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Abstract

Knowledge graph embedding (KGE) aims to
embed entities and relations as vectors in a con-
tinuous space and has proven to be effective
for KG tasks. Recently, graph neural networks
(GNN) based KGEs gain much attention due
to their strong capability of encoding complex
graph structures. However, most GNN-based
KGEs are directly optimized based on the in-
stance triples in KGs, ignoring the latent con-
cepts and hierarchies of the entities. Though
some works explicitly inject concepts and hier-
archies into models, they are limited to prede-
fined concepts and hierarchies, which are miss-
ing in a lot of KGs. Thus in this paper, we pro-
pose a novel framework with KG Pooling and
unpooling and Contrastive Learning (KGPCL)
to abstract and encode the latent concepts for
better KG prediction. Specifically, with an in-
put KG, we first construct a U-KG through KG
pooling and unpooling. KG pooling abstracts
the input graph to a smaller graph as a pooled
graph, and KG unpooling recovers the input
graph from the pooled graph. Then we model
the U-KG with relational KGEs to get the rep-
resentations of entities and relations for predic-
tion. Finally, we propose the local and global
contrastive loss to jointly enhance the represen-
tation of entities. Experimental results show
that our models outperform the KGE baselines
on link prediction task.

1 Introduction

Knowledge graphs (KGs) are crucial for many
knowledge-driven applications, such as recommen-
dation systems (Yang et al., 2022), and knowledge-
based question answering (Saxena et al., 2021).
They store knowledge in the form of triples (h,r,t),
i.e., (head entity, relation, tail entity) to indicate the
relation between the head entity and the tail entity.
However, KGs usually suffer from incompleteness,
limiting the effectiveness of KG applications. Thus,
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Figure 1: A hypothetical knowledge graph, indicating
entities have latent concepts and hierarchies, although
they are not predefined.

knowledge graph embedding (KGE) methods are
proposed to infer new facts.

There are many types of KGEs proposed in the
past decade (Wang et al., 2017). Translation-based
models (Sun et al., 2019) measure the plausibility
of a triple by interpreting the relation as a transla-
tion, and semantic matching models (Yang et al.,
2015) calculate semantic similarity. Furthermore,
GNN-based KGEs (Schlichtkrull et al., 2018) gain
much attention for the ability to explicitly model
complex graph structures. They use relational
GNNs as encoders and conventional KGEs as de-
coders to learn entity and relation representations,
and have achieved promising results on link predic-
tion and triple classification tasks.

Despite the success of the GNN-based KGEs,
they stack GNN layers in a flat manner, ignoring
the concepts and hierarchies of entities. Although
some studies explore injecting explicit concepts
into models (Niu et al., 2022), such predefined in-
formation is usually missing in lots of KGs. How-
ever, the concepts and hierarchies of entities could
be reflected by the relations of triples. As shown in
Figure 1, the entities New York City and Honolulu
are both the tail entities of the relation wasBornIn,
suggesting that they may belong to the same con-
cept. Thus we propose the research question is it
possible to learn latent concepts (i.e., do concept
abstraction) based on raw triples and enhance
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the prediction results with the latent concepts?
In this paper, we propose a framework with KG

Pooling and unpooling and Contrastive Learning
(KGPCL) to abstract and encode the latent con-
cepts of entities in KGs. Specifically, we transform
the input KG into a sequence of KGs. The input
KG is first pooled to a more abstract KG, abbre-
viated as pooled KG. And then the pooled KG is
recovered to the input KG, abbreviated as recov-
ered KG. The sequence of the input KG, pooled
KG and recovered KG presents a U-shape , thus we
call it U-KG. Then we use relational graph neural
networks to model the KGs in the U-KG and get
the representations of the entities and relations for
prediction. Besides, we adopt local and global con-
trastive learning (CL) loss as the training objective
to constrain entity embeddings. The local CL fo-
cuses on entity embeddings on a single graph, and
the global CL focuses on both entity and concept
embeddings on two graphs across the U-KG. We
conduct experiments on four datasets and compare
KGPCL with conventional KGEs, especially GNN-
based KGEs. Results demonstrate that KGPCL can
achieve better performance than baselines on link
prediction task. Additionally, our ablation and vi-
sualization results verify the effectiveness of U-KG
construction and modeling.

2 Related Work

2.1 Knowledge Graph Embedding

From the perspective of learning resources, we di-
vide KGEs into two categories: (1) methods encod-
ing only the raw triples, and (2) methods encoding
both the raw triples and the concepts of entities.

Methods encoding only the raw triples mainly
consist of translation-based, semantic matching,
and neural network models. Translation-based
models describe relations as translations, for exam-
ple, TransE (Bordes et al., 2013) assumes h+ r ≈
t, where h, r and t are embeddings of h, r and
t. TransH (Wang et al., 2014) and TransD (Ji
et al., 2015) extend TransE to handle complex
relations. RotatE (Sun et al., 2019) defines rela-
tions as rotations in a complex vector space. Se-
mantic matching models calculate the semantic
similarity of entities and relations, where Dist-
Mult (Yang et al., 2015) defines the score function
as fr(h, t) = h⊤diag(r)t. ComplEx (Trouillon
et al., 2016) extends DistMult to complex space
to model asymmetric relations. Neural network
models use convolutional neural networks like

ConvE (Dettmers et al., 2018) or Graph Neural
Networks (Schlichtkrull et al., 2018) (GNN) for
KG completion. RGCN (Schlichtkrull et al., 2018)
introduces relation-specific transformations for
neighbor aggregation, and CompGCN (Vashishth
et al., 2020) further introduces composition oper-
ations. SEGNN (Li et al., 2022) proposes three
semantic evidences from relation, entity, and triple
levels to understand the extrapolation ability of
KGE. These GNNs are typically used as encoders
for capturing global structure, while other KGEs
can be served as decoders in our work.

Methods encoding both the raw triples and the
concepts of entities encode explicit or implicit con-
cepts. For explicit concepts, CAKE (Niu et al.,
2022) generates commonsense with entity concepts
to produce high-quality negative triples in training
and filter the candidates in evaluation. TransO (Li
et al., 2023) proposes specific constraint strategies
for entity types, relations, and hierarchical infor-
mation. Concept2Box (Huang et al., 2023) embeds
ontology-view and instance-view of a KG using
dual geometric representations by modeling con-
cepts with box embeddings and entities as vectors.
For implicit concepts, TypeDM (Jain et al., 2018)
calculates type compatibility scores by introducing
type embeddings for entities and relations. Au-
toETER (Niu et al., 2020) learns latent type em-
beddings of entities by regarding relations as trans-
lations between the types of entities with relation-
aware projections. Different from the two implicit
methods, our framework models the interactions of
implicit concepts to enhance the entity representa-
tions via the constraints between the entities and
concepts.

2.2 Contrastive learning
Contrastive learning has achieved great success in
various domains, such as natural language process-
ing (Das et al., 2022), recommendation (Yang et al.,
2022), and KG reasoning (Luo et al., 2022). It de-
fines the positive and negative pairs, and then pulls
the positive pairs close and pushes apart the nega-
tive pairs. KCL (Fang et al., 2022) builds chemical
element KG and proposes a knowledge-enhanced
contrastive learning framework for molecular rep-
resentation learning. KGE-CL (Luo et al., 2022)
introduces contrastive learning by constructing the
positive pairs for those entities that share the same
entity-relation couple and those entity-relation cou-
ples that share the same entity, and regarding un-
related entities and couples as negative pairs. KR-
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Figure 2: The architecture of our framework KGPCL.

ACL (Tan et al., 2023) proposes contrastive learn-
ing loss to alleviate the sparsity of KGs, introducing
more negative samples and enriching the feedback
to sparse entities for enhancing sparse KG comple-
tion. Contrastive learning could help us learn more
distinguishable representations of entities both in
one KG and across the KGs in the U-KG.

2.3 Graph pooling
Due to the flatness of GNN models, graph pool-
ing approaches are proposed to obtain embeddings
with hierarchies. DIFFPOOL (Ying et al., 2018)
proposes a differentiable pooling module and learns
a differentiable soft cluster assignment for nodes at
each layer of a deep GNN. Then it can coarse the
input graph and generate hierarchical representa-
tions. Graph U-Nets (Gao and Ji, 2019) introduces
the graph pooling layer and unpooling layer for
node classification. The graph pooling layer adap-
tively selects a subset of nodes to form a new but
smaller graph. SAGPool (Lee et al., 2019) exploits
a self-attention mechanism to distinguish between
the nodes that should be dropped and retained, con-
sidering both node features and graph topology.
Different from graph pooling, KG pooling is more
challenging since the relationships between entities
should also be considered during pooling.

3 Methodology

In this section, we introduce a method that mod-
els latent concept information with KG Pooling
and unpooling and Contrastive Learning, abbrevi-
ated as KGPCL. As shown in Figure 2, KGPCL
comprises three main components: 1) U-KG con-
struction abstracts the input KG G = {E ,R, Te}
to the pooled KG Gc = {C,R, Tc} and restores

the pooled KG to get the recovered KG Gr = G,
where E , R and C indicate entities, relations and
fine-grained concepts respectively. Te and Tc indi-
cate triples with entities and concepts as nodes. 2)
U-KG modeling uses GNN as encoder and con-
ventional KGE score function as decoder on U-KG
to obtain embeddings of entities and relations. 3)
Local and global contrastive learning focuses on
constraining entity embeddings on a single graph,
and constraining entity and concept embeddings on
two graphs across U-KG.

3.1 U-KG Construction

We consider a U-KG with three KGs for simplicity,
where the input KG, the pooled KG, and the recov-
ered KG serve as the first, middle, and last ones.
Actually, a U-KG can be a sequence of multiple
(more than three) KGs at different scales to abstract
multi-layer concepts. The construction consists of
two steps: KG pooling and KG unpooling.

3.1.1 KG Pooling
KG pooling automatically abstracts the input KG
G into the pooled KG Gc as depicted in Figure 3.
The core is that a relation can reflect the concepts
of its head and tail entities. For instance, the head
entity can be in the concept Person and the tail
entity in Country for the relation nationality. We
perform five operations in KG pooling: 1) coarse-
grained concept generation, 2) concept splitting, 3)
sub-concept merging, 4) entity to concept conver-
sion, and 5) concept triple deduplication. The first
three operations dedicate to obtaining fine-grained
concepts and establishing entity-concept mapping.
The last two translate relational triples to concept
triples to output the pooled KG.
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(4) Entity to concept conversion
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Figure 3: The workflow of KG pooling. It is an example
of k = 2 and δ = 1.0.

←−
R i and

−→
R i are the head and tail

entity sets of the relation ri, respectively.

Coarse-grained concept generation regards
the head and tail entity sets of relations as coarse-
grained concepts. We start by traversing all triples
in G to get the coarse-grained concepts accord-
ing to the relations. For a specific relation r, the
coarse concept set of its head entities and tail en-
tities are represented as

←−
R and

−→
R , where

←−
R =

{h|(h, r, e), e ∈ E} and
−→
R = {t|(e, r, t), e ∈ E}.

Concept splitting aims to capture fine-grained
concepts as the concepts may vary or contain hi-
erarchies. For example, the concept of the head
entity can be Person or Film when the relation is
language, and can be Actor or Writer if the con-
cept is Person. Thus we adopt the k-means al-
gorithm to cluster entities of each concept into k
sub-concepts based on the entity embeddings pre-
trained by TransE (Bordes et al., 2013), where k

is a hyper-parameter. Take
←−
R as an example, we

split it into {
←−
R 0,
←−
R 1, ...,

←−
R k−1} as sub-concepts.

If the number of entities e ∈
←−
R is insufficient, i.e.,

|e| ≤ k, we regard each entity as a sub-concept.
Sub-concept merging merges the potentially

similar sub-concepts to avoid redundancy. Specifi-
cally, we first get all sub-concept pairs, with each
consisting of two sub-concepts from two different
coarse-grained concepts. Then we calculate Jac-
card similarity and reserve the sub-concept pairs
with the similarity score above the given thresh-
old δ. With the reserved sub-concept pairs, we
merge the pairs that share at least one concept into
a fine-grained concept, and regard each of the re-
served sub-concept pairs that are not merged as a
fine-grained concept. Besides, we consider each
sub-concept that does not appear in the reserved
sub-concept pairs as a fine-grained concept. These
fine-grained concepts are served as concept nodes
in the pooled KG. Finally, we get entity-concept
mapping via mapping of the entity to sub-concept

and the sub-concept to fine-grained concept.
Entity to concept conversion concentrates on

converting the relational triples in G into concept
triples in Gc. Given a triple, we convert the head
and tail entities into concepts based on both the
entity-concept mapping and the relation. For exam-
ple, we convert e2 into c4 in the triple (e3, r1, e2)
and into c6 in the triple (e1, r2, e2) as shown in
Figure 3. To be specific, e2 in (e3, r1, e2) belongs
to the sub-concept of the concept

−→
R 1 due to the

relation is r1. Since e2 appears in
−→
R 1

1 and
−→
R 0

2,
it thus belongs to

−→
R 1

1 and c4. In contrast, e2 in
(e1, r2, e2) belongs to the sub-concept of the con-
cept
−→
R 2, which points to

−→
R 0

2 and c6.
Concept triple deduplication removes dupli-

cated concept triples after the conversion from en-
tities to concepts. We output the pooled KG with
abstract concepts as nodes and relations as edges.

3.1.2 KG Unpooling
KG unpooling restores the pooled KG Gc into the
original input KG as the recovered KG Gr = G. Gr
and Gc use the same entity-concept mapping as G
and Gc. The three graphs share relations.

3.2 U-KG Modeling

The goal of U-KG modeling is to obtain entity and
relation embeddings. We first review the GNN
encoders used in our paper, and then describe the
initialization and update of the entity and relation
embeddings in the three KGs of U-KG.

3.2.1 GNN Encoder
As the update of the KGs is achieved by GNN lay-
ers, we use three typical GNN encoders including
RGCN, CompGCN, and SEGNN to capture graph
structure.1 RGCN (Schlichtkrull et al., 2018) in-
troduces relation-specific linear transformations on
neighbor entities to update an entity. CompGCN
(Vashishth et al., 2020) updates both entities and
relations, and uses composition operators to model
the interactions of entities and relations. SEGNN
(Li et al., 2022) considers relation, entity, and triple
level semantic evidence aggregation.

3.2.2 U-KG Encoding
Given the input KG G, we use a GNN encoder to
get the entity and relation embeddings:

EI ,RI = GNN(G) (1)

1The update details of RGCN, CompGCN, and SEGNN
are in Appendix A.
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where EI ∈ Rne×d is the entity embedding, RI ∈
Rnr×d is the relation embedding. ne and nr are
the numbers of the entities and relations. d is the
dimension.

For the pooled KG Gc, we first transform out-
put entity embeddings to concept embeddings to
initialize the concepts:

CI = Nce · (MeEI) (2)

where Me ∈ Rnc×ne is a matrix that indicates the
mapping between the concepts and the entities es-
tablished in KG pooling, nc is the number of the
concepts. Me(i, j) is 1 or 0 to indicate whether the
ith concept contains the jth entity. Nce ∈ Rnc×nc

is a diagonal matrix. Nce(i, i) equals the recip-
rocal of the sum of the element values in ith row
of Me. Then we initialize the concept and rela-
tion embeddings with CI and RI respectively, and
apply another GNN encoder to update the embed-
dings. The update is defined as:

CP ,RP = GNN(Gc,CI ,RI) (3)

where CP and RP are the updated concept and
relation embeddings.

For the recovered KG Gr, we first transform the
concept embeddings into entity embeddings to ini-
tialize entities:

EP = Nec · (McCP ) (4)

where Mc ∈ Rne×nc is the transpose of Me.
Nec ∈ Rne×ne is a diagonal matrix, where the
diagonal element Nec(i, i) is the reciprocal of the
number of concepts that the ith entity has. Then
we initialize the entity embeddings by adopting a
simple interpolation calculation to incorporate con-
cept information. The initialization of entities and
relations is defined as:

EO = αe ∗EI + αc ∗EP ; RO = RP (5)

where αe and αc are the weight of entity embed-
ding from G and Gc. The update is defined as:

E∗
O,R∗

O = GNN(Gr,EO,RO) (6)

To reduce the parameters, we directly fed EO and
RO into the decoder for prediction. The results of
using E∗

O and R∗
O are discussed in model variants

of experiments.
Following the previous work (Vashishth et al.,

2020), we use ConvE (Dettmers et al., 2018) as the
decoder and define the query embedding as:

q = ConvE(h, r) (7)

where h and r are taken from EO and RO respec-
tively. Finally, we use the standard binary cross
entropy as the training target of predicting links:

Lp = −
1

N

∑
t

p(t) · log(m(q, t))

+(1− p(t)) · log(1−m(q, t))

(8)

where N is the number of candidate entities, and
t is taken from EO. m(q, t) = σ(qT t) is the
matching score of the query and the candidate en-
tity. p(t)=1 (or 0) denotes (h, r, t) is a positive (or
negative) triple.

3.3 Local and Global Contrastive Learning
We design local and global contrastive learning
loss to jointly optimize and enhance the entity and
concept embeddings.

3.3.1 Local Contrastive Learning
The local contrastive learning is applied on a single
KG (i.e., G or Gr) to pull the similar entities close.
We consider two entities similar when the Jarcard
similarity of their concept sets is higher than a
given threshold δs. If hi and hj are similar entities,
we define the local loss as:

L(hi,hj) =
−1
|Ps(i)|

∑
hj∈P (i)

log
es(hi,hj)/η∑

hk∈Ns(i)

es(hi,hk)/η

(9)
where Ps(i) and Ns(i) are the set of all positive
and negative pairs in the mini-batch, respectively.
s(hi,hj) is the cosine similarity of the two entities.
η is the temperature parameter. Then the overall
local CL loss can be defined as:

Llocal = L(hI
i ,h

I
j )
+ L(hO

i ,hO
j ) (10)

where the superscripts I and O indicate entity em-
beddings from the input and the recovered KG,
respectively.

3.3.2 Global Contrastive Learning
The global contrastive learning is applied between
two graphs, including (G,Gc), (Gr,Gc) and (G,Gr).
(G/Gr,Gc) pulls an entity and its concepts close:

L(hi,ci) =
−1
|Pc(i)|

∑
ci∈Pc(i)

log
es(hi,ci)/η∑

ck∈Nc(i)

es(hi,ck)/η

(11)
where Pc(i) is the positive concept set of the en-
tities in the mini-batch and Nc(i) is the negative
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concept set. (G,Gr) pulls the same entities in the
KGs G and Gr close:

L(hI
i ,h

O
i ) =

−1
|P (i)|

∑
hi∈P (i)

log
es(h

I
i ,h

O
i )/η∑

hk∈N(i)

es(h
I
i ,h

O
k )/η

(12)
Then the overall global loss can be defined as:

Lglobal = L(hI
i ,ci)

+ L(hO
i ,ci)

+ L(hI
i ,h

O
i ) (13)

where hIi and hOi indicate entity embeddings of hi
from G and Gr, and ci indicates concept embedding
of ci from Gc.

3.4 Training objective
By combining the prediction loss with the con-
trastive learning loss, we minimize the following
function to jointly learn the parameters of GNN
encoders and the entity and relation embeddings:

L = Lp + λ1Llocal + λ2Lglobal (14)

where λ1 and λ2 are hyper-parameters to control
the local and global contrastive loss, respectively.

4 Experiments

In this section, we conduct link prediction ex-
periments to explore the following research ques-
tions: (RQ1) How does KGPCL perform compared
with conventional, especially GNN-based, KGEs?
(RQ2) How do KG pooling and unpooling and
different contrastive learning components affect
KGPCL? (RQ3) Can KGPCL capture concept in-
formation in U-KG construction and modeling?

4.1 Experimental Setup
Datasets. The experiments are conducted on four
datasets: FB15K237 (Toutanova and Chen, 2015),
NELL995 (Xiong et al., 2017), YAGO29K (Hao
et al., 2019) and WN18RR (Dettmers et al., 2018).
FB15K237 and WN18RR are the subsets of FB15K
and WN18. NELL995 is extracted from the 995-th
iteration of NELL. YAGO29K is extracted from
YAGO. We use the datasets as the entities may
reflect relatively obvious concepts. The statistics
are listed in Table 1.

Baselines. We compare KGPCL with the con-
ventional KGEs, including TransE (Bordes et al.,
2013), DistMult (Yang et al., 2015), RotatE (Sun
et al., 2019), HAKE (Zhang et al., 2020),
PairRE (Chao et al., 2021) REP-OTE (Wang

Dataset #Ent #Rel #Train #Valid #Test

FB15K237 14541 237 272115 17535 20466
NELL995 75492 200 149678 543 3992
WN18RR 40943 11 86835 3034 3134
YAGO29K 26078 34 351664 - 39074

Table 1: Dataset statistics.

et al., 2022), SDFormer (Li et al., 2024), and
GATH (Wei et al., 2024), and especially the GNN-
based KGEs, including RGCN (Schlichtkrull et al.,
2018), CompGCN (Vashishth et al., 2020) and
SEGNN (Li et al., 2022).

Evaluation Protocol. We report the metrics
Mean Reciprocal Rank (MRR) and Hits@n (n ∈
{1, 3, 10}). MRR is the mean of all the reciprocals
of predicted ranks. Hits@n is the percentage rate
of original test triples ranked at the top n in the can-
didate list. The higher values of MRR and Hits@n
indicate better performance. The metrics are in the
filtered setting (Bordes et al., 2013).

Parameter Settings. We search k in {10, 100,
1000} for WN18RR, {10, 20} for FB15K237, {10,
50} for NELL995, {50, 100} for YAGO29, δ in
{0.5, 0.7, 0.9} on all datasets, and αe and αc in
{1.0, 1.5, 2.0}. We employ one GNN layer on each
KG of U-KG and use the best parameter settings
from the original papers to reduce parameter tuning
costs. Regarding contrastive learning, we search
η in {0.5, 0.8}, δs in {0.6, 0.8}. The weights λ1

and λ2 are selected in {1e-05, 1e-06, 1e-07} due to
the magnitude difference between the contrastive
and task losses. We use label smoothing with the
parameter set as 0.1 to lessen overfitting and use
Adam (Kingma and Ba, 2015) to optimize the ob-
jective function. The number of training epochs is
set as 500 for RGCN and CompGCN encoders and
600 or 800 for SEGNN encoder.

4.2 Performance Comparisons (RQ1)

Main results. Table 2 and 3 show the link pre-
diction results. Following are observations: (1)
Among datasets, our KGPCL methods outperform
or are comparable to corresponding GNN KGEs
in most of the metrics, demonstrating that KGPCL
is effective in enhancing KG prediction. (2) The
improvements on NELL995 are more obvious than
on FB15K237, although they have more relations.
The reason is that NELL995 has a richer variety
of concepts than FB15K237. (3) For the datasets
YAGO29K and WN18RR with a smaller number
of relations, the improvements on YAGO29K are



5370

Model FB15K237 NELL995

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) 0.294 0.465 - - 0.401 0.501 0.472 0.344
DistMult (Yang et al., 2015) 0.281 0.446 0.301 0.199 0.485 0.610 0.524 0.401
RotatE (Sun et al., 2019) 0.338 0.533 0.375 0.241 0.483 0.565 0.514 0.435
HAKE (Zhang et al., 2020) 0.346 0.542 0.381 0.250 0.508 0.613 0.557 0.442
PairRE (Chao et al., 2021) 0.351 0.544 0.387 0.256 0.536 0.635 0.580 0.470
REP-OTE (Wang et al., 2022) 0.354 0.540 0.388 0.262 - - - -
SDFormer (Li et al., 2024) 0.356 0.541 0.390 0.264 - - - -
GATH (Wei et al., 2024) 0.344 0.527 0.376 0.253 - - - -

RGCN (Schlichtkrull et al., 2018) 0.349 0.526 0.381 0.260 0.500 0.634 0.550 0.419
RGCN-KGPCL 0.354 0.535 0.388 0.263 0.529 0.651 0.577 0.454

CompGCN (Vashishth et al., 2020) 0.355 0.536 0.390 0.264 0.517 0.637 0.566 0.441
CompGCN-KGPCL 0.357 0.541 0.392 0.266 0.543 0.648 0.589 0.476

SEGNN (Li et al., 2022) 0.353 0.539 0.387 0.262 0.531 0.637 0.575 0.460
SEGNN-KGPCL 0.355 0.542 0.391 0.261 0.533 0.653 0.575 0.463

Table 2: Link prediction results on FB15K237 and NELL995. Boldface scores are the better ones between the
GNN-based KGEs and corresponding KGPCL methods. Scores in the boxes are the best results among all methods.

Model YAGO29K WN18RR

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) 0.195 0.345 - 0.141 0.243 0.532 0.441 0.043
DistMult (Yang et al., 2015) 0.253 0.288 - 0.229 0.444 0.504 0.470 0.412
RotatE (Sun et al., 2019) 0.593 0.791 0.662 0.486 0.483 0.565 0.514 0.435
HAKE (Zhang et al., 2020) 0.596 0.788 0.662 0.491 0.508 0.613 0.557 0.442
PairRE (Chao et al., 2021) 0.442 0.644 0.495 0.336 0.454 0.548 0.469 0.411
REP-OTE (Wang et al., 2022) - - - - 0.488 0.588 0.505 0.439
SDFormer (Li et al., 2024) - - - - 0.458 0.528 0.471 0.425
GATH (Wei et al., 2024) - - - - 0.463 0.537 0.475 0.426

RGCN (Schlichtkrull et al., 2018) 0.285 0.492 0.314 0.185 0.465 0.535 0.480 0.427
RGCN-KGPCL 0.372 0.596 0.419 0.260 0.472 0.547 0.487 0.435

CompGCN (Vashishth et al., 2020) 0.436 0.666 0.492 0.319 0.482 0.550 0.496 0.446
CompGCN-KGPCL 0.494 0.718 0.559 0.378 0.485 0.558 0.498 0.445

SEGNN (Li et al., 2022) 0.589 0.790 0.663 0.477 0.485 0.560 0.497 0.448
SEGNN-KGPCL 0.616 0.805 0.690 0.509 0.482 0.567 0.496 0.439

Table 3: Link prediction results on YAGO29K and WN18RR.

Model FB15K237 NELL995

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

RGCN 0.348 0.527 0.382 0.259 0.500 0.634 0.550 0.419
R-KGPCL(FEA+SUM) 0.353 0.534 0.387 0.263 0.523 0.648 0.570 0.448
R-KGPCL(FEA+GNN) 0.350 0.532 0.385 0.258 0.514 0.642 0.562 0.438
R-KGPCL(KGE+GNN) 0.350 0.529 0.383 0.259 0.522 0.651 0.570 0.446
R-KGPCL(KGE+SUM) 0.354 0.535 0.388 0.263 0.529 0.651 0.577 0.454

Table 4: The performance of four model variants of RGCN-KGPCL. RGCN-KGPCL is abbreviated as R-KGPCL.

apparent. It indicates that more triples can make
up for the limitations of fewer relations in captur-
ing latent concepts. (4) The pavements are more
significant on simple GNN encoders than complex
ones, because CompGCN and SEGNN introduce
composition operations and multi-level semantic
evidence to better model the interactions among en-
tities and relations. For example, RGCN-KGPCL
improves Hits@1 by 7.5% compared with RGCN
on YAGO29K, but CompGCN-KGPCL (SEGNN-
KGPCL) improves 5.9% (3.2%) compared with
CompGCN (SEGNN).

Model variants. We introduce model variants,
exploring the comparison of embedding used for

k-means algorithm (i.e., KGE/FEA), and the model-
ing of the recovered KG in U-KG (i.e., SUM/GNN).
KGE and FEA indicate the embeddings used to
split the concepts are derived from TransE and fea-
ture vectors generated by statistics2. SUM and
GNN indicate equation 5 (i.e., EO and RO) and
equation 6 (i.e., E∗

O and R∗
O) are the output of Gr,

respectively. From Table 4, the observations are:
(1) Compared with the GNN model RGCN, the
model variants show performance improvement,
and R-KGPCL(KGE+SUM) achieves the best per-
formance. (2) For the comparison of SUM and
GNN, R-KGPCL(FEA/KGE+SUM) shows better

2The details of the generation are in Appendix B
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Model NELL995

MRR Hits@10 Hits@3 Hits@1

RGCN 0.500 0.634 0.550 0.419
R-KGP 0.518 0.633 0.564 0.448

R-KGP (+ig) 0.522 0.651 0.571 0.447
R-KGP (+rg) 0.523 0.651 0.571 0.446
R-KGP (+Local) 0.522 0.639 0.571 0.449

R-KGP (+ig-rg) 0.521 0.643 0.570 0.445
R-KGP (+ig-pg) 0.527 0.648 0.580 0.453
R-KGP (+rg-pg) 0.520 0.632 0.568 0.451
R-KGP (+Global) 0.525 0.645 0.576 0.450

R-KGPCL 0.529 0.651 0.577 0.454

Table 5: Ablation study of RGCN-KGPCL on NELL995
dataset. R-KGP is the abbreviation for RGCN-KGP.

performance than R-KGPCL(FEA/KGE+GNN),
indicating that the interpolation operation can in-
corporate latent concepts to enhance entity embed-
dings. (3) For the comparison of FEA and KGE,
KGE is more efficient in most cases regardless
of using interpolation or GNN encoder. It shows
that the pre-training embeddings can capture con-
cept information effectively. In summary, the good
performance of the four configurations shows that
modular modifications to KGPCL can still achieve
better results than RGCN, verifying the effective-
ness of KGPCL as a framework.

4.3 Abalation study (RQ2)

We conduct ablation studies on RGCN to investi-
gate the contributions of KG pooling and unpooling
(-KGP), and local and global contrastive learning
(+Local/Global) components where ig, rg and pg
respectively indicate the embeddings used for CL
from the input KG, recovered KG and pooled KG.
The results are demonstrated in Table 5. We can
observe that the performance increases with the in-
troduction of KG pooling and unpooling, as well as
local and global contrastive learning. For the local
contrastive learning loss, the improvements on the
input and recovered KG are almost the same. For
the global contrastive learning loss, the improve-
ments on ig-pg are better than on ig-rg and rg-pg.
The reason is that the input KG and pooled KG are
directly connected. Although the pooled KG and
recovered KG are connected, the output of the re-
covered KG is affected by the embeddings of both
the input KG and pooled KG.

4.4 Visualization (RQ3)

We utilize t-SNE to perform dimension reduction
of entity embeddings for visualization. Specifi-
cally, we randomly select 350 entities that belong

(a) RGCN+KGP_Con (b) RGCN-KGPCL+KGP_Con (c) RGCN-KGPCL+DATA_Con

Figure 4: Entity embedding visualization on NELL995.

to only one concept in entity-concept mapping
established by KG pooling. Then two label set-
tings KGP_Con and DATA_Con are used to indi-
cate the labels from KGPCL and predefined con-
cepts (Niu et al., 2022), and two embedding set-
tings RGCN and RGCN-KGPCL indicate embed-
dings learned by the corresponding models. Results
are shown in Figure 4. From (a) and (b), RGCN-
KGPCL+KGP_Con shows better compactness than
RGCN+KGP_Con and can make different concepts
more distinguishable. From (b) and (c), we observe
that entity embeddings learned by KGPCL show
clustering with predefined concepts. They demon-
strate the effectiveness of U-KG modeling. Further-
more, Figure (c) shows that concepts in DATA_Con
are imbalanced compared with KGP_Con. For ex-
ample, the number of entities in the concept with
blue color is much more than others. It confirms
the effectiveness of U-KG construction.

5 Conclusion

In this paper, we propose a novel framework KG-
PCL to abstract and model the latent concepts of
entities. Specifically, we construct U-KG through
KG pooling and unpooling, which abstracts the in-
put KG into a pooled KG and recovers the pooled
KG from the input KG. With the U-KG, we use
GNN KGEs as the encoder and conventional KGEs
as the decoder to learn the embeddings of entities
and relations for KG prediction. In addition, we de-
sign local and global contrastive learning to jointly
optimize the model. Extensive experiments show
the effectiveness of our KGPCL.

Limitations

Our method aims to encode implicit concept infor-
mation of entities to enhance KG prediction. The
limitation is that we only consider concepts of enti-
ties ignoring other implicit information, such as the
properties of relations, and conduct experiments on
link prediction task. Thus future directions include
encoding more implicit information and enhancing
more KG tasks.
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A The details of GNN encoders

The update of entity and relation embeddings in
the GNN encoders are summarized in Table 6.

In RGCN and CompGCN, the output embed-
dings of entity and relation are eout = eL and
rout = rL, where L is the number of aggre-
gation layers. In SEGNN, it concats all the rl

and merges them by a transform matrix to get
the relation embeddings. Then the output embed-
dings of entity and relation are eout = eL and
rout = W outConcat({rl|l = 1, ..., L}).

Considering the details of SEGNN, it obtains the
representations of sreli , senti and strii through multi-
layer aggregation with attention mechanism. Take
one GNN layer as an example. For the relation
level SE, the calculation of the representation and
attention weight is defined as:

sreli = σ(
∑

(ej ,rj)∈Ni

αrel
ij W relrj) (15)

αrel
ij =

exp(rTj ei)∑
(ek,rk)∈Ni

exp(rTk ei)
(16)

For the entity level SE, the calculations are:

senti = σ(
∑

(ej ,rj)∈Ni

αent
ij W entej) (17)

αent
ij =

exp(eTj ei)∑
(ek,rk)∈Ni

exp(eTk ei)
(18)

For the triple level SE, the aggregation function
and attention weight computation are:

strii = σ(
∑

(ej ,rj)∈Ni

αtri
ij W

triϕ(ej , rj) (19)

αtri
ij =

exp(ϕ(ej , rj)
Tei)∑

(ek,rk)∈Ni
exp(ϕ(ek, rk)Tei)

(20)

where Ni is the neighbor (head entity, relation)
pairs that are connected to ei. Wrel, Went and
Wtri are transformation matrices. ei, ej , rj , ek
and rk are respectively vectors of ei, ej , rj , ek and
rk. ϕ(e, r) = e ∗ r is a composition function. The
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Entity Update Relation Update

RGCN el+1 = σ(
∑

(h,r)∈Nin(e)
W l

rh
l +

∑
(r,t)∈Nout(e)

W l
rt

l +W l
0e

l) -

CompGCN el+1 = σ(
∑

(h,r)∈Nin(e)
W l

rϕ(h
l, rl) +

∑
(r,t)∈Nout(e)

W l
rϕ(t

l, rl) +W l
0e

l) rl+1 = W l
relr

l

SEGNN el+1 = el + slrel + slent + sltri -

Table 6: The update of three popular GNN encoders. For the entity e, Nin(e) is the set of the head entity and
relation pairs of e, and Nout(e) is the set of relation and tail entity pairs of e. W l

r is regularized by block-diagonal-
decomposition. ϕ is multiplication composition operator defined as ϕ(es, er) = es ∗ er. For SEGNN, slrel, s

l
ent

and sltri are respectively obtained by aggregating all the connected relations, neighbor entities, and neighbor
entity-relation couples.

multi-layer vision of triple level SE is computed
as:

(strii )l = σ(
∑

(ej ,rj)∈Ni

(αtri
ij )

l(W tri)lϕ(elj , r
l
j)

(21)
(sreli )l and (senti )l are calculated in a similar way.
To reduce the parameters, we use one GNN layer
to obtain the three level SE representations in our
experiments. It is worth noting that the initializa-
tion and update of the entity embedding in SEGNN
are the same as RGCN and CompGCN. The dif-
ference is the setting of relation embeddings. We
learn separate relation embeddings for the input
KG and pooled KG, denoted as RI

S and RP
S . Then

output relation embedding of the recovered KG is
calculated as RO

S =
RI

S+RP
S

2 .

B Feature embedding generation

Regarding the statistical method, we generate em-
beddings for the head entities hi ∈

←−
R based on two

aspects: (a) the relations connected by the head en-
tity, which is {rj |(hi, rj , e) ∈ G, e ∈ E}, and (b)
the tail entities that connected by the head entity
and the current relation {tj |(hi, r, tj) ∈ G}. As to
(a), we use a vector hr

i ∈ Rn to represent hi, where
n is the number of relations in G. Each dimension
is set as the number of times the head entity is con-
nected to the corresponding relation. As to (b), we
use a vector ht

i ∈ Rm to represent hi, where m is a
hyper-parameter. Specially, we first iterate over all
entities in the coarse-grained concept

←−
R and get the

tail entity set
←−
RT = {tj |(h, r, tj) ∈ G, h ∈

←−
R}.

Then we count the tail entities in
←−
RT and sort the

occurrence number in descending order. To pre-
serve the more informative tail entities, we prune
the tail entities with the occurrence number |

←−
RT |

or 1. |
←−
RT | equals the number of entities in

←−
RT .

Next, we select the top m tail entities in the pruned
entity set as features. All tail entities are selected

when the number of the pruned tail entities is less
than m. We set m as 1000 in experiments. Finally,
we map each selected tail entity to each dimension
of ht

i, where the value of each dimension corre-
sponds to the number of occurrences of the tail
entity counted before. After generating the two fea-
ture vectors, we define the entity embedding of hi
from the statistical method as hi=[ht

i;h
r
i ], where ;

is the concatenation operation.
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