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Abstract

The most effective methods for detecting text
generated by large language models (LLMs)
involve inserting a detectable watermark dur-
ing the model’s decoding process. However,
these watermarking techniques typically em-
bed watermarks during text generation by ad-
justing the output probability distribution to
favor certain words, which LLM API providers
are reluctant to share due to concerns about
model distillation. Therefore, these methods
are inapplicable when only black-box language
models are available. In this work, we propose
a novel post-hoc method to inject watermarks
into generated text autonomously, enhancing ro-
bustness and semantic faithfulness. For robust
natural watermarking, we identify features that
are semantically or syntactically fundamental
to the text and thus invariant to minor modifi-
cations. To preserve semantic faithfulness, we
employ a synonym generation method based on
paraphrasing for watermark embedding. Exper-
imental results demonstrate that our approach
achieves higher detectability while maintain-
ing superior semantics and surpasses previous
methods in robustness across four datasets and
four types of corruption.

1 Introduction

The rise of human-like language models such as
ChatGPT has raised concerns about their potential
misuse for malicious purposes (Editorials, 2023;
Liebrenz et al., 2023). Detecting AI-generated
text has become crucial as the distinction between
human and machine-generated content blurs (Wu
et al., 2023; Mitchell et al., 2023). OpenAI’s clas-
sifier identifies only 26% of AI-generated text 1,
and these classifiers are prone to adversarial attacks
and biases against non-native writers, leading to
higher false positive and negative rates (Jin et al.,

* Corresponding authors.
1https://openai.com/blog/new-ai-classifier-for-indicating-

ai-written-text

Figure 1: An original text generated by the black-box
language model (GPT-3.5) was watermarked using both
our watermarking method and the baseline (Yang et al.,
2023) (WTGB). The detection results show that words
with a green background carry watermark information,
while words with a red background do not. The water-
marking method is to increase the number of words with
a green background (Words displayed in bold). Unlike
the WTGB method, which may choose all words to em-
bed watermarks, our method selects only some words
that are invariant to minor corruption.
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2020). Consequently, watermark-based detection
methods are gaining significant attention (Kirchen-
bauer et al., 2023).

Primary watermark-based methods are designed
for white-box models, enabling watermark embed-
ding during text generation by modifying the out-
put probability distribution to favor specific words
(Kirchenbauer et al., 2023). This process involves
selecting random "green list" words based on the
hash value of the previous token, subtly influencing
the sampling process to promote the use of these
words, facilitating downstream detection. However,
these methods are limited to model owners who
can control the token sampling process. This pa-
per, however, focuses on injecting watermarks into
already-generated text from black-box language
models.

Recently, a watermarking method known as
WTGB via lexical substitution was introduced
(Yang et al., 2023). This method embeds a wa-
termark by replacing specific words in the input
text with contextually appropriate synonyms using
pre-trained BERT models. However, it faces two
major issues: (1) Maintaining semantic faithfulness
is challenging, as substitutes often compromise the
original meaning due to contextual influences. (2)
The watermark is susceptible to adversarial attacks
and easy removal. Although every word can serve
as a watermark embedding point, enhancing de-
tectability, it reduces the robustness of the water-
marked text.

In this work, we propose a post-hoc watermark-
ing method to embed watermarks into text gener-
ated by LLMs. Our watermark embedding method
comprises two main stages: selecting the embed-
ding positions and embedding the watermarks. To
preserve the original semantics during the embed-
ding process, we employ a paraphrase-based lex-
ical substitution method that maintains semantic
integrity. To ensure the high robustness of the wa-
termarked text, we choose words that are seman-
tically or syntactically fundamental to the text as
anchors, ensuring they remain invariant to minor
modifications and accurately locate the watermark
positions.

Experimental results indicate that even with a
minimal number of watermark points added, the
generated watermark text maintains high detectabil-
ity and preserves semantic integrity. Our method
exhibited enhanced robustness against various at-
tacks, including word substitution, word deletion,
paraphrasing, and re-translation. Our code and data

are source-opened in Github 2.

2 Related Work

Text watermarking algorithms for the generated
text of large language models can be categorized
into two classifications (Liu et al., 2024; Zhu et al.,
2023). The first type is white-box language model-
based watermarking algorithms, which inject wa-
termark information during the text generation pro-
cess, involving modifications to LLM itself. The
second type is black-box language model-based
watermarking algorithms, which inject watermark
information by making modifications to existing
text without requiring knowledge of the internal
details of the LLM.

White-box watermarking methods. The first
LLM-based watermarking method, proposed by
Kirchenbauer et al. (2023), is a zero-bit watermark-
ing technique for white-box language models. It
injects watermark information during inference by
dividing the model’s vocabulary into "red" and
"green" lists based on the hash value of the previ-
ous token, promoting the use of "green list" words.
Zhao et al.(Zhao et al., 2023) introduced GPTWa-
termark, which splits the vocabulary into two sets
using a randomly generated watermark key, en-
hancing the edit robustness of watermarked text.
Subsequently, a series of white-box watermarking
methods were proposed (Hu et al., 2023; Fernandez
et al., 2023; Ren et al., 2023).

Black-Box watermarking methods. The core
concept of black-box language model-based wa-
termarking involves altering generated text to cre-
ate watermarked text. Black-box watermarking
methods are categorized into multi-bit and zero-bit
watermarking. Multi-bit watermarking (Topkara
et al., 2006; Munyer and Zhong, 2023; Yang et al.,
2023; Qiang et al., 2023d; Yoo et al., 2023), exten-
sively researched for intellectual property protec-
tion, embeds multi-bit information but has weaker
anti-attack capabilities due to the need for infor-
mation recovery. Zero-bit watermarking, less re-
searched, only determines if a watermark is present,
leading to stronger anti-attack abilities.

Focusing on zero-bit watermarking, Yang et al.
(2023) proposed a method via lexical substitution.
They used a binary encoding function to compute
a random binary encoding for words, with non-
watermarked text encodings following a Bernoulli
distribution where bit-1 is represented with a like-

2https://github.com/AlfredWatson/RSFPH-WTGBBLM
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lihood of 0.5. To embed a watermark, they se-
lectively substituted words representing bit-0 with
contextually appropriate synonyms for bit-1. A sta-
tistical test is used for watermark detection. This
work proposes a novel method to enhance both
robustness and semantic faithfulness in watermark-
ing.

3 Problem Definition

The problem of text watermarking in black-box
language models can be conceptualized as com-
prising two main components. The first compo-
nent is Watermark Embedding, represented as
W(·), which inserts a watermark into a given text
sequence X = {x1, . . . , xi, . . .}, producing the
watermarked text Xw = W(X). The second com-
ponent is Watermark Detection, which involves
analyzing a given text to determine whether it con-
tains an embedded watermark.

In adversarial scenarios, attackers aim to remove
the watermark from the text through methods such
as word deletion, substitution, document polish-
ing, or re-translation. The objective of such attacks
is to evade detection by the watermarking system
while preserving the original semantic content of
the text. Consequently, an effective watermark-
ing strategy must satisfy the following three key
requirements: 1)Detection Accuracy: The water-
mark detection mechanism should achieve high
accuracy with minimal empirical error rates. 2)
Semantic Integrity: The watermarked text must
retain the original meaning with a high degree of
fidelity. 3) Robustness Against Attacks: The wa-
termark should be resilient to various adversarial
attempts to alter or remove it.

To fulfill these requirements, we propose a wa-
termarking strategy comprising the following com-
ponents: 1) Robust Feature Selection: Leverag-
ing features in the text that are inherently resistant
to minor modifications, inspired by robust water-
marking techniques (Yoo et al., 2023), to serve as
stable anchors for embedding the watermark. 2)
Advanced Paraphrasing Techniques: Employ-
ing a paraphraser-based lexical substitution model
(Qiang et al., 2023c) to generate alternative phras-
ing that preserves semantic integrity while embed-
ding the watermark. 3) Comprehensive Evalua-
tion: Conducting rigorous testing against a wide
range of adversarial attacks, including both word-
level and document-level modifications, to assess
and ensure robustness.

By integrating these elements, our approach
achieves a reliable and secure watermarking mech-
anism for text generated by black-box language
models, addressing the critical requirements of de-
tection accuracy, semantic preservation, and robust-
ness against adversarial manipulations.

4 Proposed Method

4.1 Overview

As illustrated in Figure 2, our proposed method
consists of two primary components: Watermark
Embedding and Watermark Detection.

Figure 2: The process of the proposing Watermark
method.

Watermark Embedding involves two critical
steps: Watermark Embedding Positions Selection
and Embedding Watermark Information. To en-
sure robustness and preserve the original seman-
tics, the embedding positions are chosen based on
features that exhibit minimal sensitivity to textual
alterations. These features are derived from seman-
tic and syntactic invariants of natural language, as
suggested by Yoo et al. (2023).

In the first step, we identify the set of embed-
ding positions, denoted as S = s1, . . . , si, . . .,
along with the corresponding word set XS =
xs1 , . . . , xsi , . . .. The selection process ensures
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that these positions are strategically chosen to bal-
ance robustness and semantic preservation. Words
in XS are then encoded to represent binary values
(bit-0 or bit-1) in a balanced manner. To achieve
this balance, we apply the binary encoding tech-
nique proposed by Yang et al. (2023). For each
word xsi ∈ XS , a bit-value bsi is computed using
the bit-wise XOR hash of xsi and its preceding
word xsi−1 as a seed.

bsi = Binary(hash(xsi−1)⊕ hash(xsi)) (1)

Where ⊕ represents the bit-wise XOR operation,
and the Binary() function maps the computed
hash value to a binary bit. This encoding ensures
that bit-0 and bit-1 are distributed evenly across the
text, with the same token potentially representing
different bits depending on its preceding context.

In the second step, watermark embedding is
achieved by selectively replacing tokens. For each
embedding position si in S, the corresponding bit-
value bsi is computed. All positions with bit-0
values are filtered to form the set Sbit-0, and their
associated words make up XSbit-0 . Lexical substi-
tution techniques are then employed to generate
candidate replacements for each word in XSbit-0 .
From these candidates, we select the replacement
tokens that satisfy two conditions: they represent
bit-1 and maintain the semantic and syntactic co-
herence of the text. This process ensures that the
bit-values of tokens at embedding positions are sig-
nificantly biased towards 1 in the watermarked text,
enabling statistical detection of the watermark.

Watermark detection process involves two
steps: Candidate Position Identification and Wa-
termark Sequence Verification. In the first step,
potential watermark embedding positions are iden-
tified using the same selection criteria as in the em-
bedding phase, ensuring consistency. In the second
step, the detected sequence of bit-values is com-
pared against the expected watermark sequence to
verify its presence. Detailed explanations of these
steps are provided in Section 4.3.

4.2 Watermark Embedding

The process of watermark embedding is outlined
in algorithm 1.

Watermark Embedding Position Selection. To
determine optimal positions for embedding the wa-
termark, we begin by excluding key elements cru-
cial for preserving the semantic integrity of the
text. These elements include proper nouns such

as names, locations, and domain-specific terms,
identified through named entity recognition mod-
els. Since replacing these terms with synonyms
could alter the intended meaning of the text, they
are excluded from modification. Furthermore, our
watermarking framework supports customization,
allowing users to extend the exclusion list based
on specific contextual requirements. Inspired by
Campos et al. (Campos et al., 2018), we adopt
a feature-based approach to extract semantically
significant words.

Algorithm 1 Watermark Embedding
Input: Original text X = {x1, x2, . . .}, number of substi-

tutes T
Output: Watermarked text Xw

1: Xw ← X
2: K ← KeywordsExtracter(X)
3: S ← DependencyParser(X,K)
4: for each s ∈ S do
5: if Binary(hash(xs−1)⊕ hash(xs)) == 0 then
6: Y ← Generate top N substitutes
7: for each y ∈ Y do
8: if Binary(hash(xs−1)⊕hash(y)) == 1 &

Dep(X, s) == Dep(X[y/xs], s) then
9: Replace the word at position s in Xw into y

10: Break
11: end if
12: end for
13: end if
14: end for
15: return Xw

The union of the semantically significant words
and proper nouns forms the keyword set K =
k1, k2, . . .. Dependency parsing is then applied
to the input text sequence X using a dependency
parser Dep(X, i), which generates dependency la-
bels for each token xi in X and constructs a de-
pendency parse tree. By calculating entailment
scores for all dependency relations, as outlined in
Yoo et al. (2023), a dependency label ranking ta-
ble is established to prioritize words in the text.
Text keywords K, punctuation, and user-defined
keywords are subsequently filtered out to derive
the embedding position set S = s1, . . . , si, . . . and
the corresponding word set XS = xs1 , . . . , xsi , . . .,
with |S| = |XS | = m. Each word xsi in XS is
then assigned a bit-value using Equation 1. Words
with a bit-value of 0 are selected as watermark em-
bedding positions, forming the set Sbit-0 and the
associated words XSbit-0 .

Embedding Watermark Information. For
each word x ∈ XSbit-0 , the goal is to identify a
substitute y that satisfies the following criteria: (1)
the overall sentence meaning remains unchanged,
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and (2) the bit-value of y is 1, while preserving the
dependency label of x.

To ensure semantic preservation, we employ
the lexical substitution method proposed by Qiang
et al. (2023c,b,a) to generate the top T substitutes
Y = y1, . . . , yT . This method employs a decoding
strategy focused on lexical variations while main-
taining the sentence’s meaning.

Consistency in embedding positions between the
original text X and the watermarked text Xw is
critical for accurate detection. Consequently, we
iteratively evaluate candidates in Y from the be-
ginning to find a word y with a bit-value of 1, as
determined by Equation 1, while preserving the
dependency label of x. If no suitable substitute y is
identified, the original word is retained to preserve
the text’s meaning.

4.3 Watermark Detection

Algorithm 2 Watermark Detection
Input: Original text X
Output: Detection result (True/False)

1: K ← KeywordsExtracter(X)
2: S ← DependencyParser(X,K)
3: m← |S|
4: Initialize two variables bit0 ← 0, bit1 ← 0 to record the

number of words in bit-0 and bit-1.
5: for each s ∈ S do
6: bit← Binary(hash(xs−1)⊕ hash(xs))
7: if bit == 1 then
8: bit1 ← bit1 + 1
9: else

10: bit0 ← bit0 + 1
11: end if
12: end for
13: p̂← bit1/(bit0 + bit1)
14: z = p̂−1/2√

1/4m

15: if z > zα then
16: return True {Watermark detected}
17: else
18: return False {No watermark detected}
19: end if

The watermark detection process is depicted in
algorithm 2. For any watermark-free text, we uti-
lize the method introduced by Watermark Embed-
ding Position Selection to determine the embedding
position set S. As outlined in Section 4.2, for each
word in XS , the likelihood of representing bit-0
and bit-1 is nearly equal. During the watermark
embedding process, we enhance the frequency of
words representing bit-1. Consequently, watermark
detection can be achieved by testing the following
null hypothesis H0: "The text is natural without
injected watermark information."

Based on the null hypothesis, each bit-value

bsi of each word xsi obeys the binomial dis-
tribution of n = 1, p = 1/2, i.e., bsi ∼
B(1, 1/2). For all words in XS , the bit-value
bs1 , . . . , bsi , . . . , bsm are independently and iden-
tically distributed with mathematical expectation
E(bsi) = p and variance D(bsi) = p(1 − p).
Following Lindburg-Levy theorem, we can obtain
that when m is sufficiently large, the sum of inde-
pendent identically distributed random variables∑m

i=1 bsi approximately obeys the normal distri-
bution N(mp,mp(1 − p)), and the standardized

random variable
∑m

i=1 bsi−mp√
mp(1−p)

=
1
m

∑m
i=1 bsi−p√

p(1−p)/m
ap-

proximately obeys the standard normal distribution
N(0, 1). Where 1

m

∑m
i=1 bsi denotes the propor-

tion of tokens with bit-1 at all watermark embed-
ding positions, which we set to p̂. We use the one
proportion z-test to evaluate H0.

z =
p̂− 1/2√
1/4m

(2)

where α is the level of significance, indicat-
ing the probability of rejecting the null hypothesis
when it is true. We compare the test statistic z with
the critical value zα, and if z > zα, then H0 will be
rejected and conclude that the detected bit value of
the token at the embedded position is significantly
different compared to the natural state, indicating
that there is watermarking of the text. So the statis-
tic z can be used as a measure of the strength of
the watermark, as the z score of the text is larger,
its watermark strength is stronger.

5 Experiments

5.1 Experimental Setup

Dataset. In line with Yang et al. (2023), we se-
lected four English text datasets from the HC3 cor-
pus3 to evaluate our method: wiki_csai, open_qa,
medicine, and reddit_eli5. From each dataset, we
sampled 200 English text instances generated by
ChatGPT, with an average length of 200 tokens per
instance. Preprocessing steps included text normal-
ization to remove invalid tags, unnecessary spaces,
newlines, and other extraneous characters. Half of
the samples in each dataset were embedded with
watermarks, and the remaining samples were left
unwatermarked. The test set was constructed by
mixing the watermarked and unwatermarked sam-
ples.

3https://huggingface.co/datasets/Hello-SimpleAI/HC3
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Datasets Method FPR(↓) TNR(↑) TPR(↑) FNR(↓) Acc(↑) Sim(↑)

wiki_csai
WTGB 0.08 0.92 0.99 0.01 .96 .9946±.0050

Ours 0.06 0.94 1.00 0.00 .97 .9947±.0038

open_qa
WTGB 0.06 0.94 1.00 0.00 .97 .9956±.0046

Ours 0.09 0.91 1.00 0.00 .96 .9912±.0073

medicine
WTGB 0.16 0.84 1.00 0.00 .92 .9921±.0096

Ours 0.08 0.92 1.00 0.00 .96 .9935±.0061

reddit_eli5
WTGB 0.09 0.91 1.00 0.00 .96 .9922±.0066

Ours 0.05 0.95 0.99 0.01 .97 .9937±.0050

Table 1: The results of Watermarking Methods on four Datasets. The best results are in bold.

Implementation Details.Our watermarking
framework operates at the sentence level, with sen-
tence segmentation handled by NLTK. Named en-
tity recognition, keyword extraction, and depen-
dency parsing to obtain dependency relation labels
were performed using SpaCy’s ’en-core-web-sm’
model (Honnibal and Montani, 2017). For the lexi-
cal substitution process, the top T = 100 candidate
words were generated for each token. During wa-
termark detection, we employed a one-proportion
z-test with a significance level of α = 0.05.

Compared Methods. We compared our ap-
proach against the watermarking method for black-
box language models introduced by Yang et al.
(2023) (WTGB). Following their experimental
setup, we used the default hyperparameters: λ =
0.83, a sentence embedding similarity threshold
τsent = 0.8, and a word-level similarity threshold
τword = 0.8. For watermark detection, we applied
the high-precision ’Precise Detection’ method de-
scribed in their work.

Metrics. We evaluated our watermarking
method using four key dimensions: watermark
strength, detection accuracy, semantic integrity of
the watermarked text, and robustness of the water-
marked text. Since detection accuracy correlates
positively with watermark strength, both were as-
sessed simultaneously. Binary classification met-
rics, such as false positive rate (FPR), true negative
rate (TNR), true positive rate (TPR), and false neg-
ative rate (FNR), were used. Stronger watermarks
produce higher z-scores, thereby enhancing detec-
tion accuracy (Acc). The sensitivity of the binary
classifier was visualized through ROC curves based
on observed z-scores. For semantic integrity, we
adhered to the methodology of Yang et al. (2023)
and employed the Sentence-Transformer model
’sentence-t5-xxl’ 4 to compute semantic similar-

4https://huggingface.co/sentence-transformers/sentence-

ity scores between the watermarked and original
texts. To evaluate robustness, we subjected the
watermarked texts to both word-level and sentence-
level attacks and assessed the effectiveness of the
watermarking method using the F1 score and the
AUC (area under the ROC curve). Detailed robust-
ness analyses are provided in Section 5.4.

5.2 Watermark strength Analysis

As shown in Table 1, our method consistently
achieves higher accuracy and better semantic sim-
ilarity compared to WTGB across the datasets,
with lower false positive rates in most cases. On
the medicine dataset, where the detection accu-
racy(Acc) is lowest, we observe a maximum of
200 ∗ 0.08 = 16 type-I errors. The results suggest
that our watermarking technique not only main-
tains the integrity of the original text better but also
offers stronger detection performance.

To demonstrate the trade-off between sensitivity
(TPR) and specificity (TNR) at different thresh-
olds for our watermarking method and the WTGB
method, we plotted ROC curves for the four test
sets, as shown in Figure 3. The AUC values in-
dicate that there is little difference between our
method and the WTGB method, both achieving
nearly perfect classification performance.

5.3 Text Quality Analysis

We calculated the semantic similarity score be-
tween each watermarked text and its original text
in each test set. The similarity scores of all water-
marked samples were then aggregated to obtain the
average similarity for each test set.

As shown in Table 1, the semantic similarity
scores between the watermarked and original texts
indicate that our method outperforms the WTGB
method on three datasets. This advantage is be-

t5-xxl
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(a) wiki_csai roc (b) open_qa roc

(c) medicine roc (d) reddit_eli5 roc

Figure 3: The watermark detection of ROC curve and
AUC (area under the curve) value under different water-
mark methods on four datasets. An AUC value of 0.5
indicates random chance, while values closer to 1 indi-
cate more perfect classification, thus indicating stronger
watermarking.

(a) wiki_csai (b) open_qa

(c) medicine (d) reddit_eli5

Figure 4: Robustness analysis of the watermark under
word deletion attacks.

cause the WTGB watermarking strategy considers
nearly every word as a potential watermarking can-
didate. Even with POS filtering, any word might
be replaced with a synonym, leading to an overall
decrease in the semantic value of the watermarked
text. In contrast, our watermarking method filters
out words with significant semantic impact and
only selects words that remain semantically stable
under slight modifications for watermark injection.
Additionally, our method selects fewer watermark-
ing words compared to WTGB, thereby minimizing
the semantic impact.

5.4 Robustness Analysis

We consider watermarking algorithms as private
algorithms, where the attacker is not able to know
the location of the watermark embedded in the text,
but tries to remove the watermark using two main
types of black-box attacks, including word-level
attacks and document-level attacks.

Word-level Attack. In real-world attack scenar-

ios, word-level attacks on watermark text involve
deleting or substituting words in the generated wa-
termark text, achieving the removal of the water-
mark by altering the text content. During the attack,
we assign a word attack probability (Pword) for
each sentence, indicating the likelihood of deleting
or replacing each word in the sentence. To evaluate
the robustness of our watermarking method against
word-level attacks, we compute the watermark
strength and detection accuracy of the text after par-
tially deleting or replacing words in the sentence
with different word attack probabilities (Pword =
{2.5%, 5%, 10%, 20%, 30%, 40%, 50%}). We use
the "bert-base-cased" model to implement a lexi-
cal substitution attack. Additionally, we perform
deletion or replacement operations on watermark
text generated using WTGB with the same attack
probabilities to ensure fair comparison.

As shown in Figure 4 and Figure 5, the AUC
values and detection F1 scores of the watermarked
text decrease as Pword increases, becoming partic-
ularly noticeable when Pword > 30%. Both word
deletion and word substitution attacks compromise
the integrity of the watermark, with replacement
attacks having a more severe impact. This is be-
cause, for our watermarking method, word substi-
tution not only significantly affects keyword ex-
traction but also drastically alters the structure of
the text’s dependency parse tree. Consequently,
the watermark detector fails to correctly locate the
watermark embedding positions, causing the de-
tection results to trend toward 0.5 (equal probabil-
ities of bit-0 and bit-1). For the WTGB method,
although word replacements do not affect the de-
tector’s ability to locate watermarked words, the
method’s use of a significantly larger number of
watermark embedding positions during the embed-
ding stage means that more watermarked words
are attacked even at low attack probabilities, thus
affecting watermark detectability.

Document-level Attack. Compared to word-
level attacks, document-level attack has a more
severe impact on watermark text because they in-
volve not only changes to individual words but also
extensive modifications to the document’s content
and sentence structure. How to defend against such
attacks is a challenging problem for watermarking
methods. Typical document-level attack behaviors
include using third-party language models such
as ChatGPT and other commercial language mod-
els to polish watermark text, a practice commonly
referred to as a Polishing Attack. Additionally,
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(a) wiki_csai (b) open_qa

(c) medicine (d) reddit_eli5

Figure 5: Robustness analysis of the watermark under
word substitution attacks.

there’s the Re-translation Attack, where watermark
text is translated back and forth between multiple
languages.

For the Polishing Attack, we assume that the
attacker would utilize top-tier LLM services to re-
fine the watermark text. We employ the ’GPT-3.5-
Turbo’ interface provided by OpenAI to conduct
such attacks, with the prompt for sentence refine-
ment being: "Please polish the input text without
changing its meaning and structure. The input text
is: [watermarked text].". As for the Re-translation
Attack, we use the DeepL translator 5 to execute
the attack, first translating the watermark text into
Chinese, then translating the Chinese text back into
English.

Similar to word-level attacks, we assign an attack
probability Pdoc a to each sample, representing the
likelihood of a polishing or re-translation attack for
each sentence in the sample. Unlike word-level
attacks, a higher document attack probability Pdoc

does not necessarily result in a significant decrease
in semantic quality. Therefore, we execute attacks
over a wider range (Pdoc = [10%, 90%]).

For the Polishing Attack, as illustrated in Figure
6, the F1 scores and AUC values decrease pro-
gressively with the increase in the number of pol-
ished sentences per sample. This indicates that as
more content is modified, the watermark is grad-
ually erased. Compared to the WTGB method,
our approach maintains higher watermark strength
across three datasets. This is because our method
selects watermark embedding positions that are rel-
atively robust against attacks, a notable advantage
for document-level attacks. In the case of word-
level attacks, each word has an equal probability
of being deleted. However, for document-level
attacks, certain words exhibit robustness to modifi-

5https://www.deepl.com/en/translator

(a) wiki_csai (b) open_qa

(c) medicine (d) reddit_eli5

Figure 6: Robustness analysis of the watermark under
polishing attacks. The x-axis represents the Polish attack
probability. The y-axis displays the F1-score(f1) and
AUC value for both our method and WTGB on four
datasets. Higher scores indicate better performance.

Figure 7: Robustness analysis of the watermark under
re-translation attacks on medicine dataset.

cations.
We performed the Re-translation Attack on the

watermarked text generated from the medicine
dataset. As shown in Figure 7, similar to the Polish-
ing Attack, as the number of sentences subjected
to Re-translation increases, the watermark informa-
tion in the text is gradually erased.

Considering both types of document-level At-
tacks, when half of the sentences in each sample
are attacked (0.5 ≥ Pdoc), the F1 score begins to
change steeply. By the time Pdoc reaches 0.9, the F1
score is close to 0.5, indicating that almost all water-
mark information in the text has been erased. This
occurs because our watermarking method heav-
ily relies on sentence structure; when significant
changes in sentence structure occur, the embedding
positions of the watermark information are altered.
Consequently, the bit values of the tokens at the
detection positions tend to follow a 0-1 distribution.

6 Conclusion

In this study, we presented a novel watermarking
method for text generated by black-box language
models. Our approach focuses on embedding wa-
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termarks by selecting specific tokens that are ro-
bust to minor text modifications, ensuring that the
semantic integrity of the text is maintained. Our
approach provides a robust and accurate solution
for embedding watermarks in text generated by
black-box language models. It offers improved de-
tection accuracy and semantic integrity while being
resilient to various types of attacks.

7 Limitations

Semantic Integrity and Naturalness: While our
proposed method aims to preserve the original se-
mantics through paraphrase-based lexical substi-
tution, there might still be instances where sub-
tle shifts in meaning or unnatural phrasing occur.
These changes, though minor, could affect the
readability and perceived authenticity of the wa-
termarked text, potentially making it detectable as
artificially manipulated text by discerning readers
or advanced detection algorithms.

Scalability and Adaptability: Our method,
which relies on selecting semantically and syn-
tactically fundamental components for watermark
embedding, might face challenges when scaling
to different languages or highly diverse text do-
mains. The specific nuances and structures of vari-
ous languages and text types could require signif-
icant adaptation of the watermarking strategy, po-
tentially limiting the method’s applicability across
all use cases and necessitating extensive retraining
and fine-tuning for optimal performance.
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A Time overhead

One concern raised regarding the post-hoc water-
marking method is its computational complexity,
which might result in significantly slower perfor-
mance compared to white-box approaches. We
conducted an additional experiment to measure the
time overhead of our watermarking method. Specif-
ically, we applied our approach to all four datasets
and recorded the computational time required for

watermark embedding and detection. The results
of this analysis provide insights into the practicality
of our method and confirm its feasibility for real-
world applications. Details of the time overhead
experiment are presented below. Table 2 shows the
average number of tags per piece of data in each
dataset, the total time taken in seconds to apply the
watermark, and the token processing rate in tokens
per second.

Dataset Tokens Time(s) Tokens/sec
wiki_csai 178 70.96 2.50
open_qa 115 40.31 2.85
medicine 208 76.30 2.72

reddit_eeil5 161 62.05 2.59

Table 2: Performance of time overhead on 4 datasets

B More Results

Our method modifies fewer words while achiev-
ing a higher F1-score and demonstrating greater
resilience against similar modification attacks com-
pared to baseline (WTGB). To address this, we
provided supplementary experimental data to sup-
port our claims.

Regarding the word deletion attack, as shown in
Table 3,4,5,6, our method exhibits only a slight dif-
ference in F1 score compared to the baseline. This
minor difference is attributable to the destructive
nature of deletion attacks, which severely disrupt
the bit values of watermarked words. Addition-
ally, word deletions damage the syntactic structure
of the sentence, which adversely impacts the per-
formance of our method. However, despite these
challenges, our approach consistently outperforms
the baseline across all three datasets.

In word substitution attack scenarios, the F1
score of the proposed method is significantly higher
than that of the baseline. As detailed in Table
7,9,10,11, when the attack probability increases,
the baseline method experiences a substantial rise
in false positives, resulting in notable fluctuations
in Precision. The relationship between F1 score,
Precision, and Recall offers further insight into this
phenomenon.

F1-score = 2× Precision × Recall
Precision + Recall

(3)

Where Recall = TP
TP+FN , Precision = TP

TP+FP . Ex-
perimental results show that Recall remains rela-
tively stable between the proposed method and the
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Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 92 8 0 100 0.960 0.9615 0.99535

Ours 93 7 0 100 0.965 0.9662 0.99800

0.05
WTGB 93 7 2 98 0.955 0.9561 0.99255

Ours 93 7 3 97 0.950 0.9510 0.99230

0.1
WTGB 93 7 4 96 0.945 0.9458 0.98710

Ours 94 6 5 95 0.945 0.9453 0.98705

0.2
WTGB 92 8 9 91 0.915 0.9146 0.97395

Ours 92 8 5 95 0.935 0.9360 0.98330

0.3
WTGB 92 8 17 83 0.875 0.8691 0.95635

Ours 96 4 8 92 0.940 0.9388 0.97965

0.4
WTGB 94 6 40 60 0.770 0.7229 0.89980

Ours 97 3 20 80 0.885 0.8743 0.96485

0.5
WTGB 95 5 47 53 0.740 0.6709 0.88025

Ours 94 6 51 49 0.715 0.6323 0.88540

Table 3: Deletion Attack on open_qa

Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 90 10 0 100 0.950 0.9524 0.99870

Ours 93 7 1 99 0.960 0.9612 0.99515

0.05
WTGB 90 10 0 100 0.950 0.9524 0.99870

Ours 93 7 1 99 0.960 0.9612 0.99605

0.1
WTGB 92 8 1 99 0.955 0.9565 0.99770

Ours 95 5 3 97 0.960 0.9604 0.99410

0.2
WTGB 95 5 4 96 0.955 0.9552 0.99200

Ours 94 6 5 95 0.945 0.9453 0.98385

0.3
WTGB 94 6 4 96 0.950 0.9505 0.98665

Ours 96 4 15 85 0.905 0.8995 0.97595

0.4
WTGB 88 12 15 85 0.865 0.8629 0.93465

Ours 95 5 31 69 0.820 0.7931 0.93840

0.5
WTGB 91 9 35 65 0.780 0.7471 0.90020

Ours 92 8 51 49 0.705 0.6242 0.84540

Table 4: Deletion Attack on reddit_eli5

Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 94 6 2 98 0.960 0.9608 0.99755

Ours 96 4 0 100 0.980 0.9804 0.99970

0.05
WTGB 94 6 1 99 0.965 0.9659 0.99745

Ours 94 6 1 99 0.965 0.9659 0.99860

0.1
WTGB 92 8 1 99 0.955 0.9565 0.99685

Ours 94 6 1 99 0.965 0.9659 0.99380

0.2
WTGB 92 8 4 96 0.940 0.9412 0.99170

Ours 97 3 1 99 0.980 0.9802 0.99505

0.3
WTGB 94 6 6 94 0.940 0.9400 0.98430

Ours 98 2 3 97 0.975 0.9749 0.99330

0.4
WTGB 93 7 18 82 0.875 0.8677 0.97335

Ours 97 3 22 78 0.875 0.8619 0.97230

0.5
WTGB 95 5 28 72 0.835 0.8136 0.95690

Ours 96 4 34 66 0.810 0.7765 0.91135

Table 5: Deletion Attack on wiki_csai
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Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 85 15 0 100 0.925 0.9302 0.99990

Ours 90 10 0 100 0.950 0.9524 0.99970

0.05
WTGB 85 15 0 100 0.925 0.9302 0.99940

Ours 91 9 0 100 0.955 0.9569 0.99915

0.1
WTGB 83 17 0 100 0.915 0.9217 0.99785

Ours 90 10 0 100 0.950 0.9524 0.99760

0.2
WTGB 91 9 2 98 0.945 0.9469 0.99370

Ours 88 12 2 98 0.930 0.9333 0.99440

0.3
WTGB 92 8 4 96 0.940 0.9412 0.98360

Ours 97 3 6 94 0.955 0.9543 0.98350

0.4
WTGB 93 7 17 83 0.880 0.8737 0.95595

Ours 98 2 20 80 0.890 0.8791 0.95885

0.5
WTGB 93 7 29 71 0.820 0.7978 0.91600

Ours 96 4 39 61 0.785 0.7394 0.91660

Table 6: Deletion Attack on medicine

Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 92 8 2 98 0.950 0.9515 0.9939

Ours 90 10 0 100 0.950 0.9524 0.9975

0.05
WTGB 94 6 2 98 0.960 0.9608 0.9905

Ours 90 10 0 100 0.950 0.9524 0.9973

0.1
WTGB 94 6 7 93 0.935 0.9347 0.9857

Ours 89 11 2 98 0.935 0.9378 0.9923

0.2
WTGB 92 8 19 81 0.865 0.8571 0.9444

Ours 92 8 9 91 0.915 0.9146 0.9788

0.3
WTGB 92 8 45 55 0.735 0.6748 0.8594

Ours 93 7 25 75 0.840 0.8242 0.9415

0.4
WTGB 91 9 60 40 0.655 0.5369 0.7636

Ours 97 3 54 46 0.715 0.6174 0.8794

0.5
WTGB 90 10 82 18 0.540 0.2812 0.6318

Ours 96 4 80 20 0.580 0.3226 0.7568

Table 7: Substitution Attack on open_qa

baseline under various attack probabilities (±0.07).
To model this behavior, Precision is denoted as x
and Recall as a constant a (where 0 < a < 1),
resulting in the function:

f(x) = 2× a× x

x+ a
(4)

Where f(x) is monotonically increasing for x > 0,
a reduction in Precision under higher attack proba-
bilities directly causes a decline in the F1 score.

C Other metrics

Following Chang et al. (2024), we calculated the
TPR at 1% FPR for both the baseline (WTGB) and
our approach.

Dataset WTGB Ours
wiki_csai 98% 99%
open_qa 88% 97%
medicine 100% 100%

reddit_eeil5 97% 98%

Table 8: Comparison of WTGB and Ours across 4
datasets
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Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 91 9 0 100 0.955 0.9569 0.9982

Ours 96 4 1 99 0.975 0.9754 0.9965

0.05
WTGB 89 11 1 99 0.940 0.9429 0.9951

Ours 94 6 1 99 0.965 0.9659 0.9977

0.1
WTGB 92 8 2 98 0.950 0.9515 0.9917

Ours 97 3 2 98 0.975 0.9751 0.9950

0.2
WTGB 92 8 12 88 0.900 0.898 0.9704

Ours 94 6 5 95 0.945 0.9453 0.9877

0.3
WTGB 92 8 29 71 0.815 0.7933 0.9116

Ours 96 4 25 75 0.855 0.838 0.9566

0.4
WTGB 90 10 59 41 0.655 0.543 0.8095

Ours 98 2 50 50 0.740 0.6579 0.8888

0.5
WTGB 88 12 78 22 0.550 0.3284 0.6462

Ours 98 2 76 24 0.610 0.381 0.7785

Table 9: Substitution Attack on reddit_eli5

Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 95 5 1 99 0.970 0.9706 0.9962

Ours 95 5 0 100 0.975 0.9756 0.9997

0.05
WTGB 94 6 2 98 0.960 0.9608 0.9964

Ours 96 4 0 100 0.980 0.9804 0.9997

0.1
WTGB 90 10 2 98 0.940 0.9423 0.9924

Ours 92 8 1 99 0.955 0.9565 0.9981

0.2
WTGB 89 11 7 93 0.910 0.9118 0.9748

Ours 98 2 3 97 0.975 0.9749 0.9959

0.3
WTGB 92 8 27 73 0.825 0.8066 0.9464

Ours 98 2 12 88 0.930 0.9263 0.9825

0.4
WTGB 95 5 62 38 0.665 0.5315 0.8077

Ours 99 1 47 53 0.760 0.6883 0.9130

0.5
WTGB 95 5 74 26 0.605 0.3969 0.7180

Ours 98 2 68 32 0.650 0.4776 0.7984

Table 10: Substitution Attack on wiki_csai

Attack Rate Method TN FP FN TP Accuracy F1-Score AUC

0.025
WTGB 84 16 0 100 0.920 0.9259 1.0000

Ours 91 9 0 100 0.955 0.9569 1.0000

0.05
WTGB 90 10 0 100 0.950 0.9524 0.9995

Ours 92 8 0 100 0.960 0.9615 0.9996

0.1
WTGB 85 15 0 100 0.925 0.9302 0.9973

Ours 92 8 0 100 0.960 0.9615 0.9979

0.2
WTGB 87 13 2 98 0.925 0.9289 0.9793

Ours 93 7 5 95 0.940 0.9406 0.9832

0.3
WTGB 88 12 21 79 0.835 0.8272 0.9244

Ours 92 8 24 76 0.840 0.8261 0.9369

0.4
WTGB 91 9 50 50 0.705 0.6289 0.8243

Ours 89 11 60 40 0.645 0.5298 0.8024

0.5
WTGB 95 5 71 29 0.620 0.4328 0.7326

Ours 91 9 77 23 0.570 0.3485 0.7298

Table 11: Substitution Attack on medicine
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