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Abstract

Complex Table Question Answering involves
providing accurate answers to specific questions
based on intricate tables that exhibit complex
layouts and flexible header locations. Despite
considerable progress having been made in the
LLM era, the reasoning processes of existing
methods are often implicit, feeding the entire
table into prompts, making it difficult to effec-
tively filter out irrelevant information in the
table. To this end, we propose GraphOTTER
that explicitly establishes the reasoning process
to pinpoint the correct answers. In particular,
GraphOTTER leverages a graph-based repre-
sentation, transforming the complex table into
an undirected graph. It then conducts step-by-
step reasoning on the graph, with each step
guided by a set of pre-defined intermediate
reasoning actions. As such, it constructs a
clear reasoning path and effectively identifies
the answer to a given question. Comprehen-
sive experiments on two benchmark datasets
and two LLM backbones demonstrate the ef-
fectiveness of GraphOTTER. Further analysis
indicates that its success may be attributed to
the ability to efficiently filter out irrelevant in-
formation, thereby focusing the reasoning pro-
cess on the most pertinent data. Our code and
experimental datasets are available at https:
//github.com/JDing0521/GraphOTTER.

1 Introduction

Complex tables in documents frequently employ
advanced layouts like merged cells and flexible
header locations (Zheng et al., 2023). This com-
plexity facilitates the structured presentation of
detailed information in a flexible manner, making
them a common feature in financial reports (Zhu
et al., 2021a; Chen et al., 2021) and other profes-
sional documents (Wang et al., 2021; Zhong et al.,
2020). In this context, Complex Table Question
Answering (QA) recently emerges as a crucial task
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8+7=15

Question: How many goals did this player score in total for Bristol City 

and Stevenage in League One? Answer: 15

Club Season 
League Total 

Division Apps Goals Apps Goals 

Gillingham 2007-08 League One 1 0 2 0

Stevenage

2010-11 League One 13 2 14 2

2013-14 League One 45 6 48 6

Total 58 8 62 8

Bristol City 

2014-15 League One 46 7 51 7

2015-16 Championship 41 1 41 1

Total 87 8 92 8

Career Total 291 32 310 32

Figure 1: Example of complex table QA. Header cells
are styled with a dashed background, while the reasoning
process is highlighted using color.

(Zhao et al., 2023; Zheng et al., 2023; Zhang et al.,
2024b), enabling the extraction of valuable infor-
mation from complex tables. However, merged
cells and nested structures contained in the complex
tables introduce implicit semantic relationships
between entities within cells, posing significant
challenges for table structure understanding (Katsis
et al., 2021; Cheng et al., 2022). Taking Figure 1
for example, a "total" cell represents scores across
different divisions for the Bristol City, while for
the Stevenage, it only encompasses scores from a
single division.

To address the challenges, current research fo-
cuses on prompting large language models (LLMs)
to to implicitly reason and derive answers based
on carefully designed table representations. In par-
ticular, they propose transforming the table into
more accessible formats such as tuples (Zhao et al.,
2023), Markdown (Chen, 2022; Liu et al., 2024),
and HTML (Zhang et al., 2024b). Some of these ap-
proaches also involve annotated table headers within
the transformed representations to further improve
the model’s understanding of complex, hierarchi-
cal structures (Zhao et al., 2023). Subsequently,
these techniques integrate the transformed table
representations into carefully designed prompts to
unlock the reasoning potential of LLMs (Cheng
et al., 2022; Zhao et al., 2023; Zhang et al., 2024b),

https://github.com/JDing0521/GraphOTTER
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thereby enabling them to pinpoint accurate answers
within complex tables.

However, the reasoning processes employed by
existing approaches are frequently embedded within
simple, free-form prompts, which struggles to offer
a structured way to represent the intricate relation-
ships among data in different (merged) columns
and rows. As illustrated in Figure 1, identifying
the correct answer typically involves focusing on
a limited number of cells within the table (high-
lighted in color). In such scenarios, an implicit
reasoning process that relies on the entire table rep-
resentation might not effectively filter out irrelevant
information (marked in white). This limitation can
significantly diminish the effectiveness of complex
table question answering (QA) systems and reduce
their practical utility when dealing with detailed
and intricate tabular data.

To this end, we aim to explicitly establishing the
reasoning process for complex table QA, thereby
assisting LLMs in filtering out irrelevant infor-
mation and enhancing the task effectiveness. In
this paper, we propose a novel approach, called
GraphOTTER, that evolves Graph reasoning for
cOmplex Table quesTion answERing. In particular,
GraphOTTER leverages a graph-based representa-
tion, transforming the complex table into an undi-
rected graph where header and data cells are treated
as nodes. It also introduces a set of intermediate
reasoning actions on the graph, such as VisitNode,
GetSharedNeighbours, and AnswerQuestion, which
act as tools to facilitate navigation and reasoning
within the graph structure. Building upon this,
GraphOTTER prompts LLMs to conduct step-by-
step reasoning on the graph. For each reasoning
step, it selects the most appropriate action to guide
the LLM towards the answer. To facilitate the selec-
tion, a reasoning trace is maintained to track visited
nodes, enabling GraphOTTER to effectively steer
the reasoning process and filter out irrelevant in-
formation. As such, it constructs a clear reasoning
path and effectively identifies the answer.

To evaluate our effectiveness, we conduct com-
parative experiments with various baselines using
two benchmark datasets and two LLM backbones1.
Compared to baselines, GraphOTTER achieves a
notable improvement in complex table question
answering, exhibiting an average performance gain
of +4.77% over the best baseline. Our in-depth
analysis reveals that this success can be attributed

1Taking their costs and effectiveness into consideration.

to the explicit reasoning process, which reduce
irrelevant information in the graph/table. More-
over, we experimentally show that combining graph
representations with explicit reasoning creates a
powerful synergy that harnesses the flexibility of
the graph while mitigating its inherent complexity.
This approach holds significant promise for accu-
rately pinpointing answers from complex tables. To
sum up, we claim the following contributions.

• We call attention to the importance of explicitly
establishing the reasoning process for Complex
Table QA. This promotes the task effectiveness
and its real-world utility.

• We propose GraphOTTER, a novel LLM-based
approach that evolves graph reasoning to construct
a clear reasoning path and effectively identifies
the answer to a given question.

• We conduct extensive experiments on benchmark
datasets to show the superiority of GraphOTTER.
We further analyze the potential reason for the
effectiveness of graph reasoning.

2 Related work

We focus on evolving LLM-based graph reason-
ing for complex table QA task. We clarify our
difference to existing methods as follows.
Representation for Complex Table. Unlike sim-
ple tables (Zhu et al., 2021b; Deng et al., 2022),
which can be readily processed, the complex struc-
tures of real-world tables necessitate the develop-
ment of more sophisticated representations to facil-
itate effective model comprehension. This includes
transforming table headers into hierarchy-aware
logical form (Cheng et al., 2022) and converting the
entire table into tuples (Zhao et al., 2023), Mark-
down (Chen, 2022; Liu et al., 2024), and HTML
(Zhang et al., 2024b). However, these methods
typically rely on annotated table headers or assume
that headers are located only at the top or left side
of the table. In contrast, GraphOTTER empowers
the LLM to infer header cells among connected
nodes in the graph, enhancing its adaptability to
diverse table structures.
Reasoning for Complex Table QA. Complex table
QA relies on the ability to reason with informa-
tion directly from the table itself to derive accurate
answers to specific questions. Currently, the rea-
soning processes of existing methods employed are
often implicitly represented within free-form text
prompts (Cheng et al., 2022; Zhao et al., 2023),
fine-tuned table embeddings based on the GCN or
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Thought: I should gain all 'League One' 
neighbors to find Bristol City's total goals 
in the league.

Action: GetAllNeighbours(‘League One’)

User Question: How many goals did this player score in total for Bristol City and Stevenage in League One? 

Same Row
Same Column

① Table2Graph

② Select Nodes for

Reasoning Trace

Initialization 

(a) Graph Representation Initialization

(b) Graph Reasoning

Club …
League Total 

Division … Goals 

…

Stevenage
…

Total … 8

…

Bristol 

City 

…
League 

One 
… 7

…

…

Thought: Now I have sufficient information 
to answer this question. 

Action:  AnswerQuestion()

8+7=15

Step 1

Thought: I should get shared neighbors of 
league one and goals in bristol city row 
from the totals column.

Action:GetSharedNeighbours(‘League 
One’,‘Goals’)

Step 2 Step N

Figure 2: Overview of GraphOTTER. It first transforms the table into a graph representation (For clarity, this graph
only shows some of the edges between nodes in the same row/column). Then, it establishes a step-by-step reasoning
process on this graph, guided by a reasoning trace and a set of pre-defined intermediate actions (Note that the nodes
in the reasoning trace are colored). These actions facilitate navigation and reasoning within the graph structure,
leading to a more explicit and efficient approach for complex table QA.

transformer (Zheng et al., 2023; Jia et al., 2023),
or code interpreter (Zhang et al., 2024b), which
struggles to offer a structured way to represent
the intricate relationships among data in different
(merged) columns and rows. In this case, we ar-
gue that the implicit reasoning may be inadequate
when being tasked with reasoning over complex
tables. By explicitly representing the reasoning
process, GraphOTTER overcomes the limitations,
paving the way for more accurate complex table QA.
Notably, GraphOTTER distinguishes itself from
existing graph-based complex table QA methods,
which typically rely on fine-tuning transformers
and GNN-style models for table structure encoding
(Zheng et al., 2023; Jia et al., 2023). GraphOT-
TER, in contrast, explicitly reasons through a series
of intermediate steps on the graph via in-context
learning. Also, GraphOTTER may be conceptually
close to Chain-of-Table (Wang et al., 2024) yet
vitally different due to the following reasons. While
Chain-of-Table focuses on simple table understand-
ing, employing multi-step tabular reasoning to form
a chain of transformed tables, GraphOTTER lever-
ages graph reasoning to address the complex table
QA. See Table 2 for our effectiveness.

LLM-based Graph Reasoning. LLM-based
graph reasoning involves utilizing LLMs to analyze

and interpret the graph, extracting new insights or
relationships based on the graph’s structure and
properties (Agrawal et al., 2024). This process
typically entails a multi-step approach: identifying
the required information, searching for relevant data
within the graph, and generating an answer based on
the retrieved information (Ren et al., 2024; Shang
and Huang, 2024). To enhance reasoning capabil-
ities, some approaches further integrate external
tools like retrievers (Sun et al., 2023; Wang et al.,
2023; Jiang et al., 2024; Wu et al., 2023). In this
paper, we evolving the LLM-based graph reasoning
to solve the complex table QA task, which guides
the reasoning process in a step-by-step manner,
avoiding irrelevant information.

3 GraphOTTER for Complex Table QA

Task Formulation. Given a complex table T and a
user question Q, we transform the table into a graph
G = {N , E ,V}, where N , E and V represent the
sets of nodes, edges, and corresponding cell values,
respectively. Leveraging this graph representation,
we conduct step-by-step reasoning to pinpoint the
correct answer A. In this process, we dynamically
maintain a reasoning trace Tr, represented as a
subgraph that consists of the visited nodes.
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3.1 Method Overview

GraphOTTER aims to establish the step-by-step rea-
soning process for complex table QA. As depicted
in Figure 2, at each reasoning step, GraphOTTER
prompts the LLM to select a reasoning action from
a pre-defined set of intermediate reasoning actions
R (detailed in Table 1). To guide this process,
GraphOTTER introduces a reasoning trace Tr that
tracks the nodes visited during reasoning, which
further contributes to the selection of the next in-
termediate action. Finally, the process terminates
when GraphOTTER selects the AnswerQuestion
action, producing the final answer. See the pseudo
code in Algorithm 1 and the case study in Appendix
C for better understanding.

3.2 Graph Representation Initialization

GraphOTTER transforms the input table T into
an undirected graph G, where edges connect cells
within the same row or column. In particular, each
node Ni ∈ N is denoted as a triple (Rid,Cid,Vi),
where Rid and Cid are the row and column in-
dices in the table. Notably, for merged cells, their
Rid or/and Cid values are represented as sets con-
taining the indices of the corresponding split cells.
Moreover, each edge Eij ∈ E is denoted as a triple
(Ni,Nj ,Mij), where Mij indicates whether the
two connected nodes are in the same row or the
same column in the table. Notably, both header
and data cells are treated as nodes without dis-
tinction. This approach eliminates the reliance on
pre-defined headers, unlike existing methods that
require pre-annotated headers or assume headers
are located only at the top or left side of the table
(Wang et al., 2024; Liu et al., 2024; Ye et al., 2023;
Cheng et al., 2022). This enhances GraphOTTER’s
adaptability to diverse table structures.

To initiate the reasoning process, GraphOTTER
instructs the LLM to select a small set of nodes
relevant to the user question Q as the initial set for
initializing the reasoning trace Tr. For implemen-
tations, we initially filter up to eight most relevant
cells, with the sensitivity analysis being explored
in Section 4.4.

3.3 Graph Reasoning for Complex Table QA

GraphOTTER implements a Thought-Action-
Update process for step-by-step graph reasoning.
To guide the reasoning process, it further intro-
duces a reasoning trace, Tr, which tracks visited
nodes during reasoning. Specifically, at each step,

Reasoning Actions Description

VisitNode Go to the specified node on the graph.
GetAllNeighbours Get all neighbors of the specified node.

GetSharedNeighbours Get all shared neighbors between two
specified nodes.

AnswerQuestion Answer the user question.

Table 1: Reasoning actions on the graph. They are
simple yet flexible, encompassing common operations
required for reasoning on the graph.

GraphOTTER prompts the LLM to first think about
the current reasoning state based on the current rea-
soning trace and other relevant arguments. Based
on this thought process, GraphOTTER selects an
action from the reasoning action set R, as out-
lined in Table 1. Finally, the trace is updated after
GraphOTTER executes the chosen action, which in
turn influences the subsequent reasoning state.

Thought. GraphOTTER gathers scattered in-
formation to establish its current reasoning state,
considering not only the global information pro-
vided by the entire graph but also local information
specific to the input question. This local information
includes the outputs of the previous Thought and Ac-
tion step, the historical reasoning trace, which helps
distill key insights from past reasoning steps, al-
lowing GraphOTTER to focus on important details,
and self-inferred semantic relationships between
connected nodes, leveraging the LLM’s semantic
understanding capabilities to identify header cells.

Action. We guide GraphOTTER to select the
subsequent intermediate action from the action set
R based on the reasoning state. As outlined in
Table 1, we have designed a simple yet flexible
set of reasoning actions encompassing common
operations required for reasoning on the graph.
These actions, acting as tools, enhance GraphOT-
TER’s reasoning performance. In particular, Action
VisitNode facilitates node selection and traversal
within the graph. In scenarios where multiple nodes
share the same value, GraphOTTER presents these
nodes to the LLM for selection, accompanied by
structural information (Cid and Rid) to enable
informed decision-making. Furthermore, actions
GetAllNeighbours and GetSharedNeighbours em-
power GraphOTTER to focus on local information
and analyze the surrounding neighbors of selected
node(s). We also incorporate the action of answer-
ing questions within this set. This aligns with the
concept of learning to defer (Madras et al., 2018;
Tailor et al., 2024), which promotes GraphOTTER
to automatically evaluate the need for additional
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information before answering, rather than relying
on heuristic rules as in (Wang et al., 2024).

Notably, unlike implicit reasoning where the
entire table is embedded in a prompt (Cheng et al.,
2022; Zhao et al., 2023; Zhang et al., 2024b), our
method explicitly establishes the reasoning path
via executing these actions, which could effectively
filter out irrelevant information and guide reasoning
towards a more accurate answer, a topic we will
analysis in Section 4.3.

Update. The reasoning trace Tr is updated by
appending the new visited node after GraphOT-
TER executes the VisitNode action. The newly
added node establish edges with previously visited
nodes if they share common neighbors or are di-
rectly connected in the original graph. This process
effectively updates the local information for the sub-
sequent Thought step. In this way, GraphOTTER
forms a iterative reasoning on the graph to pinpoint
the correct answer.

Algorithm 1 Pseudo code of GraphOTTER
Input: (T,Q) is a complex table-question pair.

1: ▷ See Section 3.2 for details.
2: Transform the table T into the graph G.
3: Initialize reasoning trace Tr based on G.
4: ▷ Reasoning on the graph, see Section 3.3.
5: repeat
6: Update reasoning state via Thought based

on reasoning trace Tr
7: Reason one step via Action based the state
8: Modify reasoning trace Tr via Update
9: until AnswerQuestion is selected

10: ▷ See Section 3.4 for details.
11: Answer generation via in-context learning.

3.4 Answer Generation
When the AnswerQuestion action is selected, we
instruct the LLM via CoT prompts to produce the
final answer to the user question based on the
question and current local reasoning state from
Thought step, instead of using the whole graph.

4 Experiments

To evaluate our effectiveness, we conduct com-
parative experiments with various baselines us-
ing two benchmark datasets and two LLM back-
bones. In particular, we study how effective is
our GraphOTTER compare to existing complex
table QA methods (Section 4.2). Furthermore,

we comprehensively analyze the advantages and
characteristics of GraphOTTER in Section 4.3 and
4.4. For better understanding the reasoning pro-
cess of GraphOTTER, we report case studies in
Appendix C due to the space limit. Finally, our
code and experimental datasets are available at
https://github.com/JDing0521/GraphOTTER.

4.1 Experimental Setups

Dataset. Following Zhao et al. (2023), we use two
benchmark datasets: Hitab(Cheng et al., 2022) and
AIT-QA(Katsis et al., 2021). These two datasets
contain a large number of complex tables collected
from industrial documents, which not only provide
larger-scale tables but also reflect the real data
analysis scenarios in the industry. Statistics of the
datasets can be found in Appendix B.
Baselines. Current approaches to complex table
QA rely on predefined table headers and implicit
reasoning processes. These methods can be broadly
categorized into two types: One-shot Implicit Rea-
soning and Iterative Implicit Reasoning, which
prompts LLMs in a iterative manner. We also
include the only existing method that employs iter-
ative explicit reasoning as a baseline.

• One-shot Implicit Reasoning. This category
encompasses TableReasoner (Chen, 2022) and
TableParser (Zhao et al., 2023), which leverage
carefully crafted (CoT) prompts and table repre-
sentations based on Markdown or tuples.

• Iterative Implicit Reasoning. ReAct (Yao et al.,
2023) utilizes HTML-based table representations
and guides LLMs in generating (Thought, Act,
Observation) tuples. E5(Zhang et al., 2024b)
builds upon ReAct, further incorporating self-
described table structure information and a code
interpreter to enhance the action generation pro-
cess. MIX-SC (Liu et al., 2024) employs multiple
reasoning attempts for self-consistency, including
carefully designed DataFrame-based representa-
tion and ReAct-style iterative reasoning using
Python interpreter and in-context learning.

• Iterative Explicit Reasoning. This involves
Chain-of-Table (Wang et al., 2024). While it is
designed for simple tables, it stands out as the only
iterative explicit reasoning method. It utilizes
multi-step reasoning on the table, forming a chain
of transformed tables through tabular operations,
rather than our graph reasoning.

https://github.com/JDing0521/GraphOTTER
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Evaluation Metrics. Following previous re-
search (Zheng et al., 2023; Chen, 2022; Zhang
et al., 2024b; Liu et al., 2024; Zhao et al.,
2023), we employ a multifaceted evaluation ap-
proach. Firstly, we utilize Exact Match (EM) to
quantify the precision of model outputs against
the ground truth. Furthermore, we leverage a
LLM-based evaluator (LLM Eval) to assess the ac-
curacy of predictions. The detailed implementation
is offered in Appendix A.2.
Implementation Details. Considering the finan-
cial constraints, we experiment on two LLM back-
bones for all methods: Gemini-1.52 and Qwen23.
To ensure reproducibility, we maintain consistent
temperature and random seed settings for both back-
bones (where applicable). For implementations
of baselines, we rigorously adhered to their offi-
cial GitHub code and original paper prompts for
their implementation. For GraphOTTER, to initi-
ate the reasoning process, we selected up to eight
of the most relevant cells for all datasets. Fur-
ther implementation details regarding baselines and
GraphOTTER are presented in Appendix A.

4.2 Main Results
Table 2 and Table 3 present an overview of the
results across two benchmark datasets and LLM
backbones. These results suggest that GraphOT-
TER stands out as the leading method for complex
table QA. We provide further analysis below.

How effective is GraphOTTER? – It consis-
tently outperforms all baselines across various
datasets and LLM backbones, demonstrating its
superiority in complex table QA. As illustrated in
Table 2, while the MIX-SC method demonstrated
improved performance by concurrently incorporat-
ing multiple inference techniques, including direct
prompts and ReAct, and employing self-consistency
for aggregation, its results still lag behind our pro-
posed approach. Notably, our method surpasses
MIX-SC, the best baseline, by an average of +9.07%
and +1.63% on datasets Hitab and AIT-QA, respec-
tively, highlighting the significant advantage of our
model. Notably, such advantage contributes to our
explicit graph reasoning, a topic we will delve into
later in Section 4.3.

How well does GraphOTTER handle different
user questions? – It achieves comparable and
even superior performance. Our model, GraphOT-
TER, employs a graph representation where data

2Gemini-1.5-flash-latest
3Qwen2-72B-Instruct

and header cells are treated equally. This necessi-
tates the model to infer the headers of connected
nodes within the graph during the Thought step.
To assess the effectiveness of this self-inferred
header mechanism, we analyze performance on
both header-related and header-unrelated user ques-
tions. Note that these questions are annotated
within the AIT-QA dataset. As illustrated in Ta-
ble 3, GraphOTTER achieves promising results
on both question types, highlighting the efficacy
of our self-inferred headers. Further ablation in
Section 4.3 further supports this observation. In
our opinion, this performance can be attributed to
the powerful semantic understanding capabilities of
LLMs, enhancing the GraphOTTER’s adaptability
to diverse table structures.

4.3 Ablation & In-depth Analysis
We delve into ablation studies and detailed analysis
to investigate our strengths, where two ablations
are involved. We provide the results of Gemini in
Table 4 and draw the following observations.

• GraphOTTER w/ known headers is provided with
ground truth table header information, eliminat-
ing the need for the LLM to infer headers.

• GraphOTTER w/ implicit reasoning utilizes the
one-shot implicit reasoning approach, directly
prompting the LLM to generate the answer based
on graph-based representation, rather than per-
forming explicit graph reasoning. We refer to
the TableReasoner4 prompts by creating a graph-
representation variant.

Why the graph reasoning is effective? – The
success of explicit graph reasoning may be at-
tributed to its ability to effectively filter out
irrelevant information. Compared to GraphOT-
TER with its variant utilizing the same graph rep-
resentation but employing the implicit reasoning,
GraphOTTER demonstrates significant improve-
ments in both datasets. This advantage is attributed
to instructing the LLM to answer the question us-
ing a specific reasoning trace rather than the entire
graph/table. This effectively filters out irrelevant
information from the raw table. Further analysis,
as shown in Figure 3, reveals that GraphOTTER
utilizes a smaller number of nodes compared to
other methods when generating answers. These

4We opted to avoid using iterative implicit reasoning meth-
ods as they designed table-specified actions for ReAct-style
iterations.
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Reasoning Type Methods
Gemini 1.5 Qwen2

Hitab AIT-QA Hitab AIT-QA
EM LLM Eval EM LLM Eval EM LLM Eval EM LLM Eval

One-shot Implicit
TableReasoner(Chen, 2022) 44.19 68.18 65.40 77.38 56.41 75.68 76.29 88.83
TableParser(Zhao et al., 2023) 57.51 68.94 63.22 78.20 44.57 69.76 64.85 83.11

Iterative Implicit
ReAct(Yao et al., 2023) 43.88 47.60 47.14 50.41 54.73 57.89 68.12 72.75
E5(Zhang et al., 2024b) 57.26 62.44 59.40 64.31 43.56 47.16 56.40 59.13
MIX-SC(Liu et al., 2024) 62.41 68.99 69.95 74.86 73.42 77.08 84.20 91.83

Iterative Explicit
Chain-of-Table(Wang et al., 2024) 25.82 36.68 18.53 23.16 44.26 62.69 49.32 61.04
GraphOTTER (Ours) 67.76 69.66 81.47 82.56 73.74 77.37 88.28 92.64

Table 2: Overall evaluation on complex table QA. Our GraphOTTER stands out as the most effective method for
this task across two benchmark datasets and LLM backbones.

Model
Gemini 1.5 Qwen2

HRQ HUQ HRQ HUQ

One-shot Implicit Reasoning
TableReasoner 71.05 63.92 81.58 90.72
TableParser 77.63 78.35 80.26 83.85
Iterative Implicit Reasoning
ReAct 44.74 51.89 60.53 75.95
E5 63.16 64.60 53.95 60.48
MIX-SC 59.21 78.97 84.21 93.81
Iterative Explicit Reasoning
Chain-of-Table 28.95 21.65 57.89 61.86
GraphOTTER(Ours) 69.74 85.91 84.21 94.85

Table 3: Detailed evaluation on different user questions,
categorized by whether their answers are related to the
table headers or not. "HRQ" represents "Header-related
questions", and "HUQ" represents "Header-unrelated
questions". Here, LLM Eval is used. For results on EM,
refer to Table 5 in appendix.

nodes represent the reasoning trace produced by the
model’s step-by-step reasoning on the graph. Based
on our calculation, on average, 93.38% of these
nodes directly contain the correct answer, demon-
strating the efficacy of explicit graph reasoning in
eliminating irrelevant information and improving
the accuracy of LLM responses.

How effective is the graph-based table repre-
sentation? – Combining graphs with explicit
reasoning creates a powerful synergy. While
graph representations offer significant potential,
their inherent complexity (e.g., richer node rela-
tionships than tables) compared to tables can pose
challenges for implicit reasoning.

LLMs processing graphs may have difficulty
distinguishing key connections from irrelevant ones,
resulting in inaccuracies (Refer to TableReasoner
and the implicit reasoning variant of GraphOTTER
in Table 4). However, combining graphs with

20

40

60

80

100

0 10 20 30 40 50
Average cell utilization rate per question (%)

L
L

M
 E

v
a
l 

(%
)

Gemini on Hitab

Gemini on AIT-QA

Qwen2 on Hitab

Qwen2 on AIT-QA

Gemini on 

Gemini on AIT

Qwen2 on 

Qwen2 on AIT

GraphOTTER

Chain-of-Table

Figure 3: Average percentage of cells/nodes required
for generating the final answer. We report results on
explicit reasoning methods, while for implicit reasoning
based methods, they use all the cells in the whole table.

explicit reasoning methods can alleviate these issues
(cf. our results).

Explicit reasoning on the graph enables system-
atic exploration and identification of key connec-
tions and inferences from its structure. This targeted
approach may reduce the risk of noise or irrelevant
relationships impacting results, ultimately enhanc-
ing the accuracy and reliability of the inferences.
Thus, combining graphs with explicit reasoning cre-
ates a powerful synergy that harnesses the flexibility
of graphs while mitigating their inherent complex-
ity, which holds immense promise for extracting
correct answer from complex table.

How effective is the self-inferred table headers?
– The self-inferred table headers demonstrates
high availability and their effectiveness closely
resemble that of using ground truth. Through
controlled variable experiments, we confirm the
effectiveness of the self-inferred table header in-
formation, demonstrating results of GraphOTTER
comparable to those obtained using GraphOTTER
w/ known headers.
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Figure 4: Illustration of the iteration efficiency of different methods. GraphOTTER achieves superior performance
while requiring fewer iterations.

Model
HiTab AIT-QA

EM LLM Eval EM LLM Eval

TableReasoner 44.19 68.18 76.29 77.38
Chain-of-Table 25.82 36.68 18.53 23.16
GraphOTTER 67.76 69.66 81.47 82.56
w/ known headers 68.46 70.55 82.29 82.83
w/ implicit reasoning 27.97 67.05 45.78 79.84

Table 4: Ablation studies using Gemini. Combining the
graph with explicit reasoning creates a powerful synergy
for complex table QA. The GraphOTTER-inferred table
headers demonstrates high availability.

4.4 Characteristics of GraphOTTER

This section aims to uncover characteristics of
GraphOTTER in terms of iteration efficiency and
hyper-parameter sensitivity within reasoning trace
initialization. Detailed observations are as follows.

How is the iteration efficiency of GraphOT-
TER? – GraphOTTER achieves superior per-
formance while requiring fewer iterations. Fig-
ure 4 presents the average number of iterations
per user question for GraphOTTER and iterative
reasoning-based baselines across two datasets. The
results demonstrate that GraphOTTER consistently
requires fewer iterations while achieving higher QA
performance (cf. Table 2). Importantly, ReAct
and E5 exhibit a higher number of iterations across
different backbones, primarily due to errors in the
LLM-generated Python code, leading to a recursive
cycle of erroneous corrections. Chain-of-Table,
designed for simpler table understanding, struggles
to model complex relationships between multiple
cells, necessitating additional iterations to retrieve
comprehensive information. In contrast, GraphOT-
TER’s graph-based representation and step-by-step
reasoning capabilities enable it to converge on ac-
curate answers with fewer iterations.

What is the impact of reasoning trace initial-
ization? – Proper reasoning trace initialization
ensures that GraphOTTER begins its reasoning
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Figure 5: Impact of reasoning trace initialization (i.e.,
tuning top-k relevant cells to initialize the trace). Proper
reasoning trace initialization ensures that GraphOTTER
begins its reasoning with enough information without
being overwhelmed by irrelevant details.

with enough information to make accurate infer-
ences without being overwhelmed by irrelevant
details. Considering GraphOTTER instructs the
LLM to select a small set of nodes relevant to the
question Q as the initial set for the reasoning trace,
we analyze the impact of the number of these initial
nodes on GraphOTTER’s performance, as shown in
Figure 5. The results indicate that performance suf-
fers when the number of nodes is either too small or
too large. With too few nodes, GraphOTTER may
lack sufficient information, ultimately degrading
overall performance. Conversely, excessive nodes
may introduce irrelevant information, interfering
with the LLM’s reasoning process and negatively
impacting performance. A potential solution to
these issues could involve equipping GraphOTTER
with the ability to trace back and try new reasoning
paths on the graph. However, given our focus on the
initial development of graph reasoning for complex
table QA, we leave this for future research. Empir-
ically, we recommend using at most 4 to 8 initial
nodes, and all experiments in this paper choose up
to 8 nodes without further tuning.
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5 Conclusions

Closely revolving around the complex table QA,
we introduce GraphOTTER, a novel method that
explicitly establishes a reasoning process to pin-
point the correct answers. GraphOTTER converts
the table into a graph and performs step-by-step
reasoning with intermediate actions, leading to a
clear and efficient path to the answer. Our extensive
evaluation demonstrates that GraphOTTER outper-
forms existing implicit reasoning methods across
various benchmark datasets and LLM backbones.
This success can be attributed to GraphOTTER’s
ability to filter out irrelevant information, focusing
the reasoning process on the most pertinent data.
The powerful synergy between graphs and explicit
reasoning harnesses the flexibility of graph represen-
tations while mitigating their inherent complexity.
We believe this may offer immense promise for
accurately extracting answers from complex tables.

Beyond handling complex table structures, ad-
dressing complex user queries is crucial for the real-
world effectiveness of TableQA systems. Therefore,
future work will extend this method to multi-turn
conversation scenarios, enabling active exploration
and clarification of complex user questions (Zhang
et al., 2024a; Chen et al., 2023).

Limitations

Iterative reasoning can be more expensive than
one-shot methods. Our method, like other iterative
reasoning approaches, requires multiple interac-
tions with the LLM to answer a single question,
which can be more expensive than one-shot meth-
ods. While our method proves to be more efficient
in terms of the number of iterations compared to
other iterative methods (as shown in Figure 4), our
future work will focus on combining one-shot and
iterative reasoning techniques to minimize unneces-
sary interactions with the LLM. This combination
will allow us to achieve a balance between cost-
effectiveness and task performance.
More advanced reasoning actions on the graph.
This paper introduces four simple yet flexible rea-
soning actions, demonstrating their effectiveness in
our experiments. However, to further enhance the
performance of graph reasoning, future research
will explore the introduction of more advanced ac-
tions. For instance, extending the actions related to
accessing neighbors of specified nodes to include
n-hop neighbors could provide the model with a
longer-term perspective. However, as this study

focuses on introducing graph reasoning to com-
plex table QA for the first time, the exploration
of advanced actions will be deferred to our future
research.
Potential sensitivity to prompts. Similar to all
other studies on prompting LLMs (Cheng et al.,
2022; Zhao et al., 2023; Zhang et al., 2024b),
our evaluation results could be influenced by the
prompts. The impact of prompt design and prompt
optimization represents a significant area for further
research within the field of LLMs. Exploring the in-
fluence of different prompts and identifying optimal
ones are crucial for maximizing the performance
and effectiveness of LLM-based methods.
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A Implementation Details

Considering the financial issue, we experimented
with two LLM backbones for all methods: Gemini-
1.5 (gemini-1.5-flash-latest) and Qwen2 (Qwen2-
72B-Instruct). To guarantee reproducibility, we
set the same temperature and the seed for both
backbones (if applicable). Importantly, to mirror
real-world scenarios, GraphOTTER is conducted
without prior knowledge of the table headers. For
baseline methods, cells located at the top or left of
the table were assumed to be headers.

A.1 Implementation of Baselines
For all baselines, we used the official code from the
original paper’s GitHub repository or the official
prompt from the original paper for implementation.
We refer to Appendix A.4.1 for prompts.

Importantly, given a complex table in a document,
we cannot definitively determine the location of
headers beforehand. The flexible nature of complex
tables allows headers to appear in various positions,
not solely at the top or left edges. This necessitates
alternative solutions beyond manual header cell
annotation, as it is not a practical approach (Zheng

et al., 2023). To this end, we aim to simulate this
real-world scenario by simply removing the header
cell information in the prompts of the TableParser
(Zhao et al., 2023).

A.2 Implementation of LLM-based Evaluator
While exact match scores are commonly employed
in evaluation (Zheng et al., 2023), the flexible na-
ture of LLM outputs makes direct alignment or
similarity measures, such as exact match, inade-
quate for assessing our method and baselines (Zhao
et al., 2023). Therefore, we employ an LLM as
an evaluator, following the approach of Zhao et al.
(2023); Adlakha et al. (2023), to verify the accuracy
of predictions made by all methods. Specifically,
we utilize Gemini 1.5 (gemini-1.5-flash-latest) as
the backbone of the LLM evaluator, considering
cost-effectiveness. The prompt template used for
this evaluation is presented in Appendix A.4.3.

A.3 Implementation of GraphOTTER
A.3.1 Graph Representation Initialization
• Transforming Table to Graph. GraphOTTER

transforms the input table into an undirected
graph, where edges connect cells within the same
row or column.

• Reasoning Trace Initialization. To filter out
irrelevant information and initialize the reason-
ing trace, we guide the LLM to identify nodes
relevant to the given user question, effectively con-
structing a subgraph. In our implementation, we
employ gte-base (https://huggingface.co/
thenlper/gte-base) to retrieve relevant nodes
from the embedding space and the LLM itself
to generate nodes through in-context learning.
Finally, given the two sets of nodes obtained, we
take the intersection and obtain at most 8 most
relevant ones. See Figure 10 for prompts and
the format of the reasoning trace is illustrated in
Figure 14.

A.3.2 Graph Reasoning
We employ three processes to facilitate step-by-
step reasoning over the graph via Thought-Action-
Update. Prompts for the three-step process are
provided in Figure 12 and Figure 11. During
the reasoning, we defined four reasoning actions,
acting as four functions. Here, we provide the
implementation of these actions.

• VisitNode(query:Str). This function/action serves
as an intermediary, taking query from the LLM

https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://huggingface.co/thenlper/gte-base
https://huggingface.co/thenlper/gte-base
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and accessing the corresponding nodes within
the graph. Due to the inherent flexibility of
the LLM’s output, its responses may not always
directly align with the node names in the graph.To
address this challenge, we use a hybrid approach
that combines keyword matching and semantic
retrieval by taking the intersection of their results,
with semantic retrieval implemented by gte-base.
This approach aims to identify the most accurate
nodes based on the LLM’s output, ensuring a
robust connection between the LLM and the graph
structure.

• GetAllNeighbours(node:Tuple). This function re-
trieves all neighbors of a specified node. Notably,
we limit the LLM to specify the exact name of the
visited node that it wants to explore. Moreover,
our knowledge of the graph’s structure allows us
to programmatically and accurately determine
the neighbors of any given node.

• GetSharedNeighbours(node1:Tuple,
node2:Tuple): This function returns the
shared neighbors of two specified nodes in the
graph. Same with the previous function, we
can accurately identify and return the shared
neighbors given our knowledge on the graph.

• AnswerQuestion(): Answer the user question
based on the available information. When the
LLM selects this function, it signifies that the
available information is sufficient to answer the
question. At this point, we guide the LLM to
generate the final answer using CoT prompts. The
prompt template is depicted in Figure 13.

A.4 Implementation of Prompts

A.4.1 Prompts for Baselines
• One-shot implicit reasoning. TableReasoner:

Figure 7; TableParser: Figure 8.

• Iterative implicit reasoning. We use their
official codes from the Github.

• Chain-of-Table. We use the official codes from
the Github.

A.4.2 Prompts for GraphOTTER
• Reasoning trace initialization. Figure 10

• Graph Reasoning. Figure 9, Figure 11, Figure
12, Figure 13, and Figure 14.

A.4.3 Prompts for LLM-based Evaluator
We employ an LLM as an evaluator, following
the approach of Zhao et al. (2023); Adlakha et al.
(2023), to verify the accuracy of predictions made
by all methods. The prompt template is illustrated
in Figure 15.

B Dataset Details and Statistics

We consider two benchmark datasets of complex
table QA, including AIT-QA and Hitab.

Given a complex table in a document, we can-
not definitively determine the location of headers
beforehand. The flexible nature of complex tables
allows headers to appear in various positions, not
solely at the top or left edges. This necessitates
alternative solutions beyond manual header cell
annotation, as it is not a practical approach (Zheng
et al., 2023). In this case, our experiments follows
this real-world setting and removes the annotated
table header information from the both datasets.

As for the AIT-QA, its header cells and data
cells are stored separately in two-dimensional lists,
recording only the content of the cells without
preserving their positional information. An ex-
ample of a table storage format is shown below.
When the number of header cells in each column
of the column_header and row_header lists is
consistent, it is possible to reconstruct a table with
an unknown header cell structure by following a
top-to-bottom, left-to-right order. However, the
number of header cells in the last column of the
column_header list (5) is inconsistent with the
number of header cells in other columns (2), making
it impossible to determine the specific position of
each header cell in the last column. Consequently,
the reconstruction of a table with an unknown
header cell structure is not feasible. Therefore, we
removed tables like this where we cannot eliminate
the influence of the known headers. Finally, the
statistics for the test sets of the two datasets are
presented in Table 6.

1 # An example o f a t a b l e s t o r a g e fo rma t i n AIT−QA
2 {
3 " i d " : " tab −2" , # The Tab le ID .
4 " co lumn_header " : # A l i s t o f column names i n t h e t a b l e .

Column names can be h i e r a r c h i c a l and s u b l i s t
c a p t u r e s t h e o r d e r o f h i e r a r c h y .

5 [
6 [ . . . ] ,
7 [
8 " I n c r e a s e ( d e c r e a s e ) from 2017 ( a ) : " ,
9 " L a t i n "

10 ] ,
11 [
12 " I n c r e a s e ( d e c r e a s e ) from 2017 ( a ) : " ,
13 " T o t a l "
14 ] ,
15 [
16 " " ,
17 " I n c r e a s e ( d e c r e a s e ) from 2017 ( a ) : " ,
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Model
Gemini 1.5 Qwen2

HRQ HUQ HRQ HUQ
One-shot Implicit Reasoning
TableReasoner 71.05 63.92 73.68 76.98
TableParser 63.16 63.23 65.79 64.60
Iterative Implicit Reasoning
ReAct 44.74 47.77 60.53 70.10
E5 61.84 58.76 52.63 57.39
MIX-SC 56.58 73.45 82.89 84.54
Iterative Explicit Reasoning
Chain-of-Table 25.00 16.84 48.68 49.48
Ours 69.74 84.54 81.58 90.03

Table 5: Detailed evaluation on different user questions,
categorized by whether their answers are related to the
table headers or not. "HRQ" represents "Header-related
questions", and "HUQ" represents "Header-unrelated
questions". Here, EM is used.

Dataset Table
number QA Pair Domain

Hitab 538 1,584 Open domain
AIT-QA 80 367 Airline industry

Table 6: Test set statistics for the two datasets.

18 " " ,
19 " Domest ic " ,
20 " A t l a n t i c "
21 ]
22 ] ,
23 " row_header " : # A l i s t o f row h e a d e r s i n t h e t a b l e . Row

h e a d e r s can be h i e r a r c h i c a l and s u b l i s t c a p t u r e s
t h e o r d e r o f h i e r a r c h y .

24 [
25 [ . . . ] ,
26 [
27 " P a s s e ng e r l o ad f a c t o r ( p o i n t s ) "
28 ] ,
29 [
30 "11"
31 ]
32 ] ,
33 " d a t a " : # A l i s t o f rows . Each row i s a l i s t o f row

e n t r i e s .
34 [
35 [ . . . ] ,
36 [
37 " " ,
38 " " ,
39 " " ,
40 " " ,
41 " " ,
42 " ( a ) See P a r t I I , I t em 6 , S e l e c t e d F i n a n c i a l

Data , o f t h i s r e p o r t f o r t h e d e f i n i t i o n o f
t h e s e s t a t i s t i c s . "

43 ]
44 ]
45 }

C Case Study of GraphOTTER
Reasoning

For better understanding, we involve a case study to
reveal the reasoning process of GraphOTTER. The
examples of the user question and the complex table

sub-groups of 

the agri-food 

industry 

eastern ontario northern ontario

french-language 

workers 
other workers 

french-language 

workers 
other workers

percent 

input and 

service supply 
2.9 2.1 2.9 1.3

food, beverage, 

and tobacco 

processing 

9.7 6 3 3.3

food retail and 

wholesale 
35.3 31.3 39.1 37.3

food service 52.1 60.6 55 58.1

Table Caption: characteristics of small and medium-sized enterprises and their 

owners in the study sample

Figure 6: Illustration of the graph reasoning of GraphOT-
TER. User Question: in northern ontario, what propor-
tion of workers who have worked in the restaurant and
food services sector was french-language workers?

from the Hitab dataset are illustrated in Figure 6.
The reasoning process of GraphOTTER is provided
in Table 7, which details each reasoning step.

User Question of Case Study: in northern on-
tario, what proportion of workers who have worked
in the restaurant and food services sector was french-
language workers?

D Other Experimental Findings

According to Table 2, GraphOTTER demonstrates
balanced performance across both Exact Match
(EM) and LLM Evaluation metrics, unlike most
baselines where LLM Evaluation scores signifi-
cantly surpass EM, particularly for direct prompt
methods. This balanced performance, achieved
through GraphOTTER’s graph representation and
reasoning framework, signifies the generation of
answers that are both factually accurate and adhere
to the desired format, a crucial factor in factoid
question answering.

Additionally, Table 5 provides a detailed evalua-
tion of the EM metric for different user questions,
categorized based on whether their answers are re-
lated to the table headers. The results demonstrate
that GraphOTTER performs robustly across both
question types, underscoring the effectiveness of
our self-inferred headers. Also, Tables 3 and 5 show
that many methods perform better on questions that
do not rely heavily on table headers, possibly be-
cause LLMs are typically pretrained on simple
tables, which limits their ability to understand flexi-
ble table headers in complex tables. Additionally,
biases inherent to attention mechanisms(Zhao et al.,
2023) may hinder the ability of LLMs to effectively
interpret table header data.
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Step ID Reasoning Step or Action Current Reasoning Trace (in the form of subgraph)

0
Graph Representation Initialization
via finding cells that relevant to the user question.

[(1, 3, ’french-language workers’), (6, 0, ’food service’)] has the
following shared neighbors: [(1, 0, ’sub-groups of the agri-food
industry’), (6, 3, ’55.0’)].
[(6, 0, ’food service’), (0, 3, ’northern ontario’)] has the following
shared neighbors: [(0, 0, ’sub-groups of the agri-food industry’),
(6, 3, ’55.0’)].
[(0, 3, ’northern ontario’),SAME COLUMN,(1, 3, ’french-
language workers’)]

1

Thought: The question asks for the percentage of French-language
workers in the "food services" sector in Northern Ontario. The
graph includes both "Northern Ontario" and "Food Services," but
the percentages are not provided, so we need to find them in the
same column.

Action: GetAllNeighbours((1, 3, "french-language workers"))
Action Output:
Same row: [(1, 0, ’sub-groups of the agri-food industry’), (1, 1,
’french-language workers’), (1, 2, ’other workers’), (1, 3, ’french-
language workers’), (1, 4, ’other workers’)].
Same column: [(0, 3, ’northern ontario’), (1, 3, ’french-language
workers’), (2, 3, ’percent’), (3, 3, ’2.9’), (4, 3, ’3.0’), (5, 3, ’39.1’),
(6, 3, ’55.0’)].

Update: No update

Same as previous one

2

Thought: We found the nodes for "Francophone Workers" and
"Percentage" in the "Northern Ontario" column. Shared neighbors
of ’Percentage’ and ’Food Services’ (6, 3, ’55.0’) suggest that
55.0 is the percentage of French-speaking workers in the ’Food
Services’ subgroup in Northern Ontario.

Action: VisitNode(’Percentage’)
Action Output: None

Update: Add node ’percent’

[(1, 3, ’french-language workers’), (6, 0, ’food service’)] has the
following shared neighbors: [(1, 0, ’sub-groups of the agri-food
industry’), (6, 3, ’55.0’)].
[(6, 0, ’food service’), (0, 3, ’northern ontario’)] has the following
shared neighbors: [(0, 0, ’sub-groups of the agri-food industry’),
(6, 3, ’55.0’)].
[(6, 0, ’food service’), (2, 3, ’percent’)] has the following shared
neighbors: [(2, 0, ’sub-groups of the agri-food industry’), (6, 3,
’55.0’)].
[(0, 3, ’northern ontario’),SAME COLUMN,(1, 3, ’french-
language workers’),SAME COLUMN,(2, 3, ’percent’)]

3

Thought: We found the nodes for "Francophone Workers" and
"Percentage" in the "Northern Ontario" column. Shared neighbors
of ’Percentage’ and ’Food Services’ (6, 3, ’55.0’) suggest that
55.0 is the percentage of French-speaking workers in the ’Food
Services’ subgroup in Northern Ontario.

Action: GetSharedNeighbours((2, 3, ’percent’), (6, 0, ’food ser-
vice’))
Action Output: [(2, 0, ’sub-groups of the agri-food industry’), (6,
3, ’55.0’)]

Update: No update

Same as previous one

4

Thought: We found the nodes for "Francophone Workers" and
"Percentage" in the "Northern Ontario" column. Shared neighbors
of ’Percentage’ and ’Food Services’ (6, 3, ’55.0’) indicate that
55.0 is the percentage of French-speaking workers in the ’Food
Services’ subgroup in Northern Ontario.

Action: AnswerQuestion()

Same as previous one

5 Answer Generation: 55.0

Table 7: Reasoning process of GraphOTTER. User Question: in northern ontario, what proportion of workers who
have worked in the restaurant and food services sector was french-language workers? Answer: 55.
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Read the table below regarding "{ table_caption }" to answer the following questions.
The output format should be "The answer is xxx , yyy , zzz". If the answer contains multiple
segments of text , please separate them with commas (",").

{table}

read the table first , and then answer the given question.

Question: {question}

Figure 7: Prompt for TableReasoner

Suppose you are an expert in statistical analysis.
You will be given a table described in a special format.
Your task is to answer the questions based on the content of the table.

The table is described as follows:
1. The title means the title of the table.
2. We represent cell tuples as (C1, C2, C3), where C1 denotes the row , C2 denotes the
column , and C3 denotes the content.

For examples:
The tuple (7, 0, 416) represents a cell at row 7, column 0, with a value of 416. Make sure
you read and understand these instructions carefully.

Let 's think step by step as follows and give full play to your expertise as a statistical
analyst:
1. Clearly understand the question and the information needed to answer the question to
determine the necessary information to extract.
2. Have a comprehensive understanding of the data in the table , including the meaning , data
types , and formats of each column and row tuples (Note: There are usually summative tuples
in the table , such as all , combine , total , sum , average , mean , etc. These tuples help you

skip a lot of operations).
3. Perform statistical , calculation , sorting , grouping , or other operations on the tuples
you selected before to extract useful information based on the question 's requirements.

You MUST answer each question in the format below line by line (Note: Keep your answer
concise):
1. Cell: The cell tuples most relevant to the answer.
2. Operation: the operation you performed on the tuples you selected.
3. Answer: your answer (A number , noun , phrase , or set of data).
And if the answer is not contained within the context , say "I don 't know".

Title: {TABLE_TITLE_HERE}

Cells: {TABLE_NON_HEADER_HERE}

Q: {QUSTION_HERE}
A:

Figure 8: Prompt for TableParser

Suppose you are an expert in statistical analysis.
You will be given a table described in a special format.
Your task is to answer the Question based on the content of the table.

Graph Definition: We consider each cell in the table as a node in the graph , represented by
the tuple (Row Index , Column Index , Cell Content). For example , (1, 0, "test1") represents
the node in the 1st row and 0th column , with content "test1". The tuples (1, 0, "test1"),

(1, 4, "test2 "), and (3, 0, "test3 ") represent three nodes , where "test2" and "test1" have
a SAME ROW relationship , "test3" and "test1" have a SAME COLUMN relationship , and "test1"
is the shared neighbor of "test2" and "test3".

Figure 9: System instruction for GraphOTTER’s graph reasoning
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==================================== System Instruction ==================================
Suppose you are an expert in statistical analysis.
You will be given a Table described in a special format.
Your task is to identify the cells in the Table that is most relevant to the Question.

Each cell in the Table is represented by a tuple (Row Index , Column Index , Cell Content).
For example , the tuple (7, 0, "416") represents a cell at row 7, column 0, with a value of
"416".
Make sure you read and understand these instructions carefully.

========================================= Prompt =========================================
Let 's think step by step as follows and give full play to your expertise as a statistical
analyst:
1. ** Understand the Question **: Clearly understand the Question and the information needed
to answer the Question to determine the necessary information to extract.
2. ** Analyze the Data Structure **: Have a comprehensive understanding of the data in the
Table , including the meaning , data types , and formats of each cell tuples.
3. ** Select Relevant Data **: Based on the Question , identify the most relevant cell tuples.
**Note :** Pay special attention to the header cell tuples in the Table , as they are often

more relevant to the Question 's semantics and can help in identifying the related evidence
cell tuples.

{examples}

{table}

** Question :** {question}

Output format instructions:
1. Outputs cell tuples in descending order of relevance.
2. Using this JSON schema: Tuple = {" tuple": tuple , "explanation ": str}. Return a `list[
Tuple]`.

Figure 10: Prompt and system instruction for GraphOTTER’s reasoning trace initialization. Subsequently, we
identify the intersection of the results generated by this prompt and the results returned by the gte-base retriever.
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You can interact with the graph through two steps: "Thought" and "Action", to complete the
question answering task step by step:
1. In the "Thought" step , thoroughly examine the question and the existing data. Determine
if the current data is sufficient to answer the question:

a. If the existing information is sufficient , proceed the "Action" step and call the "
AnswerQuestion" function to give the answer.
b. If more information is needed , call the functions in the 'Action ' step to obtain
useful information.

2. In the "Action" step , you can call the following functions to get more node information
from the graph :

a. VisitNode(query): Retrieve the node from the graph that is semantically closest to
the keyword 'query '(given as a str). Note: 'query ' cannot be the known Cell Content , to
avoid meaningless calls;

b. GetAllNeighbours(node): Get all neighboring nodes in the same row and column of the
specified node (given as a tuple) from the graph.
c. GetSharedNeighbours(node1 , node2): Get all shared neighbors between two specified
nodes (also represented as tuples) in the graph.
d. AnswerQuestion (): Answer the question based on the available information.

Let 's think step by step as follows and give full play to your expertise as a statistical
analyst:
1. ** Understand the Question **: Clearly understand the Question , clarify the relationships
between the existing data , and organize the information needed to answer the Question.
2. ** Analyze the Data Structure **: Have a comprehensive understanding of the data in the
graph , including the meaning , data types , and formats of each nodes. **Note :** Pay special
attention to some ** summative or aggregated nodes** (e.g., "all", "combine", "total", "sum
", "average", "mean", "percent", "percentage", "proportion", "%", "probability", "
likelihood", etc.), as these nodes help you skip a lot of operations.
3. ** Select Relevant Data **: Based on the Question , identify the most relevant nodes. (**
Note :** Some cells may have identical Cell Content , so avoid greedy searches when necessary
; Focus on the most relevant and directly related data to the Question at hand.)
4. ** Avoid Redundant Calculations **: Before performing any calculations or operations ,
first check if the needed information is already available in the graph. If so, directly
use this information.

Table: {Table}

Question: {Question}

{Reasoning Trace}

{Interaction History}

Please integrate all the current information to output your Thought step {step}. The output
format is: "Thought step {step}: {your thought }"

Figure 11: Thought Step Prompt of GraphOTTER. Note that the Update Step does not rely on prompt.
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You can interact with the graph through two steps: "Thought" and "Action", to complete the
question answering task step by step:
1. In the "Thought" step , thoroughly examine the question and the existing data. Determine
if the current data is sufficient to answer the question:

a. If the existing information is sufficient , proceed the "Action" step and call the "
AnswerQuestion" function to give the answer.
b. If more information is needed , call the functions in the 'Action ' step to obtain
useful information.

2. In the "Action" step , you can call the following functions to get more node information
from the graph :

a. VisitNode(query): Retrieve the node from the graph that is semantically closest to
the keyword 'query '(given as a str). Note: 'query ' cannot be the known Cell Content , to
avoid meaningless calls;

b. GetAllNeighbours(node): Get all neighboring nodes in the same row and column of the
specified node (given as a tuple) from the graph.
c. GetSharedNeighbours(node1 , node2): Get all shared neighbors between two specified
nodes (also represented as tuples) in the graph.
d. AnswerQuestion (): Answer the question based on the available information.

Table: {Table}

Question: {Question}

{Reasoning Trace}

{Interaction History}

Based on the results of your previous Thought step {step}, output your Action Step and
Explanation.
Using this JSON schema: ActionStep = {" Function" : {" function_name ": str , "parameters ":
list[tuple] | list[str] }, "Explanation ": str}. Return a `list[ActionStep]`.

Figure 12: Action Step Prompt of GraphOTTER. Note that the Update Step does not rely on prompt.
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Let 's think step by step as follows and give full play to your expertise as a statistical
analyst:
1. ** Understand the Question **: Clearly understand the Question , clarify the relationships
between the existing data , and organize the information needed to answer the Question.
2. ** Analyze the Data Structure **: Have a comprehensive understanding of the data in the
graph , including the meaning , data types , and formats of each nodes. **Note :** Pay special
attention to some ** summative or aggregated nodes** (e.g., "all", "combine", "total", "sum
", "average", "mean", "percent", "percentage", "proportion", "%", "probability", "
likelihood", etc.), as these nodes help you skip a lot of operations.
3. ** Select Relevant Data **: Based on the Question , identify the most relevant nodes.
4. ** Avoid Redundant Calculations **: Before performing any calculations or operations ,
first check if the needed information is already available in the graph. If so, directly
use this information.
5. ** Synthesize the Answer **: Use the selected data to construct a clear and concise answer
. Ensure that the final answer directly addresses the question , using the most relevant and
accurate data from the graph.

You MUST answer each question step by step as follows(Note: Keep your answer concise):
1. Cell: The nodes most relevant to the answer.
2. Operation: the operation you performed on the nodes you selected.
3. Explanation: your explanation.
4. Answer: your final answer.
And if you need to extract relevant Cell Content from the graph as answer , do not add any
units , symbols , or other explanatory text. Ensure that the extracted Content matches the
original Cell Content in the graph exactly.

Table: {table}

Question: {Question}

{Reasoning Trace}

{Interaction History}

Please integrate all the current information to output your answer.
Using this JSON schema: Answer = {"cells" : list[str], "operation ": str , "explanation ": str
, "answer ": list[str] }. Return a `Answer `.

Figure 13: Answer Generation Prompt of GraphOTTER
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==================================== Reasoning Trace ======================================
The reasoning trace below displays the neighbor relationships of the nodes/steps from your
interaction history. This trace will dynamically update during your interaction process.
** Reasoning Trace :**
[(4, 4, '37.7'), (0, 2, 'as a percent of total female population in each cma/municipality ')
] has the following shared neighbors: [(0, 4, 'largest visible minority group as a percent
of total female population in each cma/municipality '), (4, 2, '66.5')].
[(4, 0, 'brampton '), (0, 4, 'largest visible minority group as a percent of total female
population in each cma/municipality ')] has the following shared neighbors: [(0, 0, '
municipalities '), (4, 4, '37.7')].
[(4, 0, 'brampton '), (0, 2, 'as a percent of total female population in each cma/
municipality ')] has the following shared neighbors: [(0, 0, 'municipalities '), (4, 2,
'66.5')].
[(4, 0, 'brampton '),SAME ROW ,(4, 4, '37.7')]
[(0, 4, 'largest visible minority group as a percent of total female population in each cma
/municipality '),SAME COLUMN ,(4, 4, '37.7')]
[(0, 2, 'as a percent of total female population in each cma/municipality '),SAME ROW ,(0, 4,
'largest visible minority group as a percent of total female population in each cma/

municipality ')]

================================== Interaction History ===================================
The steps below represent your interaction history on the graph. Please refer to them when
selecting your next function.
Step 1:[" GetSharedNeighbours ((4, 0, 'brampton '), (0, 2, 'as a percent of total female
population in each cma/municipality '))"]

Thought step 1: The question asks for the percentage of the total female population in
Brampton , where South Asian women and girls were the largest visible minority group. The
nodes (4, 4, '37.7') and (4, 0, 'brampton ') are relevant to the answer , as well as the
shared neighbors (0, 4, 'largest visible minority group as a percent of total female
population in each cma/municipality ') and (0, 2, 'as a percent of total female population
in each cma/municipality '). The percentage of the total female population in Brampton is
the information needed to answer the question.
Action Step 1:

1. Function: GetSharedNeighbours ((4, 0, 'brampton '), (0, 2, 'as a percent of total
female population in each cma/municipality ')), Explanation: To find the percentage of
the total female population in Brampton , we need to get the shared neighbors of the
nodes (4, 0, 'brampton ') and (0, 2, 'as a percent of total female population in each
cma/municipality ').

Observation Step 1:
1. The result of GetSharedNeighbours ((4, 0, 'brampton '), (0, 2, 'as a percent of total
female population in each cma/municipality ')) is: [(4, 0, 'brampton '), (0, 2, 'as a
percent of total female population in each cma/municipality ')] has the following shared
neighbors: [(0, 0, 'municipalities '), (4, 2, '66.5')].

Figure 14: A example of Reasoning Trace and Interaction History of GraphOTTER
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Instruction: You are CompareGPT , a machine to verify the correctness of predictions. Answer
with only yes/no.

You are given a question , the corresponding ground -truth answer and a prediction from a
model. Compare the "Ground -truth Answer" and the "Prediction" to determine whether the
prediction correctly answers the question.
All information in the Ground -truth Answer must be present in the Prediction , including
numbers and dates.
You must answer "no" if there are any specific details in the Ground -truth Answer that are
not mentioned in the Prediction.
There should be no contradicting statements in the Prediction. The Prediction may contain
extra information. If the Prediction states something as a possibility , treat it as a
definitive answer.

Question: {question}
Ground -truth Answer: {ground_truth}
Prediction: {response}

CompareGPT response:

Figure 15: LLM Evaluation Prompt
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