
Proceedings of the 31st International Conference on Computational Linguistics, pages 540–557
January 19–24, 2025. ©2025 Association for Computational Linguistics

540

MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL

Bing Wang1, Changyu Ren1, Jian Yang1, Xinnian Liang1, Jiaqi Bai1, Linzheng Chai1

Zhao Yan2, Qian-Wen Zhang2, Di Yin2, Xing Sun2, Zhoujun Li1 †

1Beihang University 2Tencent Youtu Lab
{bingwang,cyren,jiaya,xnliang,bjq,challenging,lizj}@buaa.edu.cn

{zhaoyan,cowenzhang,endymecyyin,winfredsun}@tencent.com

Abstract

Recent LLM-based Text-to-SQL methods usu-
ally suffer from significant performance degra-
dation on “huge" databases and complex user
questions that require multi-step reasoning.
Moreover, most existing methods neglect the
crucial importance of LLMs using external
tools and model collaboration. To address these
challenges, we introduce MAC-SQL, a novel
LLM-based multi-agent collaborative frame-
work. Our framework comprises a core decom-
poser agent for Text-to-SQL generation with
few-shot chain-of-thought reasoning, accom-
panied by two auxiliary agents that utilize ex-
ternal tools or models to acquire smaller sub-
databases and refine erroneous SQL queries.
The decomposer agent collaborates with auxil-
iary agents, which are activated as needed and
can be expanded to accommodate new features
or tools for effective Text-to-SQL parsing. In
our framework, we initially leverage GPT-4 as
the strong backbone LLM for all agent tasks to
determine the upper bound of our framework.
We then fine-tune an open source instruction-
followed model, SQL-Llama, by leveraging
Code Llama 7B, to accomplish all tasks as GPT-
4 does. Experiments show that SQL-Llama
achieves a comparable execution accuracy of
43.94, compared to the baseline accuracy of
46.35 for vanilla GPT-4. At the time of writ-
ing, MAC-SQL+GPT-4 achieves an execution
accuracy of 59.59 when evaluated on the BIRD
benchmark, establishing a new state-of-the-art
(SOTA) in its holdout test set. 1

1 Introduction

Text-to-SQL aims to automate the process of gen-
erating Structured Query Language (SQL) queries
for databases from natural language text. This
long-standing challenge is essential to improve
database accessibility without requiring knowledge
of SQL (Qin et al., 2022; Sun et al., 2023).

1https://github.com/wbbeyourself/MAC-SQL

User Question

List school names of charter schools with an SAT excellence
rate over the average.

Database schema

frpm: CDSCode, County Code, School Code, Charter School(Y/N)
satscores: cds, sname, AvgScrMath, NumTstTakr, NumGE1500, …
schools: CDSCode, NCESDist, County, City, Zip, …

SAT_Excellence_Rate = CAST(NumGE1500 AS REAL) / NumTstTakr

SELECT ST.sname FROM frpm FR JOIN satscores ST
ON FR.CDSCode = ST.cds WHERE FR.`Charter School (Y/N)` = 1
AND SAT_Excellence_Rate >
(SELECT AVG(SAT_Excellence_Rate) FROM frpm fr JOIN
 satscores st ON fr.CDSCode = st.cds
 WHERE fr.`Charter School (Y/N)` = 1)

Evidence

Gold SQL

Figure 1: A complex example of Text-to-SQL. In the
Gold SQL, we use SAT_Excellence_Rate to represent
"CAST(NumGE1500 AS REAL)/NumTstTakr" for the
sake of brevity.

Over the past decade, research in this field has
progressed through three stages. In the initial
phase, systems encode the input sequence using
pre-trained models, and SQL queries are decoded
using either abstract syntax trees (Xu et al., 2017;
Guo et al., 2019; Wang et al., 2021) or prede-
fined sketches (He et al., 2019). More recent sys-
tems (Raffel et al., 2023; Xie et al., 2022; Scholak
et al., 2021) have adopted sequence-to-sequence
methodologies. The latest research (Ouyang et al.,
2022; OpenAI, 2023; Rozière et al., 2023) has
demonstrated the remarkable capabilities of Large
Language Models (LLMs) in this task. The success
of these models can be attributed to their emerging
abilities (Wei et al., 2023; Brown et al., 2020) and
the robust reasoning capabilities inherent in LLMs.

Recent research on LLM-based Text-to-
SQL (Dong et al., 2023; Pourreza and Rafiei,
2023; Gao et al., 2023) has mainly concentrated
on In-Context Learning prompt strategies and
supervised fine-tuning using data derived from the
target domain. However, these approaches usually

https://github.com/wbbeyourself/MAC-SQL

541

Table schools

CDSCode County Street … Phone

109835 Alameda Sperber … 581-0202

Database schema

List school names of charter schools with an SAT

excellence rate over the average.

Final SQL

User Question

SQLite execute

SQLite error: syntax error

Exception: sqlite3.OperationalError

Wrong SQL

Decomposer

Sub Q1
Get the average value of SAT excellence rate

of charter schools.

SQL 1
SELECT AVG(NumGE1500 / NumTstTakr)
FROM frpm JOIN … WHERE …

Sub Q2
List out school names of charter schools with

an SAT excellence rate over the average.

SQL 2
SELECT sname FROM .. JOIN ..
WHERE SAT_Excellence_Rate > SQL1 and ..

Selector

Table frpm

CDSCode FRPM Count Meal … Charter (Y/N)

109835 2346.0 4369.0 … 581-0202

Table satscores

cds sname NumGE1500 … NumTstTakr

109835 2346.0 400 … 191

Refiner

User

Question

User

Final

SQL

Figure 2: The overview of our MAC-SQL framework, which comprises three agents: (i) the Selector, which
decomposes a large database into a smaller sub-database to mitigate the interference of irrelevant information,
and (ii) the Decomposer, which breaks down a complex question into simpler sub-questions and resolves them
progressively by chain-of-thought reasoning, and (iii) the Refiner, which uses an external tool for SQL execution
and obtains feedback, then refines faulty SQL queries.

suffer from significant performance degradation in
“huge” databases and complex user questions that
require multi-step reasoning, as demonstrated in
Figure 1. Moreover, most existing methods neglect
the crucial importance of LLMs utilizing external
tools and model collaboration.

To alleviate the above challenges, we introduce
MAC-SQL, a novel LLM-based multi-agent collab-
orative framework, which exploits LLMs as in-
telligent agents with different functionalities for
effective Text-to-SQL parsing. Our framework
comprises a core Decomposer agent for Text-to-
SQL generation, accompanied by two auxiliary
agents, the Selector and the Refiner, for tool us-
age and SQL refinement. Specifically, the Decom-
poser breaks down a complex question into simpler
sub-questions and resolves them progressively by
chain-of-thought reasoning. When necessary, the
Selector decomposes a large database into a smaller
sub-database to minimize the interference of irrel-
evant information, while the Refiner employs an
external tool for SQL execution, obtains feedback,
and refines erroneous SQL queries.

Furthermore, we have fine-tuned an instruction-
followed model, SQL-Llama, by leveraging Code
Llama 7B, using agent instruction data from
MAC-SQL, thus enabling capabilities in database
simplification, question decomposition, SQL gen-
eration, and SQL correction.

In our experiments, we initially leverage GPT-

4 as a strong backbone LLM for all agent tasks
to determine the upper bound of our MAC-SQL
framework on the widely used BIRD and Spider
dataset. Experimental results demonstrate that
MAC-SQL+GPT-4 achieves an execution accuracy
of 59.59 on the BIRD holdout test set, establish-
ing a new state-of-the-art (SOTA) at the time of
writing. Furthermore, we utilize SQL-Llama (7B)
to perform all tasks such as GPT-4. Surprisingly,
despite SQL-Llama having an order of magnitude
fewer parameters than GPT-4, its execution accu-
racy reaches 43.94, which is remarkably close to
the accuracy of GPT-4 (46.35).

Contribution Our main contributions and re-
sults are summarized as follows:

1. We propose MAC-SQL, a novel multi-agent col-
laborative framework for Text-to-SQL, which
integrates external tools and facilitates model
collaboration to address intricate scenarios.

2. We introduce an instruction-tuning model,
named SQL-Llama, to fill in the gaps in open-
source agent-instruction-following models for
the task of Text-to-SQL.

3. Experimental results demonstrate that
MAC-SQL achieves state-of-the-art execution
accuracy of 59.59% on the BIRD test set at
the time of writing.

542

Algorithm 1 The algorithm of MAC-SQL

Input: question q, database db, knowledge
kg

Output: sql
1: if need simplify to database then
2: db = LLMSelector(q, db, kg)
3: end if
4: dbDesc = getDbRepresenation(db, kg)
5: subQs, subSQLs = LLMDecomposer(q, dbDesc)
6: sql = subSQLs[-1]
7: count = 0
8: while count < maxTryTimes do
9: ok, err = executeAndAnalyze(sql, db)

10: if ok then
11: return sql
12: else
13: sql = LLMRefiner(q, dbDesc, sql,

err)
14: end if
15: end while
16: return sql

2 Preliminaries

2.1 Problem Definition of Text-to-SQL

Given a triple X = (Q,S,K), where Q, S and K
are natural language questions, database schema
and external knowledge (optional), the database
schema S is defined as {T , C}, where T represents
multiple tables {T1, T2, . . . , T|T |} and C represents
columns {C1, C2, . . . , C|C|}. The purpose of Text-
to-SQL task is to generate the correct SQL Y cor-
responding to the question Q.

2.2 Large Language Model for Text-to-SQL

The Text-to-SQL task has recently been formulated
as a generation task (Dong et al., 2023; Pourreza
and Rafiei, 2023), designing appropriate prompts to
guide a large language model M generating SQL
queries token-by-token. The generation process
can be formulated as follows.

PM(Y|X) =

|Y|∏
i=1

PM(Yi|Y<i;X) (1)

where Y< i is the prefix of the SQL query Y
and PM(Yi|·) is the conditional probability of the
i-th token in the SQL query Y given the prefix Y<i

and the triple X = (Q,S,K).

3 MAC-SQL Framework

3.1 Overview

In Figure 2, we introduce MAC-SQL, a novel LLM-
based multi-agent collaborative framework, which
exploits LLMs as intelligent agents with different
functionalities for effective Text-to-SQL parsing.
MAC-SQL comprises a core Decomposer agent for
Text-to-SQL generation, accompanied by two aux-
iliary agents, the Selector and the Refiner, for tool
usage and SQL refinement. In Algorithm 1, we
present the collaboration process of three agents
in MAC-SQL. In the following section, a detailed
introduction of three agents will be presented.

3.2 Selector

Given an input triple X = (Q,S,K), where the
schema of the database S = {T , C}, the Selector
agent aims to locate the minimal schema S ′

=
{T ′

, C′}, where T
′ ⊆ T and C

′ ⊆ C, to answer
the question Q with knowledge K. The function of
the Selector agent can be described as:

S ′
= fselector(Q,S,K|M) (2)

where fselector(·|M) denotes the function of the
selector prompting the LLM M. The motivation
behind designing the selector involves primarily
two key factors. Firstly, introducing too many irrel-
evant schema items in the prompt increases the like-
lihood of LLM generating irrelevant schema items
in the output SQL. Secondly, using the complete
database schema results in excessive text length,
leading to unnecessary API costs, and may exceed
the maximum context length of LLM. It is impor-
tant to note that the Selector will only be activated
when the length of the database schema prompt ex-
ceeds the length threshold; otherwise, the original
database schema S will be used for the subsequent
process. More details about agent variables and
prompts can be found in the Appendix A.

3.3 Decomposer

The purpose of the Decomposer is to enhance
LLM’s reasoning ability by generating a series of
intermediate steps (i.e. sub-questions and SQLs)
before predicting the final SQL. As shown in Fig-
ure 3, the decomposer instructs the LLM to decom-
pose the original complex question Q as reasoning
steps and gets the final SQL query Y in a single
pass. It can be described as follows.

543

DECOMPOSER

Sub question 1

Get the average value of SAT
excellence rate of charter schools.

Sub SQL 1

SELECT AVG(CAST(T2.`NumGE1500`
AS REAL) / T2.`NumTstTakr`)
FROM frpm AS T1
INNER JOIN satscores AS T2
ON T1.`CDSCode` = T2.`cds`
WHERE T1.`Charter School (Y/N)` = 1

Sub SQL 2

SELECT T2.`sname`
FROM frpm AS T1
INNER JOIN satscores AS T2
ON T1.`CDSCode` = T2.`cds`
WHERE T1.`Charter School (Y/N)` = 1
 AND CAST(T2.`NumGE1500` AS
REAL) / T2.`NumTstTakr` > (
 <Sub answer 1>
)

List school names of charter schools with an SAT
excellence rate over the average.

Sub question 2

List out school names of charter
schools with an SAT excellence rate
over the average.

Figure 3: The Decomposer Agent Illustration.

PM(Y|Q,S
′
,K) =

L∏
j=1

PM(Yj |Y<j ;Qj ,S
′
,K) (3)

where Qj and Yj are the j-th sub-question and
sub-SQL generated by the LLM M given the pre-
vious sub-SQLs Y<j , the filtered database schema
S ′

and knowledge K, L is the number of sub-
questions.

The decomposer pattern can be approached
in two prompting methods for text-to-SQL pars-
ing: chain-of-thought (CoT) prompting (Wei et al.,
2023) and least-to-most prompting (Zhou et al.,
2022). The former involves generating thinking
and reasoning once to obtain an answer, while the
latter brings about higher computational costs to
generate each SQL query due to the iterative pro-
cess.

Due to the inefficiency of the iterative method
and the necessity to determine the stopping crite-
ria, we adopt the CoT approach to generate sub-
questions and their corresponding SQL queries.
The specific implementation is as follows: dynami-
cally judging the difficulty of the user’s question,
if it can be answered by a simple SQL query, then
the SQL is generated directly. If the question is
more complex, the corresponding SQL is generated
starting from the simplest sub-question, and then
gradually broken down to obtain progressive sub-
questions until the final SQL corresponding to the
question is obtained. Additionally, we leverage the
few-shot approach to enhance LLM’s understand-
ing of instructions through in-context learning.

3.4 Refiner
The primary function of the Refiner is to detect and
automatically correct SQL errors, as illustrated in

REFINER

SQLite error

near “(“: syntax error

Exception class

<class ‘sqlite3.OperationalError’>

Wrong SQL

SELECT T2.`sname`
 FROM frpm AS T1
 INNER JOIN satscores AS T2
 ON T1.`CDSCode` = T2.`cds`
 WHERE T1.`Charter School (Y/N)` = 1

 AND CAST(T2.`NumGE1500` AS REAL) / T2.`NumTstTakr` > ((
 SELECT AVG(CAST(T4.`NumGE1500` AS REAL) / T4.`NumTstTakr`)
 …
)

Fixed SQL

SELECT T2.`sname`
 FROM frpm AS T1
 INNER JOIN satscores AS T2
 ON T1.`CDSCode` = T2.`cds`
 WHERE T1.`Charter School (Y/N)` = 1

 AND CAST(T2.`NumGE1500` AS REAL) / T2.`NumTstTakr` > (
 SELECT AVG(CAST(T4.`NumGE1500` AS REAL) / T4.`NumTstTakr`)
 …
)

Figure 4: The Refiner Agent Illustration.

Figure 4. In a comprehensive multi-agent collab-
orative framework, particularly within the context
of Text-to-SQL tasks, the refiner is essential for
the inspection and correction of generated answers.
For instance, in the ChatDev project (Qian et al.,
2024), intelligent agents are responsible for con-
ducting overall and functional module testing in
addition to overall architectural design and code
writing for game software development tasks. Simi-
larly, in Text-to-SQL tasks, the Refiner can be used
to make appropriate adjustments for the different
datasets, database schemas, SQL generation styles,
and specific inductive biases.

Given a flawed SQL query Y ′
and the error mes-

sage feedback E , obtained from external SQL tools,
the Refiner instructs the LLM M to generate the
correct SQL query Y . It can be described as fol-
lows.

Y = frefiner(E ,Y
′
,Q,S ′

,K|M) (4)

where frefiner(·|M) denotes the function of the
Refiner by prompting the LLM M.

As shown in Figure 2, upon receiving an SQL
query, the Refiner diagnoses the SQL statement
to assess its syntactic correctness, execution feasi-
bility, and retrieval of non-empty results from the
database. In general, the purpose of the Refiner is
to achieve self-checking and self-correction of the
model to enhance the overall framework’s fault tol-
erance and accuracy. Using the selector agent, there
is a significant reduction in syntax errors, schema
linking, and other simple errors.

544

4 SQL-Llama Model

4.1 Instruction Dataset Construction

To construct the Agent-Instruct dataset, we instruct
the GPT-4 with the training set of the BIRD and
Spider dataset through multi-agent tasks. We col-
lect the generated instruction data according to the
level of difficulty and filter out those with incor-
rect SQL query output. Finally, the curated Agent-
Instruct dataset D with instruction tasks N (N = 3),
D = {Di}Ni=1 contains 10,000 high-quality instruc-
tion data with 3 agent-instruction tasks, covering
the distribution of the BIRD and Spider dataset.

4.2 Multi-task Supervised Fine-tuning

Our research has primarily focused on the devel-
opment of open source models within the MAC-SQL
framework, to achieve performance levels compa-
rable to closed source models such as GPT-4. To
achieve this, we have put significant effort into
preparing the data for model training and have
open-sourced SQL-Llama, a model that has been
fine-tuned using three intelligent agent instruction
data. The SQL-Llama model, based on Code Llama
7B, has undergone supervised fine-tuning using
agent instruction data from MAC-SQL, which has
enhanced its capabilities in database simplification,
question decomposition, SQL generation, and SQL
correction.

Given the Agent-Instruct dataset with instruction
tasks N (N = 3), D = {Di}Ni=1, the LLM trained
in D can learn from these tasks and complete agent
tasks. The supervised fine-tuning process can be
described as:

L = −
N∑
i=1

EQ,Si,K,Yi∼D

[
logP (Yi|Q,Si,K;M)

]
(5)

where L is the training objective of N tasks, Si

and Y i are the selected database schema and the
intermediate SQL query of the i-th task.

One of the key challenges we encountered during
the model training process was balancing model
complexity with performance. We had to carefully
optimize the model architecture and parameters to
ensure that it could effectively handle the complexi-
ties of database-related tasks while still maintaining
high-performance levels. Additionally, ensuring
the quality and relevance of the instruction dataset
for training was crucial, as it directly impacted the
model’s performance.

Despite these challenges, our work on
instruction-tuned models represents a significant
step towards democratizing access to high-
performance language models for database-related
tasks. By open-sourcing both the model and the
instruction dataset, we aim to provide valuable
resources for further research and development in
this area, ultimately leading to more accessible and
effective tools for database query processing and
related tasks.

5 Experiments

5.1 Experimental Setup
Datasets The Spider (Yu et al., 2018) dataset is
frequently used to assess the performance of text-
to-SQL parsing across multiple databases, which
requires models to demonstrate adaptability to un-
familiar database structures. The dataset comprises
7,000 question-query pairs in the training set and
1,034 pairs in the development set, covering 200
distinct databases and 138 domains.

The BIRD (Li et al., 2023) dataset released by
Alibaba DAMO Academy is a new benchmark for
real large-scale databases, containing 95 large-scale
databases and high-quality Text-SQL pairs, with
a data storage volume of up to 33.4GB covering
37 professional domains. Unlike Spider, BIRD
focuses on massive and real database content, ex-
ternal knowledge reasoning between natural lan-
guage questions and database content, and new
challenges in SQL efficiency when dealing with
large databases.

Evaluation Metrics Following BIRD (Li et al.,
2023) and Test-suite (Zhong et al., 2020), we con-
sider three metrics, exact match accuracy (EM),
execution accuracy (EX), and valid efficiency score
(VES) to evaluate text-to-SQL models faced with
real-world scenarios with large database contents.
Exact Match Accuracy (EM) treats each clause as
a set and compares the prediction for each clause
with its corresponding clause in the reference query.
A predicted SQL query is considered correct only if
all of its components match the ground truth. This
metric does not take values into account. Execution
Accuracy (EX) is defined as the proportion of ques-
tions in the evaluation set for which the execution
results of both the predicted and ground truth in-
quiries are identical, relative to the total number of
queries. Valid Efficiency Score (VES) is designed to
measure the efficiency of valid SQLs generated by
models. It is important to note that "valid SQLs"

545

Dev Test
Method EX VES EX VES

Palm-2 27.38 - 33.04 -
ChatGPT + CoT 36.64 42.30 40.08 56.56
Claude-2 42.70 - 49.02 -
GPT-4 46.35 49.77 54.89 60.77
DIN-SQL + GPT-4 50.72 58.79 55.90 59.44
DAIL-SQL + GPT-4 54.76 56.08 57.41 61.95

SQL-Llama 32.87 55.67 - -
MAC-SQL + SQL-Llama 43.94 57.36 - -

+ Oracle Schema 51.43 58.24 - -
MAC-SQL+GPT-3.5-Turbo 50.56 61.25 - -

+ Oracle Schema 65.78 60.62 - -
MAC-SQL + GPT-4 59.39 66.39 59.59 67.68

+ Oracle Schema 70.28 62.63 - -

Table 1: Execution accuracy(EX) and Valid efficiency
score (VES) on both dev and test set of BIRD dataset.
The SQL-Llama model refers to version 7B. The term
"Oracle Schema" refers to the utilization of a ground
truth sub-database as the input for the Decomposer,
rather than employing the results obtained from the
Selector.

refers to predicted SQL queries whose result sets
align with those of the ground-truth SQLs.

Baselines We conduct experiments on both
BIRD and Spider datasets and compare our method
with the following baseline:

• GPT-4 (OpenAI, 2023) uses a simple zero-
shot text-to-SQL prompt for SQL generation.

• DIN-SQL (Pourreza and Rafiei, 2023) decom-
poses the text-to-SQL task into smaller sub-
tasks and designs different prompts for each
subtask to instruct GPT-4 to complete each
subtask and obtain the final SQL.

• DAIL-SQL (Gao et al., 2023) encodes struc-
ture knowledge as SQL statements, selects
few-shot demonstrations based on their skele-
ton similarities, and removes cross-domain
knowledge from examples for token effi-
ciency.

• C3-SQL (Dong et al., 2023) first performs
schema linking filtering and then directs GPT-
4 with a calibration bias prompt designed for
Spider using a self-consistency strategy.

5.2 Overall Performance

It is important to note that the experiment utilized
the 32k version of GPT-4 and the 16k version of
GPT-3.5-Turbo.

Method Dev Test

C3 + ChatGPT 81.80 82.30
DIN-SQL + GPT-4 82.80 85.30
DAIL-SQL + GPT-4 84.40 86.60

SQL-Llama 65.48 61.63
MAC-SQL+SQL-Llama 76.25 70.58
MAC-SQL+GPT-3.5-Turbo 80.56 75.53
MAC-SQL + GPT-4 86.75 82.80

Table 2: Execution accuracy(EX) on both dev and test
set of Spider. The SQL-Llama model refers to version
7B.

Method Simple Mod. Chall. All

MAC-SQL+GPT-4 65.73 52.69 40.28 59.39
w/o Selector 65.73 52.04 35.14 57.28
w/o Decomposer 61.51 48.82 38.89 55.54
w/o Refiner 63.24 44.52 33.33 54.76

Table 3: Execution accuracy of MAC-SQL ablation study
in BIRD dev set. For brevity, the abbreviation "Mod."
stands for "Moderate" while "Chall." denotes "Challeng-
ing".

BIRD Results In Table 1, we report the perfor-
mance of our method and baseline methods on the
BIRD dataset. It is evident that our method sur-
passes all LLM-based methods in terms of execu-
tion accuracy (EX) and valid efficiency score (VES)
in both the development and test sets. Specifically,
our method outperforms the second-best method
by 4. 63% in the development set and by 2. 18% in
the test set. At the time of writing, MAC-SQL+GPT-
4 achieves an execution accuracy of 59.59 when
evaluated on the BIRD benchmark, establishing a
new state-of-the-art (SOTA) in its holdout test set.

Spider Results Currently, Spider has open-
sourced the test set, so we can evaluate our method
in both the development and the test set. As shown
in Table 2, for the Spider dev set (Yu et al., 2018),
our method achieves the highest execution accu-
racy using GPT-4. These results demonstrate the
generalization ability of our MAC-SQL framework.

5.3 Ablation Study

Table 3 presents the results of an ablation study for
the MAC-SQL model in the BIRD dev set. The table
lists different variations of the MAC-SQL model, in-
cluding with and without certain components such
as Selector, Decomposer, and Refiner. The other
columns represent the accuracy of the model at dif-

546

Few-shot BIRD Spider

EX VES EM EX

0-shot 55.54 63.31 58.42 74.22
1-shot 57.26 64.32 59.68 78.35
2-shot 59.39 66.24 63.20 86.75

Table 4: Results of MAC-SQL+GPT-4 on the dev set of
BIRD and Spider with few-shot evaluation.

ferent levels of difficulty: Simple, Moderate, and
Challenging, as well as the overall accuracy (All).

The findings show that the original MAC-SQL +
GPT-4 model achieves an accuracy of 65. 73%
in Simple, 52. 69% in Moderate and 40. 28% in
Challenging, with an overall accuracy of 59.39%.
When removing the Selector component, the accu-
racy remained the same for Simple, but decreased
to 52.04% for Moderate and 35.14% for Challeng-
ing, resulting in an overall accuracy of 57.28%
(a decrease of 2.11%). Similarly, removing the
Decomposer and Refiner components also led to
decreased accuracy across all difficulty levels.

In general, the ablation study indicates that each
component of the MAC-SQL model (Selector, De-
composer, and Refiner) plays a crucial role in
achieving high accuracy, as their removal resulted
in decreased performance at all difficulty levels.

5.4 Discussion

Impact on the number of demonstrations Ta-
ble 4 shows the evaluation results of MAC-SQL with
different numbers of demonstrations in the BIRD
and Spider datasets. As the number of shots in-
creases from 0 to 2, there is a consistent improve-
ment in the performance metrics (EX, VES, and
EM) for both BIRD and Spider. This indicates that
the model benefits from additional demonstration
examples and is able to generalize better with more
data. The highest performance is achieved with
2-shot evaluation, indicating that the model is capa-
ble of effectively learning from a small number of
examples. The high cost of the GPT-4 interface re-
sults in a significant consumption of tokens during
a full test of the dev set for Spider and BIRD, es-
timated at approximately 6 million and 10 million
tokens, respectively. Due to cost constraints, our
analysis is limited to a maximum of 2 shots, and
further experiments involving more shots (e.g., shot
k > 2) will have to await a more budget-friendly
implementation of GPT-4.

5.5 Error Analysis

In order to thoroughly assess the limitations of our
method, we begin by choosing two datasets (BIRD
and Spider) that contain various types of structured
data, as shown in Figure 5.

Figure 5 displays the error type distribution in
the BIRD and Spider datasets. "Gold Error" is
the most common error type, accounting for 30%
and 22% in BIRD and Spider, respectively, sig-
nifying the significance of gold standard annota-
tions. "Semantic Correct" is another prevalent er-
ror type, representing 14% and 22% in BIRD and
Spider, respectively, indicating the importance of
semantic understanding and correctness. However,
the "Schema Linking Error" is more frequent in
BIRD (2%) than in Spider (8%), demonstrating
differences in schema linking errors. This analysis
underscores the need for addressing gold standard
annotations, semantic correctness, and schema link-
ing in dataset development and evaluation, thereby
improving their quality and reliability. The Ap-
pendix C contains detailed examples of error types.

6 Related Work

LLMs for Text-to-SQL Recent advancements
in text-to-SQL tasks using large language mod-
els (LLMs) have focused on improving prompt
design and developing multi-stage refined frame-
works. In the early stages of the emergence of
large language models, research efforts primarily
focused on designing high-quality prompts to bet-
ter exploit the potential of LLMs for SQL gener-
ation. For example, (Tai et al., 2023) systemat-
ically studied how to enhance LLM’s reasoning
ability through chain-of-thought style prompting,
including the original chain-of-thought prompting
and least-to-most prompting. Similarly, (Chang
and Fosler-Lussier, 2023) comprehensively inves-
tigated the impact of prompt constructions in vari-
ous settings when constructing the prompt text for
text-to-SQL input. Furthermore, DAIL-SQL (Gao
et al., 2023) systematically examined prompt en-
gineering for LLM-based Text-to-SQL methods,
including question representations, prompt compo-
nents, example selections, and example organiza-
tions. Later studies, such as C3-SQL (Dong et al.,
2023), DIN-SQL (Pourreza and Rafiei, 2023), and
StructGPT (Jiang et al., 2023), proposed frame-
works for simplifying databases, generating SQL,
verifying queries, and integrating answers through
zero-shot approaches, query decomposition, and

547

Figure 5: Error Distributions of MAC-SQL on dev set of BIRD and Spider.

specialized interfaces for structured data access.
However, the aforementioned methods have sev-

eral issues. Firstly, the experiments were con-
ducted solely on the Spider family dataset, fail-
ing to demonstrate their generalization to more
complex datasets like BIRD, hence limiting their
real-world applicability. Secondly, certain meth-
ods depend on difficulty-level classifiers and cus-
tomized biases specific to the Spider dataset for
error correction, thus lacking the ability to gener-
alize to a broader spectrum of error types. Third,
these methods neglect the utilization of external
tools and the collaboration of different modules.
Thus, we propose a framework centered on multi-
agent collaboration that can be utilized for more
intricate data scenarios and a broader spectrum of
error types for detection and correction.

LLM-based Agents LLM-based agents have
been a prominent area of study in both the aca-
demic and industry communities for an extended
period (Wang et al., 2023). Recently, through the
acquisition of vast amounts of web knowledge,
LLMs have demonstrated remarkable potential in
achieving human-level intelligence. This develop-
ment has led to a surge in research exploring LLM-
based autonomous agents. AutoGPT (Team, 2023)
is an open-source implementation of an AI agent
and follows a single-agent paradigm in which it
augments the AI model with many useful tools,
and does not support multi-agent collaboration.
Similarly, OpenAgents (Xie et al., 2023) devel-
ops three distinct agents, the Data Agent for data
analysis, the Plugins Agent for plugin integration,
and the Web Agent for autonomous web browsing,
each specializing in different domains, similar to

OpenAI’s ChatGPT Plugins. Additionally, Auto-
Gen (Wu et al., 2023) is an open source framework
that enables developers to build customizable, con-
versable agents that can operate in various modes,
employing combinations of LLMs, human input,
and tools to perform tasks. However, how to apply
LLM-based agents to Text-to-SQL parsing remains
under-explored.

While previous studies have focused on single-
agent paradigms or domain-specific applications,
there is a lack of research on multi-agent collabora-
tive frameworks for Text-to-SQL parsing. We aim
to address this gap by proposing a novel approach
that integrates multiple LLM-based agents to col-
lectively interpret SQL queries. By leveraging the
strengths of different agents specialized in vari-
ous aspects of Text-to-SQL parsing, our framework
aims to improve the accuracy and efficiency of SQL
query interpretation in real-world scenarios.

7 Conclusion

In summary, this paper proposes the MAC-SQL
framework, which utilizes multi-agent collabora-
tion to address challenges in Text-to-SQL tasks.
The framework, along with the open source SQL-
Llama model, achieved an execution accuracy of
59.59 when evaluated on the BIRD benchmark,
establishing a new state-of-the-art (SOTA) on its
holdout test set. This work presents a novel ap-
proach to Text-to-SQL and provides practical guid-
ance to achieve high performance in this domain.
Furthermore, our framework can be expanded to
support a broader spectrum of scenarios.

548

Limitations

The agent prompts utilized in the work may benefit
from further optimization and might not represent
the most optimal choice. Furthermore, this paper re-
ports the fine-tuning results of the 7B CodeLLama
model. Although it performs at a comparable level,
we believe its performance can be further improved
by using larger models.

Ethics Statement

The datasets and models utilized in this paper, and
the implementation of the code and the resulting
models, are not associated with any ethical con-
cerns.

Acknowledgments

This work was partially supported by the National
Natural Science Foundation of China (Grant Nos.
62276017, 62406033, U1636211, 61672081), and
the State Key Laboratory of Complex& Critical
Software Environment (Grant No. SKLCCSE-
2024ZX-18).

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings. Preprint,
arXiv:2305.11853.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang
Lou. 2023. C3: Zero-shot text-to-sql with chatgpt.
Preprint, arXiv:2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. Preprint,
arXiv:1905.08205.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019. X-sql: reinforce schema repre-
sentation with context. Preprint, arXiv:1908.08113.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language
model to reason over structured data. Preprint,
arXiv:2305.09645.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. 2023. Can llm
already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Preprint,
arXiv:2305.03111.

OpenAI. 2023. Gpt-4 technical report. ArXiv.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024. Chatdev: Communica-
tive agents for software development. Preprint,
arXiv:2307.07924.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql
parsing: Concepts, methods, and future directions.
arXiv preprint arXiv:2208.13629.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. Preprint,
arXiv:2308.12950.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1908.08113
https://arxiv.org/abs/1908.08113
https://arxiv.org/abs/2305.09645
https://arxiv.org/abs/2305.09645
https://arxiv.org/abs/2305.09645
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2109.05093

549

constrained auto-regressive decoding from language
models. Preprint, arXiv:2109.05093.

Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Han-
jun Dai, Rajarishi Sinha, Pengcheng Yin, and
Tomas Pfister. 2023. Sql-palm: Improved large lan-
guage model adaptation for text-to-sql. Preprint,
arXiv:2306.00739.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang
Deng, and Huan Sun. 2023. Exploring chain-of-
thought style prompting for text-to-sql. Preprint,
arXiv:2305.14215.

AutoGPT Team. 2023. Autogpt: build and use ai agents.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2021. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. Preprint, arXiv:1911.04942.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2023. A survey on large
language model based autonomous agents. arXiv
preprint arXiv:2308.11432.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran
Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan
Awadallah, Ryen W White, Doug Burger, and Chi
Wang. 2023. Autogen: Enabling next-gen llm ap-
plications via multi-agent conversation. Preprint,
arXiv:2308.08155.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang,
Victor Zhong, Bailin Wang, Chengzu Li, Connor
Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caim-
ing Xiong, Lingpeng Kong, Rui Zhang, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2022. Unified-
skg: Unifying and multi-tasking structured knowl-
edge grounding with text-to-text language models.
Preprint, arXiv:2201.05966.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin
Su, Dongchan Shin, Caiming Xiong, and Tao Yu.
2023. Openagents: An open platform for language
agents in the wild. Preprint, arXiv:2310.10634.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. Preprint,
arXiv:1711.04436.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. In Proc. of EMNLP.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proc. of EMNLP.

Denny Zhou, Nathanael Sch"̈arli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2310.10634
https://arxiv.org/abs/2310.10634
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436

550

A Implementation Details

A.1 Selector Agent
The selector Agent is activated only when encountering large databases. In the specific implemen-
tation, there are two methods to determine whether the current database is large. The first method
involves calculating the token count of the database schema string, such as len(tokens) > (0.8 *
max_sequence_length_of_model) (for example, in this study, using GPT-4-32k, len(tokens) > 25k is
considered a large database); the second method involves counting the total number of columns and
the average number of columns in the tables, which can be adjusted based on the situation. The experi-
mental results in this study are obtained using the first method. For a specific code implementation, the
_is_need_prune function in agents.py can be modified accordingly. In the design of the selector prompt,
in order to guide the model to output in the specified JSON format, we provide a one-shot example, as
detailed in the appendix B.1. After the database is filtered by the selector, to ensure completeness, each
table will retain at least 6 column names, preventing missing columns.

A.2 Decomposer Agent
The decomposer utilizes a maximum of two shots, as outlined in the appendix B.2. The database schema
comprises the database ID, table name, column name, full column name/description, and high-frequency
cell values. When examining cell values, we consider the column type, unique values, and maximum
length. Columns containing only numerical values, as well as unconventional values, such as URLs and
emails, are ignored. The decomposer breaks down the original question into multiple sub-questions,
ranging from one to five. In the case of a single sub-question, it denotes a straightforward question that
can be directly solved in one step without further decomposition into finer ones.

A.3 Refiner Agent
The refiner is tasked with rectifying problematic SQL queries. If the SQL query contains multiple issues,
it may require multiple correction processes. To ensure practical efficiency, a maximum of three rounds
of error correction will be performed. Common error types include SQL syntax errors, schema illusions
(such as non-existent table and column names), and empty query results. Presently, the limitation of the
refiner is that in cases where the SQL query runs without error and generates non-empty results, even if
the SQL does not align with the intended question, the refiner will not make further corrections. We will
continue to investigate how to address such ambiguous scenarios in future research.

B Prompt Details

B.1 Selector Prompt

As an experienced and professional database administrator, your task is to analyze a user question
and a database schema to provide relevant information. The database schema consists of table
descriptions, each containing multiple column descriptions. Your goal is to identify the relevant
tables and columns based on the user question and evidence provided.

[Instruction]
1. Discard any table schema that is not related to the user question and evidence.
2. Sort the columns in each relevant table in descending order of relevance and keep the top 6
columns.
3. Ensure that at least 3 tables are included in the final output JSON.
4. The output should be in JSON format.

[Requirements]
1. If a table has less than or equal to 10 columns, mark it as "keep_all".
2. If a table is completely irrelevant to the user question and evidence, mark it as "drop_all".

551

3. Prioritize the columns in each relevant table based on their relevance.

Here is a typical example:

==========
[DB_ID] banking_system
[Schema]
Table: account
[

(account_id, the id of the account. Value examples: [11382, 11362, 2, 1, 2367].),
(district_id, location of branch. Value examples: [77, 76, 2, 1, 39].),
(frequency, frequency of the acount. Value examples: [’POPLATEK MESICNE’, ’POPLATEK

TYDNE’, ’POPLATEK PO OBRATU’].),
(date, the creation date of the account. Value examples: [’1997-12-29’, ’1997-12-28’].)

]
Table: client
[

(client_id, the unique number. Value examples: [13998, 13971, 2, 1, 2839].),
(gender, gender. Value examples: [’M’, ’F’]. And F:female . M:male),
(birth_date, birth date. Value examples: [’1987-09-27’, ’1986-08-13’].), (district_id, location

of branch. Value examples: [77, 76, 2, 1, 39].)
]
Table: loan
[

(loan_id, the id number identifying the loan data. Value examples: [4959, 4960, 4961].),
(account_id, the id number identifying the account. Value examples: [10, 80, 55, 43].),
(date, the date when the loan is approved. Value examples: [’1998-07-12’, ’1998-04-19’].),
(amount, the id number identifying the loan data. Value examples: [1567, 7877, 9988].),
(duration, the id number identifying the loan data. Value examples: [60, 48, 24, 12, 36].),
(payments, the id number identifying the loan data. Value examples: [3456, 8972, 9845].),
(status, the id number identifying the loan data. Value examples: [’C’, ’A’, ’D’, ’B’].)

]
Table: district
[

(district_id, location of branch. Value examples: [77, 76].),
(A2, area in square kilometers. Value examples: [50.5, 48.9].),
(A4, number of inhabitants. Value examples: [95907, 95616].),
(A5, number of households. Value examples: [35678, 34892].),
(A6, literacy rate. Value examples: [95.6, 92.3, 89.7].),
(A7, number of entrepreneurs. Value examples: [1234, 1456].),
(A8, number of cities. Value examples: [5, 4].),
(A9, number of schools. Value examples: [15, 12, 10].),
(A10, number of hospitals. Value examples: [8, 6, 4].),
(A11, average salary. Value examples: [12541, 11277].),
(A12, poverty rate. Value examples: [12.4, 9.8].),
(A13, unemployment rate. Value examples: [8.2, 7.9].),
(A15, number of crimes. Value examples: [256, 189].)

]
[Foreign keys]
client.‘district_id‘ = district.‘district_id‘

552

[Question]
What is the gender of the youngest client who opened account in the lowest average salary branch?
[Evidence]
Later birthdate refers to younger age; A11 refers to average salary
[Answer]
”’json
{

"account": "keep_all",
"client": "keep_all",
"loan": "drop_all",
"district": ["district_id", "A11", "A2", "A4", "A6", "A7"]

}
”’
Question Solved.
==========

Here is a new example, please start answering:

[DB_ID] {db_id}
[Schema]
{desc_str}
[Foreign keys]
{fk_str}
[Question]
{query}
[Evidence]
{evidence}
[Answer]

B.2 Decomposer Prompt

Given a [Database schema] description, a knowledge [Evidence] and the [Question], you need to
use valid SQLite and understand the database and knowledge, and then decompose the question
into subquestions for text-to-SQL generation.

When generating SQL, we should always consider constraints:
[Constraints]
- In ‘SELECT <column>‘, just select needed columns in the [Question] without any unnecessary
column or value
- In ‘FROM <table>‘ or ‘JOIN <table>‘, do not include unnecessary table
- If use max or min func, ‘JOIN <table>‘ FIRST, THEN use ‘SELECT MAX(<column>)‘ or
‘SELECT MIN(<column>)‘
- If [Value examples] of <column> has ’None’ or None, use ‘JOIN <table>‘ or ‘WHERE <column>
is NOT NULL‘ is better
- If use ‘ORDER BY <column> ASC|DESC‘, add ‘GROUP BY <column>‘ before to select distinct
values

==========

553

[Database schema]
Table: frpm
[

(CDSCode, CDSCode. Value examples: [’01100170109835’, ’01100170112607’].),
(Charter School (Y/N), Charter School (Y/N). Value examples: [1, 0, None]. And 0: N;. 1: Y),
(Enrollment (Ages 5-17), Enrollment (Ages 5-17). Value examples: [5271.0, 4734.0].),
(Free Meal Count (Ages 5-17), Free Meal Count (Ages 5-17). Value examples: [3864.0, 2637.0].

And eligible free rate = Free Meal Count / Enrollment)
]
Table: satscores
[

(cds, California Department Schools. Value examples: [’10101080000000’,
’10101080109991’].),

(sname, school name. Value examples: [’None’, ’Middle College High’, ’John F. Kennedy
High’, ’Independence High’, ’Foothill High’].),

(NumTstTakr, Number of Test Takers in this school. Value examples: [24305, 4942, 1, 0, 280].
And number of test takers in each school),

(AvgScrMath, average scores in Math. Value examples: [699, 698, 289, None, 492]. And
average scores in Math), (NumGE1500, Number of Test Takers Whose Total SAT Scores Are
Greater or Equal to 1500. Value examples: [5837, 2125, 0, None, 191]. And Number of Test Takers
Whose Total SAT Scores Are Greater or Equal to 1500. . commonsense evidence:. . Excellence
Rate = NumGE1500 / NumTstTakr)
]
[Foreign keys]
frpm.‘CDSCode‘ = satscores.‘cds‘
[Question]
List school names of charter schools with an SAT excellence rate over the average.
[Evidence]
Charter schools refers to ‘Charter School (Y/N)‘ = 1 in the table frpm; Excellence rate =
NumGE1500 / NumTstTakr

Decompose the question into sub questions, considering [Constraints], and generate the SQL after
thinking step by step:
Sub question 1: Get the average value of SAT excellence rate of charter schools.
SQL
”’ sql
SELECT AVG(CAST(T2.‘NumGE1500‘ AS REAL) / T2.‘NumTstTakr‘)

FROM frpm AS T1
INNER JOIN satscores AS T2
ON T1.‘CDSCode‘ = T2.‘cds‘
WHERE T1.‘Charter School (Y/N)‘ = 1

”’

Sub question 2: List out school names of charter schools with an SAT excellence rate over the
average.
SQL
”’ sql
SELECT T2.‘sname‘

554

FROM frpm AS T1
INNER JOIN satscores AS T2
ON T1.‘CDSCode‘ = T2.‘cds‘
WHERE T2.‘sname‘ IS NOT NULL
AND T1.‘Charter School (Y/N)‘ = 1
AND CAST(T2.‘NumGE1500‘ AS REAL) / T2.‘NumTstTakr‘ > (

SELECT AVG(CAST(T4.‘NumGE1500‘ AS REAL) / T4.‘NumTstTakr‘)
FROM frpm AS T3
INNER JOIN satscores AS T4
ON T3.‘CDSCode‘ = T4.‘cds‘
WHERE T3.‘Charter School (Y/N)‘ = 1

)
”’

Question Solved.

==========

[Database schema]
Table: account
[

(account_id, the id of the account. Value examples: [11382, 11362, 2, 1, 2367].),
(district_id, location of branch. Value examples: [77, 76, 2, 1, 39].),
(frequency, frequency of the acount. Value examples: [’POPLATEK MESICNE’, ’POPLATEK

TYDNE’, ’POPLATEK PO OBRATU’].),
(date, the creation date of the account. Value examples: [’1997-12-29’, ’1997-12-28’].)

]
Table: client
[

(client_id, the unique number. Value examples: [13998, 13971, 2, 1, 2839].),
(gender, gender. Value examples: [’M’, ’F’]. And F:female . M:male),
(birth_date, birth date. Value examples: [’1987-09-27’, ’1986-08-13’].),
(district_id, location of branch. Value examples: [77, 76, 2, 1, 39].)

]
Table: district
[

(district_id, location of branch. Value examples: [77, 76, 2, 1, 39].),
(A4, number of inhabitants . Value examples: [’95907’, ’95616’, ’94812’].),
(A11, average salary. Value examples: [12541, 11277, 8114].)]

[Foreign keys]
account.‘district_id‘ = district.‘district_id‘
client.‘district_id‘ = district.‘district_id‘
[Question]
What is the gender of the youngest client who opened account in the lowest average salary branch?
[Evidence]
Later birthdate refers to younger age; A11 refers to average salary

Decompose the question into sub questions, considering [Constraints], and generate the SQL after
thinking step by step:

555

Sub question 1: What is the district_id of the branch with the lowest average salary?
SQL
”’ sql
SELECT ‘district_id‘

FROM district
ORDER BY ‘A11‘ ASC
LIMIT 1

”’

Sub question 2: What is the youngest client who opened account in the lowest average
salary branch?
SQL
”’ sql
SELECT T1.‘client_id‘

FROM client AS T1
INNER JOIN district AS T2
ON T1.‘district_id‘ = T2.‘district_id‘
ORDER BY T2.‘A11‘ ASC, T1.‘birth_date‘ DESC
LIMIT 1

”’

Sub question 3: What is the gender of the youngest client who opened account in the lowest
average salary branch?
SQL
”’ sql
SELECT T1.‘gender‘

FROM client AS T1
INNER JOIN district AS T2
ON T1.‘district_id‘ = T2.‘district_id‘
ORDER BY T2.‘A11‘ ASC, T1.‘birth_date‘ DESC
LIMIT 1

”’
Question Solved.

==========

[Database schema]
{desc_str}
[Foreign keys]
{fk_str}
[Question]
{query}
[Evidence]
{evidence}

556

Decompose the question into sub questions, considering [Constraints], and generate the SQL after
thinking step by step:

B.3 Refiner Prompt

[Instruction]
When executing SQL below, some errors occurred, please fix up SQL based on query and database
info. Solve the task step by step if you need to. Using SQL format in the code block, and indicate
script type in the code block. When you find an answer, verify the answer carefully. Include
verifiable evidence in your response if possible.
[Constraints]
- In ‘SELECT <column>‘, just select needed columns in the [Question] without any unnecessary
column or value
- In ‘FROM <table>‘ or ‘JOIN <table>‘, do not include unnecessary table
- If use max or min func, ‘JOIN <table>‘ FIRST, THEN use ‘SELECT MAX(<column>)‘ or
‘SELECT MIN(<column>)‘
- If [Value examples] of <column> has ’None’ or None, use ‘JOIN <table>‘ or ‘WHERE <column>
is NOT NULL‘ is better
- If use ‘ORDER BY <column> ASC|DESC‘, add ‘GROUP BY <column>‘ before to select distinct
values
[Query]
{query}
[Evidence]
{evidence}
[Database info]
{desc_str}
[Foreign keys]
{fk_str}
[old SQL]
”’ sql
{sql}
”’
[SQLite error]
{sqlite_error}
[Exception class]
{exception_class}

Now please fixup old SQL and generate new SQL again.
[correct SQL]

C Error Type Examples

Examples of error types can be observed in Figure 6 (next page).

557

Question Evidence Gold SQL Pred SQL Error Description

How many male patients have a

normal level of both albumin

and total protein?

male refers to Sex = 'M';

normal level of both

albumin and total protein

refers to ALB > 3.5 and

ALB < 5.5 AND TP

between 6.0 and 8.5;

SELECT COUNT(T1.ID) FROM

Patient AS T1 INNER JOIN

Laboratory AS T2 ON T1.ID =

T2.ID WHERE T1.SEX = 'M' AND

T2.ALB BETWEEN 3.5 AND 5.5

AND T2.TP BETWEEN 6.0 AND

8.5

SELECT COUNT(*) FROM

Laboratory WHERE `ID`

IN (SELECT ... AND

`ALB` > 3.5 AND `ALB`

< 5.5 AND `TP` >= 6.0

AND `TP` <= 8.5

Gold SQL uses "ALB

BETWEEN 3.5 AND

5.5", which is conflict

with evidence "3.5 <

ALB < 5.5".

How many artists have designed

a card with a black border

color and is available in both

"arena" and "mtgo" printing

type?

available in both "arena"

and "mtgo" refers to

availability like

'%arena,mtgo%'

SELECT COUNT(CASE WHEN

availability LIKE

'%arena,mtgo%' THEN 1 ELSE

NULL END) FROM cards

SELECT COUNT(DISTINCT

`artist`) FROM cards

WHERE `borderColor` =

'black' AND …

Gold SQL missing the

borderColor constraint.

Question Evidence Gold SQL Pred SQL Error Description

What is the total score of the

posts edited by Yevgeny and

include the user's website

URL.

"Yevgeny" is the

DisplayName; edited refers

to LastEditorUserId

SELECT SUM(T1.Score),

T2.WebsiteUrl FROM posts AS

T1 INNER JOIN users AS T2 ON

T1.OwnerUserId = T2.Id WHERE

T2.DisplayName = 'Yevgeny'

GROUP BY T2.WebsiteUrl

SELECT ... ON

T1.`LastEditorUserId`

= T2.`Id` WHERE

T2.`DisplayName` =

'Yevgeny'

Use wrong db foreign

key

Question Evidence Gold SQL Pred SQL Error Description

Which budget allowed the most

money for water, chips, and

cookies?

budget allowed refers to

expense_description;

expense_description =

'Water, chips, cookies';

most money refers to

SELECT T2.budget_id, T1.cost

FROM expense AS T1 INNER

JOIN budget AS T2 ON

T1.link_to_budget =

T2.budget_id WHERE …

SELECT T1.cost,

T2.budget_id FROM

expense AS T1 INNER

JOIN budget AS T2 ON

…

Same answer, but with

different order

Question Evidence Gold SQL Pred SQL Error Description

Which user has a higher

reputation, Harlan or Jarrod

Dixon?

"Harlan" and "Jarrod

Dixon" are both

DisplayName; highest

reputation refers to

Max(Reputation)

SELECT DisplayName FROM

users WHERE DisplayName IN

('Harlan', 'Jarrod Dixon')

AND Reputation = (SELECT

MAX(Reputation) FROM users

WHERE DisplayName IN

('Harlan', 'Jarrod Dixon'))

SELECT `DisplayName`,

`Reputation` FROM

users WHERE

`DisplayName` =

"Harlan"

Pred SQL miss out one

of the names in the

question.

Question Evidence Gold SQL Pred SQL Error Description

What are the cards for set

OGW? State the colour for

these cards.

set OGW refers to setCode

= 'OGW';

SELECT id, colors FROM cards

WHERE id IN (SELECT id FROM

set_translations WHERE

setCode = 'OGW')

SELECT `name`,

`colors` FROM cards

WHERE `setCode` =

'OGW' AND `colors` IS

NOT NULL

Both table cards and

table set_translations

have the column

setCode with

inconsistent values.

Question Evidence Gold SQL Pred SQL Error Description

What is the post ID and the

comments commented in the

post titled by "Group

differences on a five point

Likert item"?

Title = 'Group differences

on a five point Likert item';

SELECT T2.Id, T1.Text FROM

comments AS T1 INNER JOIN

posts AS T2 ON T1.PostId =

T2.Id WHERE T2.Title =

'Group differences on a five

point Likert item'

SELECT T2.`Id` AS

CommentId, T2.`Text`

AS CommentText FROM

posts AS T1 INNER

JOIN comments AS T2

ON T1.`Id` =

T2.`PostId` WHERE …

Different table join

order, use wrong table id

Question Evidence Gold SQL Pred SQL Error Description

Which cities have the top 5

lowest enrollment number for

students in grades 1 through

12?

K-12 refers to students in

grades 1 through 12.

SELECT T2.City FROM frpm AS

T1 INNER JOIN schools AS T2

ON T1.CDSCode = T2.CDSCode

GROUP BY T2.City ORDER BY

SUM(T1.`Enrollment (K-12)`)

ASC LIMIT 5

SELECT T1.City, ...

JOIN frpm ON

schools.CDSCode =

frpm.CDSCode WHERE

frpm.`Low Grade` =

'1' AND frpm.`High

Grade` = '12') ...

ASC LIMIT 5

Misunderstand

knowledge K-12

Question Evidence Gold SQL Pred SQL Error Description

What is the grade span offered

in the school with the highest

longitude?

SELECT GSoffered FROM

schools ORDER BY

ABS(longitude) DESC LIMIT 1

SELECT `GSoffered`

FROM schools WHERE

`Longitude` = (

SELECT

MAX(`Longitude`) FROM

schools)

No information about

ABS(longtitude)

Dirty Database Values

Wrong Schema Linking

Evidence Misunderstand

Other Errors

Gold Error

Database Misunderstand

Semantic Correct

Question Misunderstand

Figure 6: 8 major types of error cases of BIRD are presented. Some cases are shortcuts for better presentation.

	Introduction
	Preliminaries
	Problem Definition of Text-to-SQL
	Large Language Model for Text-to-SQL

	MAC-SQL Framework
	Overview
	Selector
	Decomposer
	Refiner

	SQL-Llama Model
	Instruction Dataset Construction
	Multi-task Supervised Fine-tuning

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Study
	Discussion
	Error Analysis

	Related Work
	Conclusion
	Implementation Details
	Selector Agent
	Decomposer Agent
	Refiner Agent

	Prompt Details
	Selector Prompt
	Decomposer Prompt
	Refiner Prompt

	Error Type Examples

