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Abstract
Human speech exhibits rich and flexible
prosodic variations. To address the one-to-
many mapping problem from text to prosody in
a reasonable and flexible manner, we propose
DiffStyleTTS, a multi-speaker acoustic model
based on a conditional diffusion module and
an improved classifier-free guidance, which hi-
erarchically models speech prosodic features,
and controls different prosodic styles to guide
prosody prediction. Experiments show that
our method outperforms all baselines in nat-
uralness and achieves superior synthesis speed
compared to three diffusion-based baselines.
Additionally, by adjusting the guiding scale,
DiffStyleTTS effectively controls the guidance
intensity of the synthetic prosody.

1 Introduction

Speech synthesis, also known as text-to-speech
(TTS), aims to turn text into almost human-like
audio. Currently, most TTS models consist of three
main components: a text analysis front-end, an
acoustic model, and a vocoder. Among them, the
naturalness and prosodic performance of speech
primarily depend on the design of the acoustic
model.

The acoustic model, at the heart of TTS,
can be categorized as autoregressive and non-
autoregressive. Autoregressive acoustic models,
like Tacotron (Wang et al., 2017) and Transformer
TTS (Li et al., 2019), have issues with word skip-
ping, repeated reading and inference time increas-
ing linearly with length of the Mel-spectrogram.
Non-autoregressive acoustic models, like Fast-
Speech2 (Ren et al., 2021), excel in rapidly syn-
thesizing high-quality speech. However, they are
constrained by using a simple regression objec-
tive function for optimization, lacking probabilis-
tic modeling, and the unimodal characteristics of
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Gaussian distribution don’t conform to the true dis-
tribution of acoustic features, which affects the
prediction accuracy. The mean of the distribu-
tion also results in the problem of over-smoothing
predictions, which restricts the diversity of gener-
ated prosodic features. These issues lead to weak
fluctuations and unnaturalness in prosodic transfer
and control tasks, Additionally, traditional prosodic
transfer methods like Global Style Tokens (GST)
(Wang et al., 2018) lack controllability over the
intensity of prosodic transfer.

The recently emerged diffusion model has sig-
nificant advantages in describing the complex dis-
tribution of high-dimensional and multi-modal fea-
tures. In particular, the guidance of the conditional
diffusion model (Dhariwal and Nichol, 2021) can
well control the results. It effectively addresses is-
sues like over-smoothing predictions and a lack of
diversity through multi-step sampling. Currently,
acoustic models based on the diffusion model, such
as Diff-TTS (Jeong et al., 2021), Grad-TTS (Popov
et al., 2021), DiffSinger (Liu et al., 2022), Guided-
TTS (Kim et al., 2022), ProDiff (Huang et al.,
2022), CoMoSpeech (Ye et al., 2023), etc., pri-
marily use the Mel-spectrogram as the prediction
target. There have been limited studies on predict-
ing speech prosodic features via the conditional
diffusion model. DiffProsody(Oh et al., 2024) is a
diffusion-based prosody prediction model that con-
strains prosodic features through a discriminator,
but it still lacks controllability over prosody during
inference. In summary, the flexible transfer and
control of speech prosody still remains underex-
plored.

Therefore, we propose a novel acoustic model,
DiffStyleTTS, based on a conditional diffusion
module and an improved classifier-free guidance
(Ho and Salimans, 2021). It hierarchically mod-
els prosodic features using both coarse-grained
style conditions and fine-grained prosodic descrip-
tions, balances the diversity and quality of prosody
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via classifier-free guidance, and is applied in
prosodic transfer and control tasks to guide prosody
prediction. Additionally, we introduce the dy-
namic thresholding method to address the issue
of phoneme distortion caused by an excessive guid-
ing scale. DiffStyleTTS is also designed to support
various inference modes. Experiments 1 show Diff-
StyleTTS achieves higher naturalness and similar
or faster synthesis speed compared to FastSpeech2
and other diffusion-based baselines. Compared to
the FastSpeech2+GST and DiffProsody baselines,
it demonstrates superior prosodic transfer capabil-
ity, enabling flexible combination of speaker and
prosodic features, alongside controllable prosodic
transfer intensity via a guiding scale.

2 DiffStyleTTS

In this section, we propose DiffStyleTTS, a multi-
speaker acoustic model that employs hierarchical
prosody modeling and utilizes FastSpeech2 as its
backbone. As shown in Figure 1, the encoder and
decoder use the feed-forward Transformer (FFT)
of FastSpeech2, along with a 5-layer convolutional
PostNet (Shen et al., 2018) in the decoder. We use
an embedding lookup table to capture the unique
vocal characteristics of each speaker and a HiFi-
GAN vocoder (Kong et al., 2020) to synthesize
speech waveforms. The main modifications are
replacing FastSpeech2’s original variance adaptor
with a conditional diffusion module for hierarchical
prosody modeling and introducing a GST module
for style control.

2.1 Hierarchical Prosody Modeling

The DiffStyleTTS achieves hierarchical prosody
modeling by considering prosodic features at two
levels: coarse-grained implicit style conditions and
fine-grained explicit prosodic descriptions. Im-
plicit style conditions encompass broad descrip-
tions of entire sentences, which are difficult to
define intuitively and are encoded from the Mel-
spectrogram during the training of the whole acous-
tic model. Explicit prosodic features include fine-
grained prosodic descriptions of phonemes, such as
pitch, energy, and duration, which can be directly
and easily extracted from speech waveforms.

In DiffStyleTTS, the method of GST (Wang
et al., 2018) is adopted to extract implicit style
conditions from audio as shown in Figure 1. The
implicit style conditions are decoupled into style

1https://xuan3986.github.io/DiffStyleTTS/

vectors corresponding to a group of global style
tokens. Furthermore, explicit prosodic features
are predicted using a conditional diffusion mod-
ule, which introduces text embeddings and implicit
style conditions as its conditional terms.

2.2 The Conditional Diffusion Module

The conditional diffusion module is guided with
implicit style conditions to predict explicit prosodic
features that align with it. The guided generation
of the conditional diffusion module can be usually
categorized into two approaches: classifier guid-
ance (Dhariwal and Nichol, 2021) and classifier-
free guidance (Ho and Salimans, 2021). Classifier
guidance requires an additional classifier, which
slows down the inference speed, and its quality
impacts the effectiveness of category generation.
Therefore, DiffStyleTTS employs classifier-free
guidance, which can avoid these issues as it doesn’t
require direct calculation of the classifier gradient.

First, as shown in Figure 2, based on the mathe-
matical principles of DDPM (Ho et al., 2020), the
diffusion process of explicit prosodic features is
defined by a fixed Markov chain from the initial
data x0 to the latent variable xt as

q(x1:T |x0) =

T∏
t=1

q (xt|xt−1) , (1)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (2)

where xt =
√
ᾱtx0 +

√
1− ᾱtε, αt = 1 − βt,

ᾱt =
∏t
s=1 αs, t = 0, 1, · · · , T , and T is the step

size. When adding a small Gaussian noise at each
step, the module selects a small positive constant
βt from a variance table, which we define as a
cosine schedule (Nichol and Dhariwal, 2021) to
prevent rapid noise accumulation from linear addi-
tion. Then, the reverse process is also defined by a
Markov chain from xt to x0 parameterized by the
θ as

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

pθ(xt−1|xt)=N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
, (4)

which shows the step-by-step denoising of an
isotropic Gaussian noise xT ∼ N (0, I) to restore
the original data x0.

To guide the conditional diffusion module’s out-
put using classifier-free guidance, two denoisers
with identical architectures are designed to employ

https://xuan3986.github.io/DiffStyleTTS/
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Figure 1: The model architecture of DiffStyleTTS. The LR refers to length regulator. The conditional diffusion
module includes two denoisers Ψθ1(xt, t,y, c) and Ψθ2(xt, t,y).

Figure 2: The diffusion process and reverse process of
explicit prosodic features.

text embeddings y as a condition to learn the map-
ping of phonemes into explicit prosodic features,
with and without implicit style conditions c respec-
tively. The denoiser Ψθ1(xt, t,y, c) uses y and c as
the conditional input (condition = y+c), while
the denoiser Ψθ2(xt, t,y) leaves c empty, using
only y as the conditional input. At each denoising
step, the input of each denoiser consists of explicit
prosodic features xt linearly combined with noise
ε ∼ N (0, I). To model this noise, two denoisers
are trained using the following training objective

minθ1Ldiff_c(θ1) =

Eε,xt,t,y,c ‖ ε− εθ1(xt, t,y, c)‖22,
(5)

minθ2Ldiff_nc(θ2) =

Eε,xt,t,y ‖ ε− εθ2(xt, t,y)‖22,
(6)

where we get noise outputs εθ1(xt, t,y, c) and
εθ2(xt, t,y).

During inference, the two noise outputs are lin-
early interpolated to obtain the guided results

ε̃θ1,θ2(xt, t,y, c) = εθ2(xt, t,y,∅)+

η
(
εθ1(xt, t,y, c)− εθ2(xt, t,y,∅)

)
.

(7)

Here, η is the guiding scale used to adjust the guid-
ance intensity, balancing the diversity and quality
of explicit prosodic features.

Preliminary experiments found that when η was
too high (η ≥ 7.0), phoneme distortion occasion-
ally occured in some phonemes. These phonemes
exhibited noise or elongation phenomena, resem-
bling the “overexposed” issue from the previous
study (Lin et al., 2024). To fix this, we improve
classifier-free guidance via dynamic thresholding
method, correcting the standard deviation of guid-
ance results at each sampling step

σcond =std
(
εθ1(xt, t,y, c)

)
,

σcfg =std
(
ε̃θ1,θ2(xt, t,y, c)

)
,

(8)

ε̃rescaled(xt, t,y, c)= ε̃θ1,θ2(xt, t,y, c)·
σcond
σcfg

, (9)

ε̃final = γε̃rescaled(xt, t,y, c)+

(1− γ)ε̃θ1,θ2(xt, t,y, c).
(10)

This method corrects the standard deviation of
ε̃θ1,θ2(xt, t,y, c) to the original standard deviation
of εθ1(xt, t,y, c). A correction scale γ adjusts the
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(a) Training process.

(b) Inference process.

Figure 3: An illustration of the training and inference
processes of the conditional diffusion module based on
classifier-free guidance.

intensity of the correction to achieve the final cor-
rected result ε̃final.

In summary, the conditional diffusion module
can employ implicit style conditions c to guide the
generation of explicit prosodic features, and use
the guiding scale η and the correction scale γ to
flexibly adjust the diversity of the explicit prosodic
features and the guidance intensity.

2.3 Training and Inference

2.3.1 Training
Referring to Figure 1 and Figure 3(a), processed
phonemes from the text analysis front-end are fed
into the text encoder to generate text embeddings.
This, along with implicit style conditions from
the GST module, is then input into the condi-
tional diffusion module, which includes two de-
noisers Ψθ1(xt, t,y, c) and Ψθ2(xt, t,y) trained
via Eq. (5)(6). During training, the log scales
of raw phoneme-wise pitch and duration, and raw
phoneme-wise energy, are targeted for sampling.
The guiding scale η and the correction scale γ are
not involved in the training process. We add the
implicit style conditions and the embeddings of
raw pitch and energy to the text embeddings, then
employ the length regulator to align the length
based on raw duration. Frame-wise speaker em-
beddings are added before feeding into the decoder.
Finally, decoded Mel-spectrograms are converted
into speech waveforms using the pre-trained HiFi-
GAN vocoder. The total loss function includes the

diffusion module loss, the loss of decoding Mel-
spectrograms, and the residual loss of PostNet

Ltotal = Ldiff_c(θ1)+Ldiff_nc(θ2)+

Ldecoder + Lmel.
(11)

2.3.2 Inference
Referring to Figure 1 and Figure 3(b), three main
inference modes are designed based on the trained
DiffStyleTTS model.

(1) Diversified controllable inference. By tuning
the guiding scale η and the correction scale γ, we
can adjust the diversity and guidance intensity of
explicit prosodic features, achieving diversified and
controllable prosody prediction.

(2) Prosodic transfer inference. Given a refer-
ence utterance and a specified speaker ID, prosodic
features are transferred from the reference utter-
ance to this speaker. By tuning the guiding scale
η and the correction scale γ, we can adjust the
intensity of prosodic transfer.

(3) Prosodic control inference. Given a specified
speaker ID and a token ID in the GST module, we
can set the weights of other tokens to 0 and the
weight of this token to 1, synthesizing prosody con-
trolled only by that token. Besides, we allow for
the flexible combination of style token weights, en-
abling the enhancement or diminishment of certain
prosodic style. We can also scale the pitch, energy,
and duration by multiplication with scaling factors
to control prosodic values.

Additionally, we introduce a temperature hyper-
parameter τ (Popov et al., 2021) to sample terminal
condition xT fromN (0, τ−1I) instead of xT from
N (0, I). Previous work has found that tuning τ
can help to improve the quality of output.

3 Experiments

3.1 Experimental Setup

3.1.1 Dataset
We evaluated the proposed DiffStyleTTS model
using a 54-hour private Mandarin Chinese dataset
comprised of recordings from 9 male speakers of
different ages, all of which belonged to the genres
of novel, narration or story reading. Our dataset
has high recording quality and diverse prosodic
styles. We randomly sampled 20 utterances from
each speaker’s recordings, and the total 180 utter-
ances were reserved for validation and test, while
the rest were used for training. All phoneme du-
rations were extracted by an internal forced align-
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ment tool based on HMM. Given phoneme bound-
aries, phoneme-wise pitch and energy features were
obtained by averaging frame-wise pitch and en-
ergy. The frame-wise pitch was extracted using
STRAIGHT (Kawahara, 1997) and interpolated at
unvoiced frames, and the frame-wise energy was
computed as the L2-norm of the amplitude spec-
trum derived using short-time Fourier transform.
To get the input of the text encoder, each phoneme
was represented as the concatenation of a phoneme
identity embedding, a tone embedding and a posi-
tional embedding.

3.1.2 Model Configuration
The encoder encoded phonemes to 256-D text em-
beddings using 4 FFT blocks. while the decoder
used 6 FFT blocks. The 5-layer convolutional Post-
Net in the decoder is comprised of 512 filters with
shape 5×1 with batch normalization, followed by
tanh activations on all but the final layer. The ar-
chitecture of two denoisers utilized a bidirectional
dilated convolution (Kong et al., 2021) similar to
WaveNet (Oord et al., 2016), for predicting wave-
form signals. It consists of a stack of 12 residual
layers, each layer with residual channels C = 3
and a kernel size of 3. The input tensor had a
shape of [B,C,L], where B was the batch size, C
was the residual channels, and L was the length of
phonemes. In the GST module, the token embed-
dings size was set to 256 and the token size was
configured to 10. the multi-head attention with 4
attention heads used a softmax activation to output
weights over the tokens.

3.2 Performance of Synthetic Speech

Subjective and objective evaluations were con-
ducted to evaluate the performance of speech syn-
thesized using DiffStyleTTS. In addition to the
FastSpeech2 (Ren et al., 2021) baseline, a Fast-
Speech2 model with ground truth phoneme-wise
prosodic features, a Grad-TTS (Popov et al., 2021)
model , a Guided-TTS (Kim et al., 2022) model
and a DiffProsody (Oh et al., 2024) model were
also built for comparison. First, the naturalness
mean opinion scores (MOS) of all models were
evaluated by a listening test. A total of 14 par-
ticipants evaluated 18 utterances for each model,
selecting two samples from each speaker. Second,
the accuracy of predicted prosodic probability dis-
tributions were evaluated using Jensen-Shannon
(JS) Divergence. Third, the efficiency of different
models were evaluated using the real time factor

Model MOS ↑ JS Divergence ↓
RTF↓

Pitch Energy Duration
Ground Truth 4.55±0.05 - - - -
FastSpeech2 3.85±0.06 0.121 0.037 0.097 0.019
FastSpeech2* 4.11±0.07 - - - -
Grad-TTS 4.08±0.07 0.115 0.040 0.088 0.250
Guided-TTS 4.15±0.07 0.080 0.033 0.050 0.479
DiffProsody 4.10±0.06 0.083 0.030 0.046 0.063
DiffStyleTTS 4.18±0.06 0.065 0.030 0.045 0.048
w/o ISC 3.92±0.07 0.090 0.038 0.078 -
w/o AISC 3.80±0.06 0.071 0.033 0.051 -
w/o TEC 2.05±0.24 0.445 0.125 0.390 -

Table 1: The naturalness MOS, JS Divergence and RTF
of different models. The FastSpeech2* refers to Fast-
Speech2 with ground truth phoneme-wise prosodic fea-
tures, the ISC refers to implicit style conditions, the
TEC refers to text embedding conditions, and the AISC
refers to adding implicit style conditions into text em-
beddings.

η MOS ↑ CV ↑
Pitch Energy Duration

1.0 4.23±0.06 7.75 3.04 5.46
3.0 4.09±0.08 8.52 3.20 4.87
5.0 3.87±0.07 12.04 4.25 8.69
7.0 3.79±0.08 16.63 5.81 8.94

Table 2: The naturalness MOS, CV (%) of different
guiding scale η in DiffStyleTTS.

(RTF). Fourth, different settings of η and γ used
only for prosodic transfer and control can affect
the MOS of DiffStyleTTS, as shown in Table 2.
Therefore, we select the optimal configuration in
this section. We employed the diversified control-
lable inference mode with η = 1.0 and γ = 0.7
in DiffStyleTTS. In all experiments, the step size
T of all diffusion models was set to 200 to ensure
rigor. Additionally, we ran multiple trials from
different terminal conditions xT to sample various
explicit prosodic features, and then averaged scores
for final evaluation results.

The results are shown in the first six rows of Ta-
ble 1. We can see that our proposed DiffStyleTTS
outperformed all baselines in naturalness and JS
Divergence. DiffStyleTTS also achieved faster syn-
thesis speed than the two diffusion models using
Mel-spectrograms as modeling targets.

3.3 Prosodic Control

To study the effect of the guiding scale η in
classifier-free guidance on balancing prosodic di-
versity and quality, we selected an utterance with
pronounced prosodic variations and synthesized it
using the diversified controllable inference mode
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Figure 4: The Mel-spectrograms of a sentence synthe-
sized with γ = 0 (top), 0.4 (middle) and 0.7 (bottom)
respectively.

Figure 5: The t-SNE visualization results.

with γ = 0.7. We used naturalness MOS to evalu-
ate the quality, and then calculated the coefficient
of variation (CV) of phoneme-wise pitch, energy
and duration to evaluate the diversity. A total of
12 participants evaluated four values of η to illus-
trate the effect of the guiding scale. The evaluation
results, presented in Table 2, indicate that as the
η increases, the diversity of explicit prosodic fea-
tures increases while the audio quality decreases.
Notably, when η ≥ 7.0, phoneme distortion occa-
sionally occured.

To study the effect of the correction scale γ in
the dynamic thresholding method, we randomly se-
lected a test sentence, set the guiding scale η = 7.0
to cause phoneme distortion, and employed the di-
versified controllable inference mode to synthesize
it three times with different values of γ. Figure 4
shows a distorted phoneme within the yellow box.
When γ was set to 0 (top), the phoneme distortion
was pronounced, exhibiting noticeable elongation.

This issue was alleviated at γ = 0.4 (middle) and
effectively resolved at γ = 0.7 (bottom).

To verify the ability of different tokens in the
GST module to control the generation of explicit
prosodic features, we randomly selected 50 sen-
tences from the evaluation set to predict explicit
prosodic features. During inference, we employed
the prosodic control inference mode to synthesize
a total of 500 explicit prosodic samples, which in-
cluded phoneme-wise pitch, energy, and duration.
We then computed the mean, standard deviation,
median, minimum, maximum, skewness, and kur-
tosis for each sample, resulting in a 21-dimensional
prosodic distribution vector for each sample. We
used t-SNE (van der Maaten and Hinton, 2008)
to reduce the dimensions of these vectors to two
dimensions for visualization.

Figure 5 shows that these 500 samples can be
well divided into 10 clusters, each matching one of
the 10 tokens. which indicates the effectiveness of
the hierarchical prosody modeling in DiffStyleTTS
on controlling the prosodic features of synthetic
speech via implicit style conditions.

3.4 Prosodic Transfer

To evaluate the effect of DiffStyleTTS in prosodic
transfer, we used FastSpeech2+GST, i.e., incorpo-
rating a GST module before the variance adaptor in
FastSpeech2, and the DiffProsody as the baselines,
we selected one reference utterance each from two
speakers (A and B) with distinct prosodic styles.
Then, we randomly selected two sentences each
from the other eight speakers, excluding the refer-
ence speakers, resulting in a total of 16 sentences
for prosodic transfer. The prosodic transfer infer-
ence mode was used to transfer the prosody of the
reference utterance to the other eight speakers. We
conducted a subjective preference (%) test involv-
ing 12 participants to compare the two models and
calculated the p-value of t-test to assess signifi-
cance of differences. As shown in Table 3, Diff-
StyleTTS significantly outperformed two baselines
on this prosodic transfer task (p < 0.05). We also
investigated the effect of the guiding scale η on the
intensity of prosodic transfer, setting γ = 0.7. The
experimental results in Figure 6 compare the trans-
fer effects of three different guiding scales. It’s
observed that as η increased, the prosodic transfer
effect became more pronounced. We recommend
listening to the examples on the demo page 1.
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(a) Original (b) η = 0.5 (c) η = 1.0 (d) η = 2.0

Figure 6: By tuning the guiding scale η, we adjusted the intensity of the prosodic transfer from reference audio to
original audio (a) to synthesize three Mel-spectrograms (b) (c) and (d).

Preference
p-value

FastSpeech2+GST Neutral DiffStyleTTS
Reference A 33.13 14.37 52.50 0.0077
Reference B 31.25 21.87 46.88 0.0249

Preference
p-value

DiffProsody Neutral DiffStyleTTS
Reference A 16.67 33.33 50.00 0.0134
Reference B 18.13 29.37 52.50 0.0231

Table 3: Subjective preference results for prosodic trans-
fer.

3.5 Ablation Studies
We conducted ablation studies to demonstrate the
effectiveness of key components in DiffStyleTTS.
The results are presented in the last three rows of
Table 1.

To verify the guiding effect of implicit style con-
ditions on explicit prosodic features, we can ob-
serve that removing the implicit style conditions c
from the denoiser Ψθ1(xt, t,y, c), prohibiting the
use of classifier-free guidance, i.e., w/o ISC, but
retaining them added to text embeddings, led to a
decrease in MOS and an increase in JS divergence.
When the implicit style conditions added to the text
embeddings were removed and only retained as the
condition c in Ψθ1(xt, t,y, c), i.e., w/o AISC, we
can also observe a decrease in MOS, which veri-
fies the implicit style conditions contain prosodic
features. Furthermore, removing the text embed-
ding conditions y from the denoiser Ψθ1(xt, t,y, c)
, i.e., w/o TEC, resulted in poor quality of syn-
thetic prosody, indicating the importance of text
embedding conditions on prosodic alignment. In
summary, experiments show that these key compo-
nents contributed significantly to the performance
of DiffStyleTTS.

4 Conclusion

This paper proposes a multi-speaker acoustic
model, DiffStyleTTS, based on a conditional diffu-
sion module and an improved classifier-free guid-

ance. We hierarchically model prosodic features
at both implicit and explicit levels. Text embed-
dings and implicit style conditions are combined
as the diffusion module’s conditions. To predict
explicit prosodic features, the dynamic threshold-
ing method is employed to improve classifier-free
guidance and then adjust the guidance intensity. Ex-
periments show that our proposed model achieves
higher naturalness compared to all baselines, and
faster synthesis speed compared to diffusion-based
baselines. Additionally, DiffStyleTTS demon-
strates superior prosodic transfer capabilities and
flexibility in comprehensive prosodic transfer and
control.

5 Limitation

Although our work on prosody prediction has made
it more flexible and controllable, we haven’t suc-
cessfully decoupled prosody from speaker timbre.
In addition, we can also observe some overlapping
samples after dimensionality reduction, indicating
that the tokens are not entirely independent and
share common prosodic styles. This suggests that
the implicit style conditions need further classifica-
tion. To achieve better disentanglement of prosody
will be a task for our future work.
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