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Abstract

Chinese Semantic Error Recognition (CSER)
has always been a weak link in Chinese lan-
guage processing due to the complexity and
obscureness of Chinese semantics. Existing
research has gradually focused on leveraging
pre-trained models to perform CSER. Although
some researchers have attempted to integrate
syntax information into the pre-trained lan-
guage model, it requires training the models
from scratch, which is time-consuming and la-
borious. Furthermore, despite the existence
of datasets for CSER, the constrained size of
these datasets impairs the performance of the
models. Thus, in order to address the difficulty
posed by a limited sample set and the need of
annotating samples with semantic-level errors,
we propose a Pseudo-label Data Construction
method for CSER (PDC-CSER), generating
pseudo-labels for augmented samples based on
perplexity and model respectively, which over-
comes the difficulty of constructing pseudo-
label data containing semantic-level errors and
ensures the quality of pseudo-labels. More-
over, we propose a CSER method with the
Dependency Syntactic Attention mechanism
(CSER-DSA) to explicitly infuse dependency
syntactic information only in the fine-tuning
stage, achieving robust performance, and si-
multaneously reducing substantial computing
power and time cost. Results demonstrate that
the pseudo-label technology PDC-CSER and
the semantic error recognition method CSER-
DSA surpass the existing models.

1 Introduction

As an essential phase in the text proofreading task,
text error recognition is extremely crucial to im-
prove the performance of error correction. Chi-
nese text errors are divided into three categories:
spelling errors, grammatical errors, and semantic
errors. Existing research concerning Chinese text
error detection mainly pays attention to Chinese

Spelling Check (CSC) as well as Chinese Gram-
matical Error Diagnosis (CGED) (Wu et al., 2023;
Yue et al., 2022; Sun et al., 2023b). Neverthe-
less, it is still relatively weak in Chinese text error
recognition on the semantic level due to Chinese
semantics’ complexity. Semantic error recognition
is conducive to many downstream applications, for
instance, automatic speech recognition (Zhao et al.,
2021) automated essay scoring (Uto et al., 2020).
Hence, in this paper, we focus on Chinese Semantic
Error Recognition (CSER), determining whether a
Chinese sentence has semantic errors1.

Large-scale and high-quality annotation data is
vital for achieving Chinese text error detection
tasks. The research on Chinese spelling errors and
grammatical errors has proposed some effective
data synthesis methods and provided a large num-
ber of available datasets (Wang et al., 2018; Zhang
et al., 2022b). Despite the initiation of research ef-
forts into CSER, the inadequacy of pertinent train-
ing datasets persists. Sun et al. (2022) proposed
the first high-quality annotated dataset for CSER,
namely Corpus of Chinese Linguistic Semantic Ac-
ceptability (CoCLSA), bridging the gap in the field.
Notwithstanding the availability of the dataset for
CSER, its size is limited. We conduct experiments
on the dataset to explore the performance of the
CSER model at 50%, 60%, 70%, 80%, 90%, and
100% of the dataset, and find that the model perfor-
mance keeps growing without reaching a plateau
value. The result in Fig. 1 indicates that the model
performance for CSER may further improve with
a sustained increase in the training dataset scale.
Furthermore, compared with the corpus for CSC
and CGED, it is more challenging to annotate the
datasets for CSER because the semantic-level er-
rors are complex.

For the CSER task, the traditional CSER meth-

1Detailed examples for various Chinese text errors are
present in Appendix A.
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Figure 1: Experimental results in different scale raw
data.

ods are mainly based on the combination of rules
and statistical models (Luo et al., 2002; Wu et al.,
2015). The leverage of inference methods such
as description logic reasoning machines further
improves the effect of CSER (Ying et al., 2017).
However, the establishment of rules and knowl-
edge bases is labor-intensive and the performance
of CSER is limited by the quality of the knowledge
bases. With the development of deep learning tech-
nology, it is a potential research avenue to facilitate
the CSER task with the rich semantic knowledge
embedded in large-scale pre-trained language mod-
els. Existing research has attempted to integrate
dependency syntactic information into pre-trained
language models for CSER, but requires training
the pre-trained model from scratch, consuming a
huge waste of energy and time (Sun et al., 2022).

To tackle the above challenges, we propose a
Pseudo-label Data Construction method for CSER
(PDC-CSER) to extend samples, compensating
for the lack of data. Our method is based on two
effective strategies to jointly screen the pseudo-
labels of augmented samples, which ensures the
quality of pseudo-labels. Furthermore, we put
forth a Dependency Syntactic Attention mechanism
(CSER-DSA) that explicitly integrates dependency
syntactic information, exclusively utilized in the
fine-tuning stage, which considerably reduces both
computational resources and time requirements.
Our main contributions are summarized as follows:

1) We introduce a novel method to construct
pseudo-label data for CSER. Our method effec-
tively addresses the difficulty posed by constructing
pseudo-label data containing semantic-level errors,
while ensuring the quality of pseudo-labels.

2) We propose a novel approach of utilizing a de-
pendency syntactic attention mechanism for CSER.
This approach explicitly incorporates dependency

syntactic information and operates solely in the
fine-tuning phase, achieving strong performance
and saving significant computational resources and
time costs.

3) Results on the CoCLSA dataset demonstrate
that the proposed pseudo-label technology PDC-
CSER and the semantic error recognition method
CSER-DSA outperform the existing models.

2 Related Work

2.1 Chinese semantic error recognition

CSER has long been regarded as a challenging
issue in Chinese text error detection. Although ex-
isting methods for CSC and CGED have achieved
notable success, they are not equipped to tackle
the complexity and obscurity of Chinese seman-
tic errors, which are more intricate compared to
spelling and grammatical errors (Yunhan et al.,
2022). Early CSER approaches mainly relied on
rules and statistical models (Luo et al., 2002; Wu
et al., 2015). Thereafter, some researchers have
attempted to adopt knowledge bases and semantic
reasoning methods to perform Chinese semantic er-
ror detection (Zhang et al., 2021; Ying et al., 2017).

Nevertheless, the traditional CSER methods rely
on manually established rules and knowledge bases,
and the performance is limited by the scale and
quality of the knowledge bases, making them un-
suitable for large-scale semantic error recognition.
Pre-trained language models have learned rich prior
linguistic, syntactic, and lexical information for
downstream tasks through unsupervised training on
a large corpus in the pre-training stage. Thus, schol-
ars have conducted investigations about leveraging
the rich semantic information in the pre-trained
language models to solve semantic errors. Sun
et al. (2022) made the first attempt to introduce
a pre-trained language model into the CSER task
and provided the first annotated datasets for CSER.
Whereas small-scale datasets limit the model per-
formance. To our knowledge, there is no investiga-
tion into pseudo-label data construction oriented to
semantic error recognition, given the difficulty of
annotating texts with semantic errors.

2.2 Syntax-enhanced model

Previous research has demonstrated the great po-
tential of syntactic information in various natural
language processing tasks (Zhang et al., 2022c;
Strubell et al., 2018). Simultaneously, some re-
searchers (Min et al., 2020) stated that pre-trained
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language models cannot capture the deep syntac-
tic structure and syntactic information in terms
of dependency weights. Therefore, an increasing
number of studies have designed syntax-related
pre-training tasks to inject dependency syntactic
information into pre-trained language models, en-
hancing the performance of the models Zhang et al.
(2022a); Wang et al. (2021).

Yet it is labor-intensive and time-consuming to
inject dependency syntactic information in the pre-
training phase. Thus, some work focuses on incor-
porating dependency syntactic information into the
pre-trained language model only in the fine-tuning
stage, likewise, achieving remarkable improvement
(Nguyen et al., 2020). Considering the effective-
ness of dependency syntactic information and the
fact that most error types of Chinese semantic er-
rors are related to dependency syntax, it is feasi-
ble to exploit dependency syntactic information
to assist in recognizing Chinese semantic errors.
Despite the available method of integrating syntac-
tic information for semantic error recognition (Li
et al., 2013; Sun et al., 2022), this method requires
training the model from scratch, consuming high
energy and time costs. Hence, we infuse more ef-
fective dependency syntactic information via a self-
attention mechanism, which can also improve the
performance of semantic error recognition when
employed only in the fine-tuning phase.

3 Pseudo-label data construction method
oriented to semantic error recognition

As demonstrated by the empirical experiment in
Fig. 1, expanding the scale of the datasets can fur-
ther enhance the performance of the CSER model.
The workflow of the pseudo-label data construction
method is shown in Fig. 2. Initially, we adopt a
relatively easy yet effective Easy Data Augmenta-
tion (Wei and Zou, 2019) method to generate aug-
mented samples. Specifically, we expand the raw
training set by randomly replacing synonyms based
on the off-the-shelf Synonym Tool2. For each sam-
ple, synonyms are leveraged to randomly replace
5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%
tokens of the raw sentence to obtain the augmented
samples. Our initial objective is to minimize the
introduction of noise during the data augmenta-
tion process. Hence, we exclusively select the top
three synonyms with the highest similarity yield
by Synonym Tool to randomly replace tokens in

2https://github.com/chatopera/Synonyms

the original text. Additionally, we generate high-
confidence pseudo-labels for each augmented sam-
ple perplexity-based and model-based prediction,
respectively. Ultimately, we retain only augmented
samples that exhibit consistent pseudo-labels gen-
erated by both strategies for training the semantic
error recognition model for Chinese text.

3.1 Pseudo-perplexity-based pseudo-label
generation

Motivated by Salazar et al. (2020), based on the
perplexity scoring mechanism of the pre-trained
language models, we utilize the pseudo-perplexity
(PPPL) to perform unsupervised acceptability judg-
ment on the augmented samples and assign them
pseudo-labels. Pre-trained language models, such
as BERT (Kenton and Toutanova, 2019) and
RoBERTa (Liu et al., 2019), have achieved great
success in contextual language representation due
to the use of masked language modeling object,
where a token wt is replaced with [MASK] and
predicted via all past and future tokens S\t :=(
w1, . . . , wt−1, wt+1, . . . , w|S|

)
. Subsequently, in

scoring the fluency of the sample, we initially calcu-
late the relevant pseudo-log-likelihood scores orig-
inating from the pre-trained model, which involves
the summation of the conditional log probabili-
ties logPMLM

(
wt | S\t

)
of individual sentence

tokens. Specifically, we construct copies with each
token masked out and sum the log probability for
each masked token over copies to compute the
pseudo-log-likelihood score. For each sentence
S, the pseudo-log-likelihood score is calculated as
follows:

PLL(S) :=

|S|∑
t=1

logPMLM

(
wt | S\t

)
. (1)

We further compute the PPPL of each raw sen-
tence and the augmented sentence based on the
pseudo-log-likelihood score, which is used in lieu
of perplexity. The PPPL is defined as follows:

PPPL(S) := exp

(
− 1

|S|
PLL(S)

)
. (2)

When generating pseudo-labels for augmented
samples via pseudo-perplexity, we deem that if the
PPPL score of the corresponding augmented sam-
ple exceeds that of the raw sentence without seman-
tic errors, the augmented sample will be assigned
a pseudo-label indicating that there are semantic
errors. Conversely, provided that the PPPL score of
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Figure 2: The process of pseudo-label corpus construction.

its corresponding augmented sample is less than or
equal to the raw sentence, the augmented sample
will be assigned a pseudo-label representing no se-
mantic errors. In the same vein, the corresponding
augmented sample with a PPPL score greater than
or equal to the raw sentence containing semantic er-
rors will be treated as existing semantic errors, gen-
erating relevant pseudo-label. Whereas if the PPPL
score for an augmented sample is lower than that
of the raw sentence, it is not necessarily considered
correct, thus preventing an accurate pseudo-label
from being assigned. Therefore, we eliminate the
augmented data that cannot accurately determine
the pseudo-label to ensure the quality of pseudo-
labels.

3.2 Model-based prediction pseudo-label
generation

Aiming to predict the probability distribution of
pseudo-label of unlabeled texts, we train a seman-
tic error recognition model based on RoBERTa
with softmax activation function layer using the
raw data. Concretely, concerning each augmented
sample, RoBERTa is employed to encode unlabeled
sentences to obtain a feature vector, which is then
fed into a linear classifier, yielding pseudo-label
“0” or “1” depending on a large score, where “0”
indicates that augmented sample contains semantic
errors and “1” indicates that the augmented sample
has no semantic errors.

4 Infused-syntax Chinese semantic error
recognition model

As shown in Fig. 3, we propose a syntax-infused
model, which incorporates syntax information into

pre-trained language models only in the fine-tuning
phase. The model consists of four modules: text
encoding (TE) module, correlation matrix construc-
tion (CMC) module, dependency syntactic informa-
tion infusion (DSIN) module, and Chinese seman-
tic error recognition (CSER) module. In the text en-
coding module, we obtain the representation of the
sentence exploiting a pre-trained language model.
In the correlation matrix construction module, de-
pendency distance has been proposed to effectively
capture global syntactic information. Subsequently,
we utilize a distance matrix to encode the depen-
dency syntactic tree structure, followed by the nor-
malization of each element to generate a correlation
matrix. Moreover, to infuse dependency syntactic
information into context representation to obtain
syntax-aware representation, we construct a depen-
dency syntactic information infusion module based
on the dependency syntactic attention mechanism.
Finally, the updated text representation is input into
the Chinese semantic error recognition module to
determine whether a sentence has a semantic error.

4.1 Text encoding module

In the text encoding module, we exploit a
RoBERTa pre-trained model with outstanding per-
formance in text semantic representation to encode
sentences. The pre-trained model learns a large
amount of prior linguistic, syntactic, and lexical
information for downstream tasks through unsuper-
vised training on a mass of corpus in the pre-trained
stage. Considering the lack of annotated corpus for
the CSER task, we regard the RoBERTa as the
backbone of the semantic error recognition model
to make full use of the abundant linguistic informa-
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Figure 3: The architecture of infused-syntax model for Chinese semantic error recognition.

tion contained in it. For given input sequence Si

corresponding to subscript i, the process of com-
puting the semantic feature Hi is:

Hi = RoBERTa(ai, bi, ci), (3)

where ai, bi, and ci are the token, segment, and
position embedding respectively.

4.2 Correlation matrix construction module

When constructing the correlation matrix, we adopt
the LTP tool3 (Che et al., 2021) to extract the depen-
dency syntactic information of all sentences and
generate the dependency syntactic tree. Further-
more, we define the dependency distance based on
the dependency syntactic tree to construct the dis-
tance matrix, which is further normalized to obtain
the correlation matrix for encoding the syntax tree
structure. Our definition of dependency distance
and the syntax structure encoding are described in
detail in the following.

Dependency Distance over Dependency Syn-
tactic Tree. From an intuitive perspective, the dis-
tance separating two tokens in the dependency syn-
tactic tree is indicative of their semantic relatedness.
The proximity of the two tokens implies a stronger
linguistic association between them. Consequently,
we define the dependency distance between two to-
kens as the number of edges contained in the path

3https://github.com/HIT-SCIR/ltp

from one node to another over the dependency syn-
tactic tree. Specifically, assuming that token vp is
the head of the token vq, the dependency distance
between token vp and token vq is d(vp, vq) = 1. If
there is no edge directly connected between token
vp and token vq, the dependency distance between
them is the sum of the edges on the path in the de-
pendency graph. Note that in order to fully employ
the syntactic structure, the dependency syntactic
tree is simplified to an undirected graph, such that
equal significance is attributed to the strength of
syntactic dependency between two tokens.

Syntax Tree Structure Encoding. We encode
the structure of the dependency syntactic tree via
distance matrix D, which can accurately reflect the
distance between two provided tokens. Given a
sentence corresponding to a dependency syntactic
tree, the distance from the p-th token vp to the q-th
token vq, namely, the element Dp,q ∈ D of the p-th
row and q-th column in the distance matrix D is
defined as:

Dp,q =

{
d (vp, vq) , if exist a path from vp to vq,
0, if p = q.

(4)

Based on the fact that the dependency distance
is inversely proportional to the correlation strength,
the distance matrix D is normalized to obtain the
correlation matrix D̃p,q as follows:

D̃p,q =
1

Dp,q + 1
. (5)
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4.3 Dependency syntactic information
infusion module

The correlation matrix constructed for each sen-
tence based on dependency syntactic information
is invariant. Nevertheless, the importance of depen-
dency syntactic information varies from token to
token. We expect the model to pay more attention
to the essential dependency syntactic information
in the training phase. Therefore, we leverage the
attention mechanism to process the correlation ma-
trix to obtain a learnable correlation matrix:

Attention(Q, K, V) = softmax

(
QKT

√
dk

)
V,

(6)
M = Attention

(
D̃WQ, D̃WK , D̃W V

)
, (7)

where Q, K, and V denote the matrix of query, key,
and value respectively, which can be calculated
by the input representation D̃. WQ, WK , W V

represent for the trainable parameters for linear
projections. Meanwhile, M stands for attention-
based correlation matrix.

For a sentence Si, given the contextual repre-
sentation Hi and the learnable correlation matrix
Mi, we inject the dependency syntactic informa-
tion into the contextual representation to obtain
syntax-aware representation H̃i as follows:

H̃i = HiMi. (8)

The syntax-aware attention mechanism is capa-
ble of capturing crucial information along the syn-
tactic tree structure. Notably, the attention weight
increases with the proximity over the dependency
syntactic tree, resulting in greater propagation of
syntax information between the corresponding to-
kens. Conversely, tokens that are further apart on
the dependency syntactic tree will receive lower
attention weights and, consequently, less syntax
information will be propagated.

4.4 Chinese semantic error recognition
module

Chinese semantic error recognition module is con-
structed to identify whether the sentence has se-
mantic errors. In the module, in order to retain
pre-training knowledge while integrating syntactic
information, we combined the raw text representa-
tion Hi with syntax-aware representation H̃i to ob-
tain a new text representation Hi

new, where mainly
position-wise add and concatenate two operations
are considered.

Position-wise add operation is formulated as fol-
lows:

Hi
new = Hi + H̃i. (9)

Concatenate operation is formulated as follows:

Hi
new = concat(Hi, H̃i). (10)

Thereafter, the new feature vector is put into a
linear classifier with the softmax function, which
is formulated as follows:

yi = softmax
(
(W3)

T Hi
new + b

)
, (11)

where W3 and b are learnable parameters, and yi is
the predicted probability. Since the CSER task is
treated as a binary classification task, cross-entropy
loss is employed to calculate the loss that penalizes
the predicted class probability P̂j based on how far
it is from the actual expected value Pj . The cross-
entropy loss function Lce for a batch with size N
is defined as follow:

Lce = − 1

N

N∑
i=1

2∑
j=1

Pj log P̂j . (12)

5 Experiment

Dataset Correct Incorrect Semantic Total
Train 11,488 33,760 45,248
Dev 1,080 1,080 2,060
Test 1,000 1,000 2,000

Table 1: Distribution of experimental data.

5.1 Datasets and Metrics

We conduct our experiment on the dataset CoCLSA
constructed by Sun et al. (2022), which is collected
from multiple choice questions related to incor-
rect semantic sentences from the high school ex-
amination online resources. The data in CoCLSA
contains two types of labels, where “1” indicates
the sentence with semantic errors and “0” repre-
sents the sentence without semantic errors. The
dataset contains a training set, a validation set, and
a test set. The statistical information of the dataset
is shown in the Table 1. In terms of evaluation
metrics, we regard the CSER task as a binary clas-
sification task, so precision, recall, F1 score, and
accuracy score are utilized for model evaluation as
in previous work (Sun et al., 2023a).
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Method P R F ACC
SLA (Li et al., 2021) 72.8 73.0 72.9 72.9

Syntax-RoBERTa (Bai et al., 2021) 73.3 74.3 73.8 73.6
K-adapter (Wang et al., 2021) 72.6 73.7 73.2 -

RoBERTa+DSRP (Sun et al., 2023a) 74.2 74.4 74.3 74.3
RoBERTa+DSRP+ (Sun et al., 2023a) 73.2 75.8 74.8 74.1

SLA+DSRP (Sun et al., 2023a) 72.1 77.1 74.5 73.6
SLA+DSRP+ (Sun et al., 2023a) 72.0 76.9 74.4 73.5

Syntax-RoBERTa+DSRP (Sun et al., 2023a) 73.7 75.9 74.8 74.4
Syntax-RoBERTa+DSRP+ (Sun et al., 2023a) 73.6 76.1 74.8 74.4

ChatGPT (gpt-3.5-turbo-0613) 56.9 38.8 46.1 54.7
RoBERTa (Liu et al., 2019) 73.0 76.7 74.8 74.2

Our Model 75.6 74.8 75.2 75.3

Table 2: Experiment results on the CoCLSA dataset.

5.2 Baselines

We leverage following baselines, including SLA
(Li et al., 2021), Syntax-RoBERTa (Bai et al.,
2021), K-adapter (Wang et al., 2021), DSRP (Sun
et al., 2023a), DSRP+ (Sun et al., 2023a), Chat-
GPT (gpt-3.5-turbo-0613) and RoBERTa (Liu
et al., 2019) to verify the effectiveness of our CSER-
DSA. More detailed descriptions of baselines are
provided in Appendix B.

5.3 Implementation

We leverage LTP4 for dependency syntactic infor-
mation extraction and complete all experiments on
Chinese semantic error recognition based on Py-
Torch and RTX 3090 GPU. We fine-tune RoBERTa
model for 10 epochs with a batch size of 32, where
AdamW(Kingma and Ba, 2015)(Loshchilov and
Hutter, 2019) optimizer with a learning rate of 2e-5
and weight decay of 0.01 is employed.

5.4 Main Result

We conduct CSER experiments on the CoCLSA
dataset and compare them with the results that
are also tested on the benchmark. The results are
shown in Table 2. Our model equipped with syntax-
aware attention exceeds the RoBERTa results by
0.4% and 1.1% in the F1 score and accuracy score,
respectively. Our method achieves state-of-the-art
results in the F1 score and accuracy score for the
CSER task compared with other methods infusing
dependency syntax. Specifically, compared with
the model using DSRP or DSRP+ pre-training
tasks to implicitly incorporate dependency syntac-
tic information in the pre-trained phase, our model

4https://github.com/HIT-SCIR/ltp

achieves an improvement of 0.9%-1.8% and 0.4%-
0.9% in accuracy score as well as F1 score, re-
spectively, indicating that explicitly incorporating
dependency syntactic information solely in the fine-
tuning phase can effectively improve model perfor-
mance. Our model consistently outperforms the
K-adapter infusing syntax knowledge in the pre-
training phase in all metrics. Moreover, our model
achieves consistent gains over SLA and Syntax-
RoBERTa, which integrate dependency syntactic
information leveraging attention mechanism. The
results reveal that our proposed method of inte-
grating dependency syntactic information is more
effective.

Our investigation of the performance of the large-
scale language model ChatGPT on CSER reveals
a significant gap between the metrics of ChatGPT
and those of existing CSER models. Qu and Wu
(2023) discovered that ChatGPT exhibits poor per-
formance in Chinese grammatical error correction
task. Our findings demonstrate that ChatGPT is
deficient in discerning semantic errors within Chi-
nese text, consequently impeding its proficiency
in error correction. We posit that enhancing Chat-
GPT’s capacity for error identification is pivotal for
ameliorating its error correction performance.

P R F ACC
Our Model 75.6 74.8 75.2 75.3

w/o Pseudo-label data 75.6 69.8 72.6 73.7
w/o DSIN module 74.2 70.2 72.1 72.9

Table 3: Experiment results of ablation study.
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Figure 4: Experiment results of data augmentation ratio.

Figure 5: Experiment results of correlation matrix di-
mension.

5.5 Ablation study

We conduct ablation experiments to investigate
the impact of the pseudo-label data construction
method oriented to semantic error recognition and
dependency syntactic information infusion module.
Specifically, we perform experiments based on our
proposed model without introducing pseudo-label
data or removing dependency syntactic information
infusion module, respectively. From the results in
Table 3, it can be seen that our proposed model
benefits from applying a pseudo-label data con-
struction method and dependency syntactic infor-
mation infusion. When discarding the pseudo-label
data, the precision stays the same. The observa-
tion indicates that the integration of pseudo-label
data enhances the model’s generalization capacity,
mainly contributing to an improvement in recall
performance. It is remarkable that removing the
dependency syntactic information infusion module
results in a more substantial decrease in the model’s
performance, indicating the significant contribu-
tions of dependency syntactic information to CSER.
Thus our proposed methods are effective.

5.6 Analysis
Data Augmentation Ratio. Owing to the differ-
ent proportions of tokens replaced in the data aug-
mentation process, the quality of the augmented
samples will be uneven. Therefore, we explore
the effect of the data augmentation ratio on the ex-
perimental results, as shown in Fig. 4. When the
augmentation ratio is 10%, the accuracy score and
F1 score of the model for CSER are optimal, and
the corresponding precision and recall also achieve
good performance. With the augmentation ratio
increasing, the recall, F1 score, and accuracy score
of the model decrease significantly, which may be
attributed to the noise introduced by the token ex-
cessively replaced. Thus, in the data augmentation
phase, we opt to use the most appropriate 10% ratio
to construct 33,023 pseudo-label data based on our
PDC-CSER method, training the optimal model.

Correlation Matrix Dimension. Additionally,
we explore the effect of the correlation matrix di-
mension on the performance of the model. The
results in Fig. 5 intuitively demonstrate that the
model has achieved the best performance for se-
mantic error recognition in all metrics when the
dimension of the correlation matrix is set to 128.

6 Conclusion

CSER poses significant challenges due to semantic
errors’ complexity and ambiguity, which has al-
ways been a weak link in Chinese language process-
ing. To tackle the challenge of a small sample set
and annotating corpus containing semantic errors,
we present a novel pseudo-label data construction
method for CSER, generating pseudo-labels via
two strategies to ensure the quality of pseudo-labels.
Furthermore, we propose a method to explicitly
incorporate the information into the pre-trained lan-
guage model for CSER, focusing on more efficient
dependency syntax that captures global syntactic
information. Unlike previous studies, our proposed
method can be employed solely in the fine-tuning
phase, resulting in significant improvements while
simultaneously saving resources and time cost. Ex-
perimental results on the CoCLSA show that our
proposed approach outperforms existing models.
In the future, we will consider incorporating rich
information such as the part-of-speech and depen-
dency types in dependency syntax trees, where con-
nections between part-of-speech tags that do not
conform to normal semantic patterns may have se-
mantic errors.
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A Comparison of Different Chinese Text
Correction

Unlike spelling and grammatical errors, semantic
errors concentrate on complex semantic and syn-
tax, leading to syntactic violations and even com-
prehension problems. Table 4 presents examples
of different Chinese text proofreading tasks. CSC
aims to detect word-level errors caused by mis-
spelled words. As shown in Table 4, the spelling
error occurs due to the confusion caused by the pho-
netic resemblance between the characters “及 (jí)”
and “急 (jí)” in CSC task. CGED mainly refers to
syntax-level error detection due to local or global
grammar exceptions, namely missing words, mul-
tiple words, word order or misusing words. More
precisely, the error type of the CGED task is word
order in Table 4. The correct grammar is that “不
能 (can not)” as an adverb should be placed in
front of “实现 (achieve)”. Different from CSC
and CGED, CSER is oriented to more complex
semantic-level errors, including collocation, miss-
ing, redundant, confusion, fuzziness, word order
or illogical errors, requiring stronger capability for
the model to understand the semantic information
of the context for the sentence with semantic er-
rors. The example of the CSER task in Table 4
exists a semantic error caused by semantic repeti-
tion. It is remarkable that the sentence is relatively
fluent compared with sentences with grammatical
errors owing to the word order, posing a significant
obstacle to the model to recognize the semantic
errors. As shown in Table 4, humans can easily
identify Chinese grammatical errors and Chinese
spelling errors. Nevertheless, semantic errors are
even challenging for native speakers to recognize
because semantic errors typically entail judgment
of the syntactic structure of words.

B Baselines

We compare our CSER-DSA with the following
baselines:

SLA (Li et al., 2021): The syntax-aware local at-
tention (SLA) can capture the information of impor-
tant local regions on the syntactic structure, which
harnesses syntax-based masking to compute the
dot-product of queries and keys and incorporates
local attention with standard global attention to
calculate the final attention scores.

Syntax-RoBERTa (Bai et al., 2021): The frame-
work is designed to infuse syntactic information,
which is applied to an arbitrary Transformer-based

pre-trained checkpoint. The method disentan-
gles the self-attention network into various sub-
networks via sparse masks reflecting different con-
nections and distances of tokens in a syntax tree and
adopts topical attention to aggregate task-specific
representations from distinct sub-networks.

K-adapter (Wang et al., 2021): K-adapter al-
lows multiple kinds of knowledge to infuse large
pre-trained models in the pre-training phase while
maintaining the original representation of a pre-
trained model fixed.

DSRP (Sun et al., 2023a): Dependency Struc-
ture and Relation Prediction(DSRP) performs mul-
titask training based on the DSP pre-training task
and DRP pre-training task. Specifically, the DSP
pre-training task only considers two dependency
structures, namely child and parent, aiming to learn
the directionality of the dependency structure. The
DRP pre-training task considers 12 dependency
relations from the dependency parser of LTP, en-
abling the model to learn the diversity of depen-
dency relations.
DSRP+ (Sun et al., 2023a): DSRP+ is con-

sistent with DSRP in terms of DRP pre-training
task, while the only difference is the introduction
of DSP+, a variant of DSP, which involves three
dependency structures, including child, parent, and
others, considering all the dependency structures.

ChatGPT (gpt-3.5-turbo-0613)5: Owing to the
impressive performance demonstrated by LLMs
in zero-shot or few-shot prompting scenarios, we
evaluate the performance of ChatGPT with Ope-
nAI’s official API in zero-shot setting. We design
prompts to activate their capabilities. The prompt
template is shown in Figure 6. The gpt-3.5-turbo is
opted to be the evaluated model, which stands out
as the most advanced and specifically optimized
for chat functionality.

RoBERTa (Liu et al., 2019) : RoBERTa is an
improved variant of BERT, which utilizes dynamic
masks and cancels the NSP task. Nonetheless, the
full sentence mechanism is considered. Meanwhile,
the size of RoBERTa’s training data is ten times
the size of BERT’s training data. RoBERTa is fine-
tuned on the training set containing pseudo-label
samples directly in our experiments.

C Case Study

We conduct a case study to demonstrate the ef-
fectiveness of integrating dependency syntactic in-

5https://chat.openai.com/
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CSC
source 接到信后，他迫不急 (jí)待的连夜赶到县城

After receiving the letter, he rushed at once to the town that night.

target 接到信后，他迫不及 (jí)待的连夜赶到县城
After receiving the letter, he rushed at once to the town that night.

CGED
source 没有解决这个问题，不能人类实现更美好的将来。

Without addressing this problem, cannot humanity achieve a better future.

target 没有解决这个问题，人类不能实现更美好的将来。
Without addressing this problem, humanity cannot achieve a better future.

CSER
source 为了防止不再发生意外，老师们做了很多练习。

To prevent not accidents, teachers have done many drills.

target 为了防止发生意外，老师们做了很多练习。
To prevent accidents, teachers have done many drills.

Table 4: Examples of Chinese Spelling Correction, Chinese Grammatical Error Diagnosis and Chinese Semantic
Error Recognition. Misspelled words are highlighted in red and the corresponding answers are in blue.

Figure 6: Prompt Template (in Chinese) for Chinese Semantic Error Recognition. The Chinese sentences are the
actual prompts used for ChatGPT in the experiment, while the English sentences are the corresponding translations.

Figure 7: Experiment results of case study.

formation only in the fine-tuning stage for CSER.
The results in Fig. 7 show that for two cases with
semantic errors, our model provides correct predic-
tions, while RoBERTa does not. The outstanding
result indicates that our model effectively captures
incorrect dependency syntactic information during
the fine-tuning phase, thereby enhancing the per-
formance of the model in recognizing semantic
errors related to dependency syntax. It is remark-
able that our model gives a good judgment for case
2 containing the semantic repetition error, which is

challenging even for humans to recognize due to
the high fluency of sentences.
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