069 0.252 0.171 0.053 0.396 0.214
Vicuna-13B 0.328 0.177 0.105 0.067 0.248 0.159 0.034 0.42 0.191
ChatGPT 0.340 0.192 0.116 0.074 0.253 0.169 0.040 0.438 0.270
Mistral-7B 0.374 0.206 0.120 0.074 0.253 0.190 0.065 0.415 0.240

Table 2: The BLEU (B), ROUGE-L (R), METEOR (M), CIDEr (C), FCE-Motion (FCE-M) and BERTScore (BERT)
of LLMs, where inc refers to included angle representation and tb refers to Tait-Bryan angle representation.

prompting methods, and the other is the utiliza-
tion of included angle representation or Tait-Bryan
angle representation. From Table 2, we find that:

In general, VLMs perform worse than BoFiT-
Gen. Due to the fact that VLMs lack the ability to
align images and pose semantics at a fine-grained
level, they make mistakes in generating detailed
descriptions. Prompted with angle matrices, BoFiT-
Gen can directly analyze the pose information, but
still have difficulties understanding complex inter-
mediate representations. This may be the reason
why some LLMs perform worse than VLMs in
zero-shot prompting scenarios. However, the per-
formance of BoFiTGen is promoted greatly in one-
shot prompting scenarios, showing superiority over
VLMs. A case study comparing the SOTA VLM
(i.e. Video-LLaVA) with BoFiTGen is shown in
Appendix.F.

One-shot prompting results in better perfor-
mance than zero-shot prompting. With the guid-
ance of in-context examples, LLMs can better learn
the correspondence between the intermediate repre-
sentations and human motion descriptions. Among
them, LLaMA2-13B using the Tait-Bryan angle

representation improves the most. ChatGPT per-
forms best in most of the settings.

There is no singular best angle representa-
tion system across all backbone models. Over-
all, Mistral-7B and LLaMA3.1-8B performs bet-
ter with the Tait-Bryan angle representation, while
other models perform better with the included an-
gle representation. LLaMA2-13B is particularly
bad at understanding Tait-Bryan angles with zero-
shot prompting.

5.4 Frame sampling

We evaluate the changes in FCE-Motion and ME-
TEOR scores on BoFiTGen with a ChatGPT back-
bone, with number of frames sampled ranging from
5 to 10. The experiment is conducted on a smaller
subset of BoFiT with 378 samples. Results are
shown in Figure 5. We find that the FCE-Motion
score increases slightly with the increase of frame
numbers when using included angle representa-
tions, indicating a better motion description ca-
pability. Meanwhile, the method using the Tait-
Bryan angle representation does not show the same
trend. This may result from the Tait-Bryan angle
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Figure 4: Results under different combinations of angle representations and prompting methods. For example,
"zeroshot+inc" means this BoFiTGen baseline employs included angle representation and zero-shot prompting.
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Figure 5: Visualizations of the relationship between
evaluation metrics and frame numbers.

representation’s longer prompt, which increases
greatly with the rising number of frames and dis-
tract LLM’s attention on the variance of sequential
data.

5.5 Time-disordered investigation

We randomly shuffle the input angle sequences
throughout the timeline. Under this operation, all
methods’ FCE-Motion scores decrease with an av-
erage of 1.7%. Figure 6 shows a case example
generated for the same video before and after shuf-
fling. The two descriptions deliver different mo-
tions respectively, indicating that our method is
sensitive to time order. However, the presence of
overlapping verbs from two descriptions results in
a small difference in the chronological accuracy
of the verbs, thus leading to the relatively subtle
decrease in the FCE-Motion score. This suggests
more room for improvement in the order-sensitive
evaluation metrics for motion description.

Figure 6: Descriptions generated for the same video
before and after shuffling.

5.6 Finetuning LLaMA2-13B

Although off-the-shelf pre-trained LLMs are ac-
cessible and practicable in comprehensive applica-
tions, their performance still suffer from limited
generalization ability to unseen tasks. Therefore,
to examine the usability of our dataset, we further
finetune an open-source model on BoFiT and com-
pare its performance with the original one under the
same experimental settings. We use LLaMA2-13B-
chat as the baseline model and finetune it using
LoRA (Hu et al., 2021) on (instruction, output)
pairs. We obtain all instructions following Tait-
Bryan angle representation and zero-shot prompt-
ing method, and use annotations in BoFiT as out-
put. Detailed settings are shown in Appendix.D.
As Table 3 shows, all metrics raise greatly, which
demonstrates the potential of BoFiT on finetuning
models for such tasks.

6 Conclusions

We construct BoFiT, a fine-grained fitness train-
ing dataset for video captioning. We also propose
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Model B@4 R M C FCE-M BERT
LLaMA2-13B 0.016 0.151 0.080 0.006 0.224 0.074
LLaMA2-13Bf 0.087↑ 0.265↑ 0.181↑ 0.137↑ 0.460↑ 0.265↑

Table 3: The performance of LLaMA2-13B before and
after finetuning. LLaMA2-13Bf refers to the finetuned
model.

BoFiTGen, a generic method that converts human
motion to textual prompts and generates video cap-
tions via LLM. Through experiments under zero-
shot and one-shot scenarios, we find that BoFiTGen
outperforms previous VLMs on BoFiT on compre-
hensive metrics. In our opinion, BoFiTGen reveals
that LLMs implicitly have the ability to understand
pose encoding, which provides a new possibility
for both video captioning and LLMs. Furthermore,
we aim to improve the data quality of BoFiT in
the future, hence contributing to the community
with a more reliable evaluation benchmark on the
fine-grained video captioning task.

Limitations

To our best knowledge, we are the first to propose
the fine-grained human motion video captioning
task. Since it is difficult to manually develop a
corresponding dataset, we acquire annotated pairs
of videos and their descriptions from the Internet.
Specifically, we supplement missing annotations
with the assistance of LLM. The quality assurance
work is done through human evaluation. However,
due to the limitation of human resources, we only
evaluate on a sampled subset of the full dataset.
Therefore, we would like to contribute more efforts
in promoting the quality of the BoFiT dataset in
the future. In addition, since we make use of hu-
man pose features as intermediate representations
between video and text, it may lead to some in-
formation loss, such as specific movements of the
equipment. We will continue to explore more rea-
sonable intermediate representations to help LLMs
understand videos better, as this challenge may also
be open to other researchers in this field.
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Appendix

A The Definition Details of the Included Angle Representation

Type Associated Body Trunks Definition Explanation

Local

upper body angle between Z-axis and the ground Standing/Lying
upper body angle between the upper body and Z-axis Pitching

left(right) upper arm angle between the left(right) upper arm and X-axis Moving left and right
left(right) upper arm angle between the left(right) upper arm and Y-axis Moving front and back
left(right) upper arm angle between the left(right) upper arm and Z-axis Moving up and down

left(right) elbow angle between the left(right) upper arm and the forearm Flexing/Extending
left(right) thigh angle between the left(right) thigh and X-axis Moving left and right
left(right) thigh angle between the left(right) thigh and Y-axis Moving front and back
left(right) thigh angle between the left(right) thigh and Z-axis Moving up and down
left(right) knee angle between the left(right) thigh and the lower leg Flexing/Extending

Global

full body twisted or rotated angle of the upper body Rotating
full body distance of feet off the ground Jumping
full body distance moved forward relative to the initial state Translating
full body distance moved leftward relative to the initial state Translating

Table 4: The definition of the included angle representation. Note that the X, Y, and Z axes are according to the
definition of the human coordinate system.

A.1 Local Motion Representation
For a joint with only one DOF (degree of freedom), we calculate the angle between the two rigid bodies
connected to this joint. Otherwise, we calculate the angles that the body trunk forms with the three
axes of the human coordinate system. Here we offer two examples of joints with different degrees of
freedom: For the knee with DOF=1, we use the angle between the thigh and the lower leg to represent the
flexion/extension. For the hip with DOF=3, we use the angle of the thigh to the three axes mentioned
above to represent its movement. For necessary simplification, we ignore some subtle rotations made by
the wrists and ankles.

A.2 Global Motion Representation
Global clues provided to LLMs are represented as the rotation angles of the Y-axis, the distance of feet
off the ground, the distance of the forward translation, and the distance of leftward translation. For each
video frame, the above data is calculated from the distance to the initial frame.

B Quaternions to Tait-Bryan Angles

q = q0 + q1i+ q2j + q3k (1)

ϕ = arctan2

(
q2q3 + q0q1,

1

2
− (q1

2 + q2
2)

)
(2)

θ = arcsin (−2(q1q3 − q0q2)) (3)

ψ = arctan2

(
q1q2 + q0q3,

1

2
− (q2

2 + q3
2)

)
(4)

Given quaternions q, the Tait-Bryan angles ϕ, θ, ψ are computed by Eq.1 to 4.
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C Prompts of BoFiTGen

The prompts of BoFiTGen consist of 5 parts, named as 1) context description, 2) instruction, 3) notes,
4) in-context example, 5) equipment and motion matrix. The in-context example is only introduced in
one-shot scenarios. Detailed prompts for each part are presented as follows:

C.1 Context Description and Instruction

Description and Instruction of Included Angle Representation

I will provide you with the information of a bodybuilding exercise, including the
equipment used in it and a matrix of (5, 22), The first dimension of the matrix
represents the 5 time points in the process of the action, including the initial
posture. Each time point has a vector of size 22 to describe the human posture at
this node. Respectively, the 22 numbers in the vector of a time point are: [Angle
between top of the body and ground, angle between left upper arm and top of the
body, angle between left upper arm and front of the body, angle bewteen left upper
arm and right of the body, angle of left elbow, angle between right upper arm and
top of the body, angle between right upper arm and front of the body, angle
between right upper arm and right of the body, angle of right elbow, angle between
upper body and top of the body, angle between left thigh and top of the body,
angle between left thigh and front of the body, angle between left thigh and right
of the body, angle of left knee, angle between right thigh and top of the body,
angle between right thigh and front of the body, angle between right thigh and
right of the body, angle of right knee, twist or rotate angle of upper body,
distance off the ground with feet, distance moved forward relative to initial
state, distance moved to left relative to initial state].
The direction from left hip to right hip is defined as the right of the body, the
direction from middle point of the pelvis to lumbar spine is defined as the top of
the body. Perpendicular to them is the front of the body.
Please give an instruction of the action step by step based on the matrix
information.

Description and Instruction of Tait-Bryan Angle Representation

I will provide you with the information of a bodybuilding exercise, including the
equipment used in it and a matrix of size (5, 17, 3). The first dimension of the
matrix represents the 5 time points in the process of the action, including the
initial posture. Each time point has a matrix of size (17, 3) to describe the
human posture at this node. The first row is the coordinates of the pelvis at this
moment in the global coordinate system, the second row is the global rotation of
the pelvis (root node) in the global coordinate system, and the third to the
seventeenth rows represent the tait-bryan angles representation of the relative
rotation of the 15 human joints relative to their parent node in the kinematic
tree. The three numbers in each row are the angles of yaw, pitch, and roll in
degrees. The joints are as follows:
Row 3: Left Hip, Row 4: Right Hip, Row 5: Left Knee, Row 6: Right Knee, Row 7:
Spine, Row 8: Left Ankle, Row 9: Right Ankle, Row 10: Neck, Row 11: Head, Row 12:
Left Shoulder, Row 13: Right Shoulder, Row 14: Left Elbow, Row 15: Right Elbow,
Row 16: Left Wrist, Row 17: Right Wrist.
Please give an instruction of the action step by step based on the matrix
information.
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C.2 Notes
Note:
1. You should infer the global posture information of the human body from the
global coordinate system, such as standing, supine, etc.
2. The text you provide should be around 130 words.
3. Do not include specific angles or coordinates in the description, but infer the
movement of the relevant parts of the human body based on the angle information.
4. Please provide only the descriptive text, no extra words.
5. Imagine yourself as a bodybuilding coach, how would you teach others to perform
this action step by step? But do not have too many steps in the description, four
or five steps are enough.

C.3 In-context Example

The following Question 1 is an example. Please answer Question 2.
Question 1: The equipment used is {EXAMPLE EQUIPMENT}. The matrix is: {EXAMPLE
MOTION MATRIX}
Answer 1: {EXAMPLE ANNOTATION}

C.4 Equipment and Motion Matrix
Zero-shot Setting

Question: The equipment used is {EQUIPMENT}. The matrix is: {MOTION MATRIX}
Answer:",

One-shot Setting

Question 2: The equipment used is {EQUIPMENT}. The matrix is: {MOTION MATRIX}
Answer 2:",

D Settings of Finetuning LLaMA2-13B

Base Model We use LLaMA2-13B-chat (Touvron et al., 2023) as the base model, which is optimized
for instruction understanding using supervised finetuning and RLHF. Since the data scale of BoFiT is not
large, finetuning on the chat model can lead to faster convergence than the base model.

Training Data We set the subset of BoFiT with 378 samples as the test set, and the remaining data are
used as the train set. In the train set, we randomly select 20 samples as a small dev set.

Settings We use LoRA to finetune the base model, where the LoRA rank is set to 8. Using a max
sequence length of 2048, a batch size of 32 and a learning rate of 1e-4, we finetune the model for 3000
steps with a 100-step warmup. We set the micro-batch size to 2, and finish the training on a single NVIDIA
A800 GPU in about one day. For inference, we select the best checkpoint based on the minimal loss on
the dev set.
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E Evaluation on the Sampled Subset

E.1 The Statistics of the Sampled Subset

Equipment Type Number of Videos
body-only 149
dumbbells 79

barbells 47
kettlebells 34

others 69
overall 378

Table 5: The equipment composition of the subset.

E.2 Experimental Results on the Sampled Subset

Method Backbone B@1 B@2 B@3 B@4 R M C FCE-M BERT
video and prompt inputs

Video-LLaMA - 0.172 0.054 0.018 0.007 0.162 0.092 0.005 0.247 0.028
Video-ChatGPT - 0.198 0.088 0.045 0.026 0.185 0.110 0.019 0.339 0.102
Video-LLaVA - 0.288 0.136 0.071 0.041 0.211 0.132 0.030 0.357 0.172

prompt inputs only

BoFiTGen-inc

LLaMA2-13B 0.276 0.142 0.076 0.046 0.224 0.171 0.014 0.345 0.131
Vicuna-13B 0.347 0.183 0.103 0.063 0.243 0.166 0.055 0.385 0.219
ChatGPT 0.321 0.172 0.095 0.058 0.248 0.175 0.048 0.365 0.174
GPT-4 0.308 0.140 0.059 0.027 0.227 0.150 0.052 0.326 0.179

BoFiTGen-tb

LLaMA2-13B 0.173 0.064 0.029 0.016 0.151 0.080 0.006 0.224 0.074
Vicuna-13B 0.347 0.183 0.103 0.063 0.243 0.166 0.055 0.385 0.187
ChatGPT 0.326 0.173 0.099 0.063 0.250 0.158 0.031 0.406 0.195
GPT-4 0.320 0.144 0.065 0.033 0.227 0.161 0.060 0.348 0.174

Table 6: The BLEU (B), ROUGE-L (R), METEOR (M), CIDEr (C), FCE-Motion (FCE-M), and BERTScore (BERT) of VLMs
and LLMs in the zero-shot prompting scenario, where inc refers to included angle representation and tb refers to Tait-Bryan
angle representation.

Method Backbone B@1 B@2 B@3 B@4 R M C FCE-M BERT
prompt inputs only

BoFiTGen-inc

LLaMA2-13B 0.370 0.206 0.120 0.076 0.257 0.176 0.056 0.418 0.239
Vicuna-13B 0.374 0.212 0.127 0.083 0.264 0.186 0.078 0.407 0.213
ChatGPT 0.402 0.231 0.139 0.090 0.277 0.192 0.090 0.436 0.258
GPT-4 0.349 0.171 0.084 0.045 0.241 0.172 0.074 0.373 0.214

BoFiTGen-tb

LLaMA2-13B 0.337 0.184 0.107 0.067 0.244 0.185 0.043 0.392 0.222
Vicuna-13B 0.361 0.195 0.115 0.074 0.253 0.172 0.055 0.418 0.207
ChatGPT 0.385 0.220 0.134 0.088 0.262 0.184 0.079 0.432 0.275
GPT-4 0.334 0.167 0.086 0.048 0.240 0.183 0.050 0.374 0.219

Table 7: The BLEU (B), ROUGE-L (R), METEOR (M), CIDEr (C), FCE-Motion (FCE-M), and BERTScore (BERT) of
LLMs in the one-shot prompting scenario, where inc refers to included angle representation and tb refers to Tait-Bryan angle
representation.

We also conduct an experiment on a subset of 378 samples. This is to take the performance of GPT4
into consideration. Since GPT4 has emerged as the most up-to-date Large Language Model, we wonder
how it performs on the fine-grained human motion captioning task. To our surprise, it only ranked in the
middle among all baselines. The results are presented in Table 6 and Table 7.

According to Gruver et al. (2024), GPT-4 performs badly for time-series prediction, due to the fact
that it is an expert in alignment instead of numerical sequence processing. This may explain the weaker
performance of GPT-4 compared to other less-advanced models.
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F Case Study

Ground truth

Stand up straight with a 
dumbbell in each hand at 
arm's length. Keep your 
elbows close to your torso 
and rotate the palms of your 
hands until they are facing 
forward. This will be your 
starting position. Now, 
keeping the upper arms 
stationary, exhale and curl the 
weights while contracting 
your biceps. Continue to raise 
the weights until your biceps 
are fully contracted and the 
dumbbells are at shoulder 
level. Hold the contracted 
position for a brief pause as 
you squeeze your biceps. 
Then, inhale and slowly begin 
to lower the dumbbells back 
to the starting position. 
Repeat for the recommended 
amount of repetitions.

Video-LLaVA

The video is about a man 
demonstrating how to do a 
bodybuilding exercise. He 
starts by standing with his 
feet shoulder-width apart and 
holding a set of weights in his 
hands. He then bends his 
knees slightly and lifts the 
weights up to his shoulders, 
keeping his back straight. He 
then lifts the weights over his 
head, extending his arms fully. 
Finally, he lowers the weights 
back down to his shoulders 
and repeats the exercise.

Step 1: Stand upright with 
feet shoulder-width apart, 
holding a dumbbell. Step 2: 
Bend your knees slightly while 
keeping your back straight 
and pelvis aligned. Step 3: 
Pivot at the hips while 
maintaining a neutral spine, 
bringing the dumbbell down 
toward the floor. Step 4: 
Lower the dumbbell between 
your legs, feeling a stretch in 
your hamstrings and glutes. 
Step 5: Drive through your 
heels and extend your hips, 
bringing the dumbbell back to 
the starting position. Repeat 
for desired reps.

Ours (zero-shot) Ours (one-shot)

Start by holding a dumbbell in 
each hand with your palms 
facing inwards and your arms 
extended at your sides. Keep 
your feet shoulder-width 
apart. Bend your knees 
slightly and lean forward at 
the waist while keeping your 
back straight. This will be your 
starting position. While 
keeping your upper body 
stationary, lift the dumbbells 
by raising your elbows and 
bringing them up to shoulder 
level. Exhale as you perform 
this movement. Hold the 
contraction for a second 
before slowly lowering the 
dumbbells back to the starting 
position while inhaling. 
Repeat for the recommended 
amount of repetitions.

Figure 7: Comparison between text generated by VLM and BoFiTGen based on zero-shot and one-shot prompts.
Results of BoFiTGen are generated by ChatGPT using Tait-Bryan angle representation.

Figure 7 shows a video sample and its captions generated by different models. Both the Video-LLaVA
and our zero-shot methods contain factual errors, while one-shot results are of significantly higher quality.
Although the only information we provide about the equipment is its name, LLM could infer the location
of the equipment by its intrinsic reasoning capability.

G Failure Cases

Figure 8 and Figure 9 show the failure cases of BoFiTGen-inc in both zero-shot and one-shot settings. The
two cases all involve actions that must be performed with the body parallel to the ground, demonstrating
the shortcomings of BoFiTGen in understanding and explaining non-standing positions.
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BofiGen-inc(ChatGPT)’s output in zero-shot setting:
Step 1: Start in an upright position, with the body facing 
forward and the arms relaxed by the sides. Step 2: Bend the 
upper body slightly forward, keeping the arms close to the 
body. Step 3: Extend the left leg forward, while bending the 
left knee slightly. Step 4: Rotate the upper body to the 
right, keeping the arms in line with the body. Step 5: 
Return to the initial position, with the body upright and 
the arms relaxed by the sides.

Ground truth fine-grained descriptions:
Begin by lying on your back on the ground. Your legs should 
be straight and your arms at your side. This will be your 
starting position. To perform the movement, tuck the knees 
toward your chest by flexing the hips and knees. Following 
this, extend your legs directly above you so that they are 
perpendicular to the ground. Rotate and elevate your pelvis 
to raise your glutes from the floor. After a brief pause, 
return to the starting position."

Lying Leg Lift

Figure 8: BoFiTGen-inc’s failure case with ChatGPT in zero-shot setting

BofiGen-inc(ChatGPT)’s output in one-shot setting:
Stand with your feet shoulder-width apart and your arms 
relaxed at your sides. Bend your knees slightly and hinge 
forward at the hips, keeping your back straight and your 
core engaged. Extend your arms out in front of you, parallel 
to the ground, with your palms facing down. Slowly raise 
your arms out to the sides, keeping them straight, until 
they are parallel to the ground. Hold this position for a 
moment, then slowly lower your arms back down to the 
starting position. Repeat for the recommended number of 
repetitions.

Ground truth fine-grained descriptions:
Begin in a standing position. Look directly forward, keeping 
your chest up, with your feet hip-distance apart. This will 

be your starting position. Bend at the knees and hips and 
place your hands on the floor while kicking your feet out 
behind you slightly wider than hip-distance apart. Bring 
your knees in towards your elbows quickly, without letting 
your toes touch the ground, then extend them back out behind 

you. Next, jump your legs back in, bringing them just 
outside your hands to a wide squat position. From here, jump 
all the way up, reaching your hands above your head. Land 
with your knees slightly bent and then go immediately into 
the next rep. Continue for the desired number of repetitions.

Sprawl frog kick

Figure 9: BoFiTGen-inc’s failure case with ChatGPT in one-shot setting
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