@inproceedings{hao-etal-2025-post,
title = "Post-Hoc Watermarking for Robust Detection in Text Generated by Large Language Models",
author = "Hao, Jifei and
Qiang, Jipeng and
Zhu, Yi and
Li, Yun and
Yuan, Yunhao and
Ouyang, Xiaoye",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.364/",
pages = "5430--5442",
abstract = "Research on text simplification has been ongoing for many years, yet document simplification remains a significant challenge due to the need to address complex factors such as technical terminology, metaphors, and overall coherence. In this work, we introduce a novel multi-agent framework AgentSimp for document simplification, based on large language models. This framework simulates the collaborative efforts of a team of human experts through the roles played by multiple agents, effectively meeting the intricate demands of document simplification. We investigate two communication strategies among agents (pipeline-style and synchronous) and two document reconstruction strategies (Direct and Iterative). According to both automatic evaluation metrics and human evaluation results, AgentSimp produces simplified documents that are more thoroughly simplified and more coherent across various articles and styles."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hao-etal-2025-post">
<titleInfo>
<title>Post-Hoc Watermarking for Robust Detection in Text Generated by Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jifei</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jipeng</namePart>
<namePart type="family">Qiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunhao</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoye</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research on text simplification has been ongoing for many years, yet document simplification remains a significant challenge due to the need to address complex factors such as technical terminology, metaphors, and overall coherence. In this work, we introduce a novel multi-agent framework AgentSimp for document simplification, based on large language models. This framework simulates the collaborative efforts of a team of human experts through the roles played by multiple agents, effectively meeting the intricate demands of document simplification. We investigate two communication strategies among agents (pipeline-style and synchronous) and two document reconstruction strategies (Direct and Iterative). According to both automatic evaluation metrics and human evaluation results, AgentSimp produces simplified documents that are more thoroughly simplified and more coherent across various articles and styles.</abstract>
<identifier type="citekey">hao-etal-2025-post</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.364/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>5430</start>
<end>5442</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Post-Hoc Watermarking for Robust Detection in Text Generated by Large Language Models
%A Hao, Jifei
%A Qiang, Jipeng
%A Zhu, Yi
%A Li, Yun
%A Yuan, Yunhao
%A Ouyang, Xiaoye
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F hao-etal-2025-post
%X Research on text simplification has been ongoing for many years, yet document simplification remains a significant challenge due to the need to address complex factors such as technical terminology, metaphors, and overall coherence. In this work, we introduce a novel multi-agent framework AgentSimp for document simplification, based on large language models. This framework simulates the collaborative efforts of a team of human experts through the roles played by multiple agents, effectively meeting the intricate demands of document simplification. We investigate two communication strategies among agents (pipeline-style and synchronous) and two document reconstruction strategies (Direct and Iterative). According to both automatic evaluation metrics and human evaluation results, AgentSimp produces simplified documents that are more thoroughly simplified and more coherent across various articles and styles.
%U https://aclanthology.org/2025.coling-main.364/
%P 5430-5442
Markdown (Informal)
[Post-Hoc Watermarking for Robust Detection in Text Generated by Large Language Models](https://aclanthology.org/2025.coling-main.364/) (Hao et al., COLING 2025)
ACL