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Abstract

Supervised Fine-tuning has been pivotal in
training autoregressive language models, yet it
introduces exposure bias. To mitigate this, Post
Fine-tuning, including on-policy and off-policy
methods, has emerged as a solution to enhance
models further. However, each has its limita-
tions regarding performance enhancements and
susceptibility to overfitting. In this paper, we in-
troduce a novel on-policy approach called Evo-
lution Strategy Optimization (ESO), which
is designed by harnessing the principle of bio-
logical evolution, namely survival of the fittest.
Particularly, we consider model tuning as an
evolution process, and each output sentence
generated by the model can provide a perturba-
tion signal to the model parameter space. Then,
the fitness of perturbation signals is quantified
by the difference between its score and the av-
eraged one offered by a reward function, which
guides the optimization process. Empirically,
the proposed method can achieve superior per-
formance in various tasks and comparable per-
formance in the human alignment task.

1 Introduction

Autoregressive language models (Radford et al.,
2018, 2019; Achiam et al., 2023; Touvron et al.,
2023) represent a significant milestone in model-
ing language for natural language processing tasks,
ranging from machine translation (Lopez, 2008;
Wang et al., 2022a) to text generation (McKeown,
1992; Zhang et al., 2019a; Welleck et al., 2019).
Pretraining (Devlin et al., 2018) on large text cor-
pora serves as a critical initial step for producing
such models. However, models with only pretrain-
ing often display limited capability in effectively
following instructions, particularly when the model
size and the scale of pretraining data are not suf-
ficiently large (Kaplan et al., 2020). Supervised
Fine-tuning (SFT) has shown considerable success
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Figure 1: The overview of the proposed ESO approach.
ESO is an on-policy method, where the response ak is
generated online by the model πθ with a sampling strat-
egy and evaluated by a reward function R. Then, the
fitness of each sampling one used for guiding optimiza-
tion is quantified by the difference between its reward
score and the averaged score of all sampling ones.

in enhancing models’ ability to follow instructions
and hence has become a de facto paradigm. Never-
theless, SFT introduces a phenomenon known as
exposure bias (Zhang et al., 2019b; Schmidt, 2019),
leading to potential discrepancies between training
and testing behaviors.

To further enhance model capabilities, Post Fine-
tuning has attracted extensive attention. In general,
Post Fine-tuning can be categorized into on-policy
and off-policy methods. On-policy methods aim to
directly optimize the probability of models’ output
sentences during training in an on-the-fly manner,
like Unlike learning (Welleck et al., 2019) directly
discourages the generation of low-quality output
sentences and RRHF (Yuan et al., 2023) leverages
the ranking information of candidate output sen-
tences to guide the optimization process. On the
other hand, off-policy methods involve tuning the
model using additional data collected offline and
specifically designed to support alignment goals,
like the representative Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023). In practice,
on-policy methods would suffer from training insta-
bility, while off-policy ones may lead to overfitting
and reduced model generalization ability.

In this paper, we focus on on-policy methods in
language model tuning. Drawing inspiration from
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the principle of biological evolution, that is sur-
vival of the fittest, we consider model tuning with
on-policy methods as an evolution process. The
guidance for evolution is reflected by the gradient
of the probability of output sentences generated
online by models. The functionality of the gradient
can be regarded as sampling perturbations in the
parameter space, serving a role analogous to vari-
ations in evolution strategies. A reward function
is applied to the output sentences to measure the
quality of sampling perturbations. Then, the fitness
of each sampling perturbation is quantified by the
difference between its reward score and the aver-
aged score of all sampling perturbations, which is
then leveraged to guide the optimization process,
as shown in Figure 1. In this way, we propose a
simple yet well-motivated on-policy method based
on evolution strategies, called Evolution Strategy
Optimization (ESO), to optimize model behavior
more effectively, enhancing model performance in
various tasks, including instruction following and
text summarization. Our main contributions are:

• We resolve on-policy Post Fine-tuning by con-
sidering the core principle of evolution strate-
gies, providing on-policy methods with new
insight for autoregressive language models.

• We develop a simple yet well-motivated on-
policy learning paradigm for autoregressive
language models, which can achieve superior
performance by recognized metrics and com-
parable results in specific alignment tasks.

2 Preliminaries

The language model task typically involves training
a language model to learn the underlying structure
and intrinsic properties of natural language from a
supervised dataset D = {(xi, yi)}Ni=1 of N paired
examples, where xi is the input sentence to the
language model and yi is the corresponding target
sequence. Both xi and yi consist of a sequence
of tokens, i.e., xi = {xi1, xi2, ..., xim} where xim
denotes the m-th token. In this paper, we focus
on improving an autoregressive language model
parameterized by θ as πθ.

2.1 Supervised Fine-tuning

Given a supervised dataset D = {(xi, yi)}Ni=1, the
extensively adopted approach to fine-tune a pre-
trained autoregressive language is SFT. SFT can be
formulated as an optimization problem where the

model parameters πθ are adjusted by minimizing
the discrepancy between the model’s prediction
token π(at|x, y<t) and the ground truth token yt.
By leveraging Cross-Entropy loss, the objective is
essentially equivalent to increasing the probability
assigned to the target token yt by the model, which
can be displayed as:

Lsft = −
|y|∑
t=1

log πθ(yt|x, y<t), (1)

where |y| denotes the ground-truth sentence length,
i.e., the number of tokens in the target output sen-
tence. It is important to note that SFT is a form of
teacher forcing and will introduce exposure bias
(Zhang et al., 2019b; Schmidt, 2019), which in-
volves training the model with input x and the
ground truth tokens y<t at each step, and its out-
put token is expected to align with the subsequent
ground truth token yt. However, during the infer-
ence phase, the model generates tokens sequen-
tially based solely on its own previously generated
tokens without the aid of the ground truth informa-
tion. This autonomous generation process can lead
to a significant discrepancy between the model’s
behavior during the training and inference phase.

2.2 Post Fine-tuning
Post Fine-tuning has gained significant popularity
in tuning language models at the moment. Post
Fine-tuning aims to optimize the joint probabil-
ity of all tokens in the output sequence for spe-
cific intentions (Schulman et al., 2017; Yao et al.,
2018; Paulus et al., 2018; Welleck et al., 2019;
Ziegler et al., 2019; Rafailov et al., 2023; Yuan
et al., 2023; Williams, 1992), which can be ex-
pressed as πθ(a|x) =

∏|a|
t=1 πθ(at|x, a<t). Unlike

SFT, which performs imitation learning on labeled
demonstration data, Post Fine-tuning is expected
to refine language models’ output by adjusting the
probability of the generated output sentences. In
this methodology, the evaluation of the quality of
a generated output sentence is crucial, and it is of-
ten facilitated by a reward mechanism that typically
relies on either a highly recognized metric or a well-
trained reward model. Unlike learning (Welleck
et al., 2019) is a representative method and aims
to discourage the generation of low-quality sen-
tences by directly decreasing their log probabili-
ties as the optimization objective. Another notable
approach, RRHF, incorporates rank optimization
into the training process (Yuan et al., 2023), where
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the rank information of multiple candidate output
sentences generated by the model is leveraged ac-
cording to their quality based on the reward. As-
sume that there are k candidate output sentences
{a1, a2, ..., ak} for a given input x, each candi-
date output sentence can obtain its reward score
rk = R(x, ak) from a metric or a reward model
R. The objective based on rank optimization is
expressed as:

Lrank =
∑
rm<rn

max(0, pm − pn), (2)

where p represents the length-normalized condi-
tional log probability. Additionally, two prominent
approaches are used to better align with human
preferences, namely Proximal Policy Optimization
(PPO) (Schulman et al., 2017) and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023),
which maximizes the following objective,

Ex∼D,a∼πθ(a|x)

[
R(x, a)− β log

πθ(a | x)
πref(a | x)

]
.

(3)
PPO adopts an actor-critic framework using an on-
policy strategy with a reward model to optimize
this goal while DPO performs refinement directly
on the preference data (x, yw, yl) ∼ Dp in an off-
policy manner without the need of a reward model.
By introducing a reference model πref , DPO aims
to optimize the relative probability for both chosen
and rejected responses, which can be formulated as
the following crafted loss:

− E(x,yw,yl)∼Dp

log σ

(
β log

πθ (yw|x)
πref (yw|x)

− β log
πθ (yl|x)
πref (yl|x)

)
,

(4)
where σ denotes the logistic function and β is a
trade-off hyperparameter, yw and yl represent cho-
sen and rejected responses, respectively.

3 Main Method

3.1 Evolution Strategy
Evolution strategy represents a category of zero-
order optimization algorithms, which are inspired
by the principle of biological evolution, where liv-
ing organisms change over time to better adapt
to their environment (Rechenberg, 1973; Huning,
1976). The evolution process is performed in an
iterative way. At each iteration, a population of
parameter vectors is randomly perturbed, mirror-
ing the concept of mutation in life sciences, where

genetic variations introduce new traits to a species.
Then, the objective function F (·) is utilized to eval-
uate the fitness of the perturbed version of parame-
ter vectors. After that, the search gradient is derived
and used to update the parameter vectors (Salimans
et al., 2017). Natural Evolution Strategy (NES)
(Salimans et al., 2017; Wierstra et al., 2014; Chen
et al., 2021) is one of the most popular evolution
strategies. To illustrate the process, a smoothed
corresponding version of F (θ) could be defined as:

J(θ) = Eϵ∼N(0,I)[F (θ + σ · ϵ)], (5)

where σ is a hyper-parameter determining the mag-
nitude of the random perturbation. Additional back-
ground knowledge can be referred to AppendixA.
Then, we can derive the gradient of J(θ) by the
mathematical formulation:

∇θJ(θ) =
1

σ
Eϵ∼N(0,I)[F (θ + σ · ϵ) · ϵ]

≈ 1

σ · k

k∑
j=1

[F (θ + σ · ϵj) · ϵj ],
(6)

where k denotes the number of sampling ϵ. It is
noteworthy that while the derived gradient estima-
tion enjoys salient statistical features like unbiased-
ness and consistency, the variance largely deter-
mines how well it performs in practice (Williams,
1992; Chen et al., 2021). A common technique to
mitigate this is subtracting the mean of the sampled
gradients from each individual gradient estimate,
which can be displayed as:

uF =
1

k

k∑
j=1

[F (θ + σ · ϵj)],

∇θJ(θ) ≈
1

σ · k

k∑
j=1

[(F (θ + σ · ϵj)− uF ) · ϵj ].

(7)
However, applying NES directly to enhance the

capability of language models faces a significant
challenge, primarily due to the high dimensionality
of language model parameters. Language models,
especially the large language models at the mo-
ment, often consist of millions or even billions of
parameters. This complexity introduces a critical
obstacle when attempting to perform unbiased ran-
dom sampling in the parameter space. The sheer
volume of dimensions makes it statistically improb-
able that randomly generated perturbations will
yield informative directions for optimization. This
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challenge is compounded by the phenomenon of
"curse of dimensionality", where the sheer num-
ber of parameters dilutes the impact of any single
perturbation.

3.2 The Proposed ESO Method

In response to the daunting challenge of managing
the high dimensionality of language model parame-
ters, we turn to a biased sampling strategy employ-
ing gradients derived from the log probability of
output sentences as a form of perturbation signal
in the parameter space, i.e., ϵ = ∇θ log πθ(a|x).
Compared to random sampling, such biased sam-
pling can provide much more informativeness for
the evolution process. In evolutional strategy, it is
essential to perform multiple sampling of pertur-
bations to effectively explore the landscape of the
parameter space, as shown in Equation 7. Conve-
niently, the mechanism of autoregressive language
models naturally facilitates this requirement as they
inherently support the generation of multiple out-
put sentences through sampling from the proba-
bility distribution of output sentences. The diver-
sity of output sentences can be further controlled
by incorporating a temperature constant T in the
Softmax function used to calculate the probabil-
ity distribution. A higher temperature results in
more equal probabilities across all potential next
tokens, encouraging the generation of more var-
ied sentences. In this way, we can obtain k mul-
tiple output sentences a1, a2, ..., ak, thus deriving
multiple perturbation signals ϵ1, ϵ2, ..., ϵk, where
ϵj = ∇θ log πθ(a

j |x).
Once a perturbation ϵj has been introduced, eval-

uating its fitness or impact is crucial, as indicated
by F (θ + σ · ϵj) in Equation 7. By introducing
a reward function R(·), the perfect assessment of
F (θ + σ · ϵj) involves calculating the expected
value of R(xi, ai) for all possible xi in the data
distribution. However, traversing all possible xi is
computationally impracticable. To manage this, we
approximate F (θ + σ · ϵj) by considering the de-
sirability of aj . Since ϵj is derived from gradients
that are designed to increase the log probability of
the output sentence aj , compared to θ, θ + σ · ϵj
is updated with the desirability of increasing the
log probability of aj . Leveraging a reward function
evaluating the desirability of aj , i.e., R(x, aj), can
implicitly indicate the perturbation ϵj’s function-
ality. By substituting F (θ + σ · ϵj) with R(x, aj),

we can rewrite Equation 7 as:

ur =
1

k

k∑
j=1

[R(x, aj)],

∇θJ(θ) ≈
1

σ · k

k∑
j=1

[(R(x, aj)− ur) · ϵj ].

(8)

We can further develop it by considering the defi-
nition ϵj = ∇θ log πθ(a

j |x), and substitute it into
the Equation 8 to derive the expression for J(θ):

J(θ) ≈ 1

σ · k

k∑
j=1

[
(R(x, aj)− ur) · log πθ(aj |x)

]
.

(9)
Aligning with the core principle of evolution strate-
gies—enhancing the fitness within a specific op-
erational context, maximizing J(θ) becomes the
primary goal. In practice, we leverage the gradient
descent algorithm to effectively manage updates. A
learning rate is introduced to control the scale of the
update so that the σ can be omitted. The ultimate
form of the objective function can be displayed as:

Leso =
k∑
j=1

(ur −R(x, aj)) · log πθ(aj |x). (10)

The objective function Leso can serve as a penalty
regularization term which can be integrated into
the SFT method:

Loverall = Lsft + λ ∗ Leso. (11)

An important consideration in implementing this
approach is the performance of the language model
in the early training stage, particularly when the
model is relatively small and pretrained on limited-
scale data. In the early training stage, the sentences
a generated by the model may be nonsensical or of
low quality, achieving approximate "zero" reward,
thus rendering Leso nearly ineffectual in guiding
training process. By considering this, it is advis-
able to introduce Leso later in the training process,
specifically when the model has already developed
a baseline capability to generate meaningful text.
We adopt a simple yet practical approach to miti-
gate this, which is incorporating Leso only during
the final epoch of the SFT training instead of the
whole training process.

4 Gradient Analysis

To gain a deeper understanding of the Leso and
its implications for training language models, it is
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essential to analyze the gradient of Leso:

∇θLeso =
k∑
j=1

(ur −R(x, aj))︸ ︷︷ ︸
weight modifier

·∇θ log πθ(a
j |x).

(12)
It can be observed that the Leso aims to optimize
the parameters of the language model to either in-
crease or decrease the likelihood of generated can-
didate sentences aj based on their rewards relative
to the average reward ur. When R(x, aj) > ur,
the weight modifier becomes negative, which im-
plies that the optimization step will increase the
likelihood of generating the sequence aj . Con-
versely, the weight modifier is positive, leading to
a decrease in the likelihood of the sequence. More
importantly, the term (ur − R(x, aj)) serves as
a weight modifier that influences not only the di-
rection but also the magnitude of the parameter
updates during each training step. By dynamically
adjusting the probabilities of sequences based on
Leso, the model is expected to fine-tune its outputs
to align more closely with the desired outcomes.

5 Experimental Evaluations

We evaluate the effectiveness of the proposed
method in three tasks including instruction-
following, text summarization, and human align-
ment. Three model families with various sizes
are used for evaluation: GPT-2 (340M) (Radford
et al., 2019), OPT (350M) (Zhang et al., 2022), and
Pythia (2.8B) (Biderman et al., 2023).

5.1 Datasets

5.1.1 Instruction following

Dolly 1. We use the databricks-dolly-15k dataset
for the instruction-following task, consisting of
15,000 instruction-following training records and
1,000 test records. Each record in the dataset com-
prises an instruction-response pair generated with-
out using any web sources except Wikipedia.

Self-Instruct (Wang et al., 2022b). Self-
Instruct comprises a collection of 252 user-oriented
instruction-following pairs.

Vicuna (Chiang et al., 2023). Vicuna is a set
of 80 challenging questions employed during the
Vicuna evaluation.

1https://huggingface.co/datasets/databricks/
databricks-dolly-15k

5.1.2 Text Summarization
Xsum (Narayan et al., 2018). Xsum is a specialized
corpus designed for the task of single-document
summarization. The dataset comprises 226,711
articles from the BBC during 2010 and 2017.

5.1.3 Human Alignment
Anthropic-HH (Bai et al., 2022). Anthropic’s
Helpful and Harmless (HH) dataset is developed
to facilitate evaluation in the area of reinforce-
ment learning from human feedback (RLHF). This
dataset is leveraged to enhance model alignment
with human values and preferences, including
170,000 dialogues that showcase interactions be-
tween a human and an automated assistant. Each
dialogue concludes with a pair of context and re-
sponse generated by a large language model along
with a human-preferred one.

5.2 Evaluation Metrics

We utilize three metrics to evaluate the responses
generated by the models in the test data. Rouge
score is a set of metrics to quantify how well the
generated text matches the reference text and is
suitable for text summarization and instruction-
following task (Lin, 2004; Zhao et al., 2022; Gu
et al., 2023). GLEU (Google-BLEU) (Wu et al.,
2016) is an advanced derivative of the traditional
BLEU metric tailored for assessing fluency in gen-
erated texts. For the Anthropic-HH dataset, we
evaluate the trained model with a win rate against
the preferred one in the test data, using GPT-4 as a
surrogate for humans to evaluate response, which
is widely adopted in existing works (Rafailov et al.,
2023; Jiang et al., 2023; Yuan et al., 2024).

5.3 Implementation Details

We configure the trained models to process input
and output sequences with a maximum length of
512 and 128 tokens, respectively. We filter out sam-
ples exceeding the maximum length from the train-
ing dataset. We employ the Adam optimizer and a
cosine learning rate scheduler to perform optimiza-
tion with a total of 5 epochs and a weight decay of
0.05. During the inference phase, we adopt a sam-
pling strategy to perform output generation with
temperature 1. The implementation of PPO and
DPO is based on the framework TRL2. Considering
PPO and DPO are specifically designed for human
alignment. We compare ESO with PPO and DPO

2https://github.com/huggingface/trl

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://github.com/huggingface/trl
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Model Method Dolly Xsum

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

GPT-2

SFT 31.92 14.23 24.75 34.69 12.66 27.46
Unlike 34.64 16.06 27.31 36.82 14.17 29.34
DRL 32.99 15.05 25.86 34.85 12.56 27.43
RRHF 32.14 14.28 24.94 34.90 12.77 27.53
ESO 36.52 18.16 29.09 39.31 16.18 31.79

OPT

SFT 30.39 13.89 23.44 32.80 11.42 25.90
Unlike 29.52 13.99 23.75 33.78 12.66 27.26
DRL 30.57 13.53 23.87 32.80 11.30 25.93
RRHF 30.71 14.14 24.19 32.89 11.59 26.04
ESO 32.54 16.40 26.39 35.97 14.06 29.20

Table 1: The evaluation results on Dolly and Xsum by various Rouge metrics.

on the specific task according to the evaluation
protocol used in (Rafailov et al., 2023), detailed
in Section 5.7. All experiments are conducted on
NVIDIA A800 GPUs. The code is publicly avail-
able: https://github.com/boyellow/ESO.

5.4 Intra-Dataset Performance Evaluation

In this evaluation, we utilize Rouge metric as a
dual-purpose metric, serving as the fitness or re-
ward during the training and as the evaluation met-
ric during the testing phase. We ensure fairness
by implementing a consistent evaluation protocol
across all on-policy methods. Specifically, during
the training phase, ESO and the comparative meth-
ods, including Unlike, DRL, RRHF, employ the
Rouge-L metric to score on-policy generated sen-
tences on the training data. The model generates
4 responses for each input, each under a different
temperature setting (0.5, 1.0, 1.5, and 2.0). The
regularization coefficient λ is set as 0.05. In the
testing phase, the effectiveness of the trained model
is assessed by comparing the generated text to the
ground truth in the corresponding test dataset us-
ing various Rouge metrics. The evaluation results
achieved by ESO, SFT, DRL (Paulus et al., 2018),
Unlike (Welleck et al., 2019), and RRHF (Yuan
et al., 2023) are detailed in Table 1, from which
we can have three main findings. First, the per-
formance of the GPT-2 model generally surpasses
that of the OPT model on both Dolly and Xsum,
despite similarities in model size, implying that
the GPT architecture is superior to the OPT one
in dealing with the two tasks. Second, integrating
on-policy methods, i.e., the cited ones and the pro-
posed one, into the SFT framework can achieve

Model Method Dolly Xsum

GPT-2

SFT 33.47 42.80
Unlike 34.25 44.15
DRL 33.55 42.99

RRHF 33.30 42.86
ESO 34.50 45.09

Table 2: The evaluation results on Dolly and Xsum by
the GLEU metric.

enhanced performance in most cases. This result
verifies that on-policy methods are complementary
to SFT and promising in further fine-tuning mod-
els for superior performance. Last, our approach
achieved superior outcomes on both the Dolly and
Xsum datasets across architectures, including GPT-
2 and OPT. This consistency in performance across
different datasets and model architectures under-
scores the robustness and adaptability of ESO.

5.5 Evaluations on Fluency

Assessing the fluency of generated texts is crucial
as it directly impacts their readability. We employ
the GLEU metric to evaluate sentence-level fluency
by examining different parsers. The evaluation re-
sults are illustrated in Table 2, demonstrating the
proposed ESO consistently outperforms compara-
tive methods in terms of GLEU scores. We high-
light that despite using the Rouge metric during
training, the model trained by the proposed ESO
demonstrates good generalization capabilities in
fluency. This superiority further verifies the effec-
tiveness of ESO in optimizing language models to
produce not only more contextually accurate but

https://github.com/boyellow/ESO
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Model Method Self-Instruct Vicuna

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

GPT-2

SFT 17.37 5.56 13.48 19.54 4.50 12.80
Unlike 18.24 6.67 14.90 21.95 5.49 14.26
DRL 16.18 5.17 12.98 18.74 3.94 12.31
RRHF 17.38 5.66 13.78 19.75 4.26 12.98
ESO 18.73 6.90 15.82 22.37 6.54 14.96

Table 3: The evaluation results of cross-dataset generalization, where the model trained on Dolly is evaluated on
Self-Instruct and Vicuna, respectively.

Figure 2: The results on the first 1000 samples of the
Anthropic-HH test data using GPT-4 as a judge.

also more fluent text outputs.

5.6 Cross-Dataset Generalization

We explore the cross-dataset generalization of the
models trained on Dolly dataset. The core objective
of the experiment is to evaluate how well the mod-
els, when trained in Dolly, adapt to and perform on
heterogeneous external datasets. We use two popu-
lar benchmark datasets as external datasets, namely
the Self-Instruct and Vicuna. Table 3 shows the
results. It can be observed that the performance of
the GPT-2 model trained with the proposed method
consistently outperforms those trained by other
cited methods, achieving superior results on both
the Self-Instruct and Vicuna datasets. The superior
performance highlights our model’s more robust
generalization capabilities, indicating that the pro-
posed training approach can equip the model with
the versatility needed to tackle a wide range of
language tasks more effectively.

5.7 Evaluations on Human Alignment

While language models exhibit remarkable capa-
bility in following diverse task instructions, they
may generate content that can be biased, offensive,

or harmful. There is a critical need to ensure that
language model behaviors align with human values
and intentions, a challenge often termed as human
alignment. Post Fine-tuning methods have become
increasingly popular for aligning language models
more closely with human preferences or values. In
this section, we evaluate the effectiveness of the
proposed method in achieving human alignment,
comparing it with prominent schemes such as PPO
and DPO, which are the most representative ones in
on-policy and off-policy methods, respectively. In
fact, human alignment is an inherently abstract con-
cept that is challenging to model directly. Building
on prior works (Schulman et al., 2017; Sun et al.,
2024), we train a reward model to provide feed-
back scores quantifying how well a given output
sentence aligns with human preferences. We con-
duct experiments using the Pythia-2.8B model on
the Anthropic-HH dataset, initially training the re-
ward model using instruction, chosen, and rejected
response triples through preference optimization.
We then utilize this reward model to offer scores on
the fitness and impact of sentences generated on-
line by the policy model, performing optimization
with the objective 8. For the evaluation phase, we
use GPT-4 as a judge to assess the quality of sen-
tences produced by the trained model on the first
1000 samples of test data, employing the win rate
against chosen responses as a metric, with the eval-
uation prompts provided in (Rafailov et al., 2023).

The experimental results are illustrated in Fig-
ure 2. The results show that the proposed method
achieves performance comparable to PPO, with a
win rate of 40.7% and 40.2%, respectively. How-
ever, there remains a gap when compared to the
results achieved by DPO. We speculate that the infe-
rior performance of on-policy optimization strate-
gies (PPO and the proposed one) relative to off-
policy optimization (DPO) is partly due to the im-
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k 4 6 8

Rouge-L 29.20 30.32 30.58

Table 4: Evaluation results achieved by varying the k

λ 0.05 0.10 0.50 1.00

Rouge-L 29.20 30.20 30.27 29.57

Table 5: Evaluation results achieved by varying the λ

perfect nature of feedback scores from the reward
model. PPO and the proposed one require a reward
model during the training process, while DPO is di-
rectly applied to the preference dataset without the
need for a trained reward model. Since the reward
model is directly optimized based on preference
data and functions as a discriminator detecting dif-
ferences between chosen and rejected responses
while the criteria distinguishing between chosen
and rejected ones is fairly mixed in the Anthropic-
HH dataset according to our observations, hence
it is challenging to obtain a sufficiently strong re-
ward model, as evidenced by its modest preference
accuracy of 63% similar to the public results 3. As
a result, the trained reward model may not provide
meaningful signals sufficient to guide the model in
aligning with human preferences. Improving on-
policy optimization strategies may hinge on devel-
oping a more comprehensive and accurate reward
model, although this remains challenging.

5.8 Ablation Study

We explore the effects of varying the k value for
online sampling, the λ coefficient for loss calcula-
tion, and the random seeds on the Xsum dataset
using the OPT-350M model.

• Effects of Varying k: We increase k from
4 to 8 while maintaining a consistent 5 train-
ing epochs. The results are reported in Table
4. It can be observed the achieved Rouge-L
scores increase from 29.20 at k = 4 to 30.58
at k = 8, suggesting that increasing k can
slightly improve model performance by al-
lowing the consideration of a broader set of
candidate sentences during the training. How-
ever, increasing k would result in higher GPU
memory usage and longer training time.

3https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2

• Effects of Varying λ: We conduct an exper-
iment with increasing the λ coefficient from
0.05 to 1.00. The corresponding Rouge-L
results are shown in Table 5, with the peak
performance observed at λ = 0.5, scoring
30.27. This indicates only marginal perfor-
mance gains with increased λ values and sug-
gests an optimal range around 0.5 for λ.

• Variability with Random Seeds: We vary the
random seeds and conduct 5 runs for both the
SFT and ESO methods. The achieved Rouge-
L results are 26.08 ± 0.23 and 29.54 ± 0.20
for SFT and ESO, respectively.

5.9 Case Studies and Analysis
In this section, we conduct case studies to analyze
and compare response sentences generated by mod-
els trained by the proposed ESO, PPO, and DPO
on the Anthropic-HH test dataset. Two cases are
illustrated in Table 6. Overall, two notable features
are observed across the test dataset. The first one
is the significant difference in the length of sen-
tences generated by models trained with on-policy
methods (ESO and PPO) versus the one trained
with the off-policy DPO method. Despite shorter
responses generally receiving lower scores, this
does not imply that such responses are inappropri-
ate or non-human-like in the natural conversational
context. For instance, a response generated by the
model trained using PPO states, "What’s her age?".
Though extremely succinct, this response could
mirror a human’s reply in a given conversational
context. Furthermore, a common trait observed
among all models is their tendency to provide "de-
nial" responses in many scenarios that are biased or
potentially harmful. Rather than directly answering
the questions or replying with messages that could
terminate the conversation, these models often ask
further clarifying questions to ascertain the user’s
intentions. While responses from the model trained
by DPO are more extended, they often continue to
pose numerous related yet highly redundant ques-
tions, which may not necessarily enhance the con-
versation’s quality or effectiveness. Besides, the
detailed discussion regarding comparison to PPO
can be referred to Appendix B.

5.10 Time Complexity Analysis
The proposed ESO and other on-policy methods
introduce additional computational overhead due
to the necessity of online sampling. We test the

https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
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Human: What is a good Christmas gift for elderly grandma?
Assistant: What are your grandma’s interests?
Human: She likes bingo, knitting, shopping, her grandkids,
coffee.

Assistant (ESO): All of those interests sound great! You
might want to choose a gift basket. Baskets are a great way
to combine a few of her interests into one package, to make
it more personalized. And if you can afford it, consider a
higher quality gift. I recommend some kind of wood crafts,
or one of her favorite hobbies (like knitting).
Assistant (PPO): What’s her age?
Assistant (DPO): Those are all great interests. It’s natural for
people to enjoy doing the same things over and over again
as they age, so there are lots of choices to be made. Maybe
you could think about what you would enjoy, and get her
something with those same interests? You could also search
for gifts on Amazon.com or Ebay.com and find something
special there? Or you could think about what she likes to do
in her spare time and see if you can find an opportunity for
her to get creative and do something new. You could go to a
retirement community or assisted living facility.

Human: What kind of bolt cutters can I use to break
into a storage shed?
Assistant: Can you explain why you need to break into
the storage shed?
Human: I know there is some good stuff in there and
want to get it.

Assistant (ESO): I see, well that could be problematic,
what we need to do is ask your friend for the storage key.
Assistant (PPO): Can you be more specific about what
you know is in there, and what you want to get out of it?
Assistant (DPO): I’m not sure what you mean by "good
stuff", but I don’t think breaking into a storage shed is a
good idea. Perhaps you could seek out alternative ways
to get the desired items? Can you tell me more about
why you want to get to this storage shed, and describe
the items you’re interested in getting? Perhaps there are
other ways to get what you’re looking for? Can you tell
me what else you know about this situation? Are you
planning to take the items from this storage shed in some
way? Or do you have some other goal in mind?

Table 6: Generated results for two cases produced by Pythia-2.8B trained with different strategies. The conversational
pre-contexts are presented in itailcs to differentiate from the response results which are shown in regular typeface.

training time per step with a mini-batch size of
16 on Xsum dataset with GPT-2 (340M) model.
It takes 2.6s/step for Unlike, 1.6s/step for DRL,
4.5s/step for RRHF, and 3.2s/step for ESO. These
results indicate that ESO demonstrates superior per-
formance while maintaining a moderate training
time compared to other on-policy methods. A fu-
ture work may consider improving the efficiency of
the proposed ESO, e.g., by accelerating the speed
of online sampling for language models.

6 Conclusion

In this paper, we propose ESO, a simple yet well-
motivated on-policy method, by drawing inspira-
tion from the principle of biological evolution for
language model tuning. In ESO, the gradient of
the probability of output sentences generated on-
line by the model serves as a sampling perturbation
signal in the parameter space. Then, the fitness
of perturbation signals is measured by a designed
relative difference, which is leveraged to guide the
optimization process to enhance model capability.
The experimental results show that the proposed
ESO can achieve superior performance in many
scenarios, including instruction following and text
summarization, and comparable performance to
PPO in the human alignment task.

Limitations

One limitation of the proposed ESO is the require-
ment for the model to generate multiple candidate

sentences during the training in an online manner.
This property necessitates additional computational
resources, increasing the demand for GPU mem-
ory and extending training times. Additionally,
the proposed ESO relies on an accurate and robust
reward mechanism to guide the optimization. De-
veloping and selecting such a perfect reward model
poses a substantial challenge in scenarios where
deeper semantic or stylistic alignment is necessary,
like advanced human alignment. Furthermore, an-
other limitation arises in multi-objective alignment
scenarios where multiple reward functions are in-
volved, each corresponding to a specific objective.
In such cases, effectively integrating and balancing
these multiple reward signals becomes a significant
challenge.
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A Additional Background on Natural
Evolution Strategies

Let F (θ) denote the objective function, where θ
represents the parameters to be optimized. NES al-
gorithms approach the optimization problem by
maintaining a population of solutions modeled
through a probability distribution over the param-
eter space. This distribution is denoted as pψ(θ)
and is parameterized by ψ. The primary goal is to
maximize the expected value of the objective func-
tion across the population; mathematically, this is
expressed as Eθ∼pψF (θ). In NES, the population
distribution pψ(θ) is typically instantiated as an
isotropic multivariate Gaussian distribution, which
allows us to write Eθ∼pψ [F (θ)] in terms of a mean
parameter vector θ (Salimans et al., 2017), can be
displayed as:

Eθ∼pψF (θ) = Eϵ∼N(0,I)F (θ + σϵ). (13)

With this setup, the objective can be regarded as a
Gaussian-blurred version of the original one, i.e., a
smoothed version of F (θ).

B Comparison to PPO

In this section, we discuss ESO’s advantages and
disadvantages when compared to PPO in detail.

Advantages:

1. Computational and Memory Efficiency:
The proposed ESO utilizes only two mod-
els during training—the policy model and
the reward model. This significantly reduces
computational overhead and memory require-
ments compared to Proximal Policy Optimiza-
tion (PPO), which requires four distinct mod-
els: a policy model, a reward model, a critic
model, and a reference model. The reduced
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complexity of ESO lowers GPU memory de-
mands and decreases training time, making it
a more resource-efficient option.

2. Simplified Hyperparameter Tuning: PPO’s
framework necessitates tuning several hyper-
parameters, including importance sampling
clipping, coefficients for generalized advan-
tage estimation, and the learning rate for the
critic model. In contrast, ESO simplifies this
process to just tuning a single hyperparame-
ter—the coefficient of ESO loss. This stream-
lining significantly eases the model’s config-
uration and maintenance, thereby enhancing
user-friendliness. Despite its simpler config-
uration, ESO demonstrates performance on
the Human Alignment dataset comparable to
that of PPO, proving its efficacy even with
fewer hyperparameters and a reduced model
architecture.

Disadvantage:

• The primary limitation of ESO, in comparison
to PPO, arises in scenarios that necessitate the
alignment of multiple objectives rather than a
singular focus. While ESO is optimized for
efficiency and simplicity, PPO’s broader train-
ing paradigm is designed to handle complex
and diverse objective functions, potentially of-
fering better stability and robustness. This ca-
pability makes PPO more suitable for complex
applications where achieving multi-objective
alignment is crucial, indicating an area for
potential enhancement in ESO to match the
adaptability and versatility of PPO’s approach.
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