
Proceedings of the 31st International Conference on Computational Linguistics, pages 5530–5543
January 19–24, 2025. ©2025 Association for Computational Linguistics

5530

LoRA-drop: Efficient LoRA Parameter Pruning based on Output
Evaluation

Hongyun Zhou1*, Xiangyu Lu1∗, Wang Xu2, Conghui Zhu1†, Tiejun Zhao1, Muyun Yang1

1Faculty of Computing, Harbin Institute of Technology
2Department of Computer Science & Technology, Tsinghua University, Beijing, China

{jameschou159,lu9995801,xwjim812}@gmail.com, {conghui,tjzhao,yangmuyun}@hit.edu.cn

Abstract

Low-Rank Adaptation (LoRA) is currently the
most commonly used Parameter-efficient fine-
tuning (PEFT) method. However, it still faces
high computational and storage costs to mod-
els with billions of parameters. Most previ-
ous studies have tackled this issue by using
pruning techniques. Nonetheless, these efforts
only analyze LoRA parameter features to eval-
uate their importance, such as parameter count,
size, and gradient. In fact, the output of LoRA
directly impacts the fine-tuned model. Pre-
liminary experiments indicate that a fraction
of LoRA possesses significantly high output
values, substantially influencing the layer out-
put. Motivated by the observation, we propose
LoRA-drop. Concretely, LoRA-drop evaluates
the importance of LoRA based on the LoRA
output. Then we retain LoRA for important lay-
ers and the other layers share the same LoRA.
We conduct abundant experiments with models
of different scales on NLU and NLG tasks. Re-
sults demonstrate that LoRA-drop can achieve
performance comparable to full fine-tuning and
LoRA while retaining 50% of the LoRA param-
eters on average.

1 Introduction

Parameter-efficient fine-tuning methods have at-
tracted more and more attention with the devel-
opment of large language models (LLM) (Li and
Liang, 2021; Lester et al., 2021). Among vari-
ous PEFT methods, LoRA (Hu et al., 2021) has
been particularly prevalent in recent studies. LoRA
freezes the pre-trained parameters and introduces
auxiliary trainable parameters ∆W for each layer
as shown in Figure 1. LoRA significantly reduces
the training cost while achieving impressive results.

However, LoRA still faces high computational
and storage costs. For models with billions of
parameters, the computational demand of LoRA

* Equal contribution
† Corresponding author

+

Frozen
Pretrained
Model � �

�

Hidden state �

∆� = ��

∆����

�� + ∆��

Previous work:
Analyze ∆� for

pruning

Our approach:
Consider both ∆� and �

Figure 1: The diagram of LoRA. LoRA influences the
pre-trained model through ∆Wx. This paper’s method
measures the importance of LoRA based on its output.

during fine-tuning remains substantial. For LLM
providers, significant LoRA storage costs are in-
curred to meet the personalized needs of different
users (Renduchintala et al., 2024) (Kopiczko et al.,
2024). For example, if continuous personalized
fine-tuning is required based on real-time user feed-
back, storing a specific LoRA for each user will sig-
nificantly increase storage requirements. The larger
the base model, the more storage space LoRA will
demand.

To further improve the parameter efficiency of
LoRA, previous studies employ pruning techniques
that remove LoRA parameters deemed unimportant.
The core of these methods lies in how to evaluate
the importance of parameters. Sparse Adapter (He
et al., 2022) evaluates the importance of LoRA
based on different parameter features such as pa-
rameter count, parameter size, and parameter gradi-
ent. AdaLoRA (Zhang et al., 2022) designs impor-
tance criteria based on the singular value decompo-
sition (SVD) of ∆W to prune unimportant singular
values. SoRA (Ding et al., 2023) prunes down-
projection and up-projection matrices in LoRA by
employing gate units and proximal gradient meth-
ods. All of these efforts only focus on analyzing
LoRA parameter ∆W features to evaluate impor-
tance, thereby reducing LoRA parameters.

5531

Figure 2: The frequency distribution of the squared norm of query LoRA output ∆Wixi on the RTE task. Each
subplot represents the distribution of ∥∆Wixi∥2 for query LoRA from layers 0 to 11, where the x-axis denotes the
magnitude of ∥∆Wixi∥2 for different inputs xi, and the y-axis represents the frequency of ∥∆Wixi∥2.

In fact, the output of LoRA, which is related to
the parameters and data, directly impacts the final
results. As shown in Figure 1, LoRA adds a bias
term ∆Wx in each layer of the pre-trained model.
Thus, the frozen model is fine-tuned by the bias
term. Intuitively, if ∆Wx is large, the LoRA of
this layer has an important impact on the frozen
model.

We conducted an empirical study to analyze the
distribution of LoRA output in LLMs. The findings
are presented in Section 2, revealing that the dis-
tribution of outputs from the LoRA of each layer
is relatively concentrated. LoRA of some layers
has little to no impact on specific tasks, while other
layers exhibit more significant effects. Thus, we
could prune non-salient LoRA parameters.

Motivated by the observation, we propose LoRA-
drop, which evaluates the importance of parameters
by analyzing the LoRA output for each layer. First,
we sample specific task datasets and then utilize
the sampled data to perform a limited number of
updates to LoRA. The importance of LoRA for
each layer is determined based on ∆Wx. Then,
We retain the LoRA for layers with a large impor-
tance score, and the other layers share the same
LoRA. Finally, we fine-tune the model with fewer
trainable parameters under the new LoRA setting,
while minimizing performance degradation.

Our contributions are as follows:

• We conducted empirical research, finding that
the distribution of outputs from the LoRA of
each layer is relatively concentrated and that
LoRA of some layers has little to no impact
on specific tasks, while other layers exhibit
more significant effects.

• We propose LoRA-drop, which evaluates the
importance of LoRA for different layers and
significantly reduces the parameter required
during LoRA training while maintaining per-
formance comparable to standard LoRA.

• We conduct experiments on multiple NLU
and NLG tasks with various sizes of pre-
trained models. Numerous analysis experi-
ments demonstrate the effectiveness of LoRA-
drop.

2 Preliminary Experiment

LoRA utilizes the product of two low-rank matrices
to simulate incremental updates to a full-rank ma-
trix. The pre-trained parameters are frozen during
training and do not receive gradient updates, while
the two low-rank matrices are trained. Let Wi de-
note the query/key/value matrix of ith Transformer
layer and xi denote the input of the ith Transformer.

5532

Sample

Subset

LoRA Importance

Query

Value

Retain LoRA Share LoRA

𝐿𝑞 𝐿𝑞 𝐿𝑞 𝐿𝑞 𝐿0
𝐿𝑣 𝐿𝑣 𝐿𝑣 𝐿6 𝐿𝑣

𝐿𝑞 𝐿1 𝐿2 𝐿3 𝐿4
𝐿7 𝐿𝑣 𝐿𝑣 𝐿8 𝐿9

𝐿5 𝐿𝑞

𝐿10𝐿11

LoRA setting

LoRA

Importance

Evaluation
Pretrained

model

Pretrained
model

Query

Value

Task

Adaptation

Figure 3: The overall workflow of LoRA-drop.

The two low-rank matrices are Ai and Bi. Thus,
the query/key/value vector is as follows:

hi = Wixi +∆Wixi = Wixi +BiAixi (1)

where ∆Wixi is the bias introduced by the LoRA
modules.

Obviously, the ∆Wixi is the factor that directly
influences the frozen pre-trained model. The larger
∆Wixi, the greater the impact of LoRA on the
pre-trained model, and consequently, the more im-
portant LoRA is. ∆Wixi is related to the LoRA pa-
rameter and the hidden state, where the hidden state
is computed from downstream task data through the
preceding layers of the model. However, previous
work prunes LoRA by only analyzing its parameter
features, ignoring the hidden state.

Preliminarily, we analyze the distribution of the
LoRA output in each layer. Specifically, we fine-
tune the RoBERTa-base model with LoRA sepa-
rately on the RTE and MRPC dataset, and analyze
the distribution of the squared norm of the LoRA
output ∆Wixi for each dataset. We evaluate the
impact of LoRA by computing the squared norm of
∆Wixi. Following the setting of (Hu et al., 2021),
the LoRA is added to the query and value matrix.
The distribution of query and value LoRA for RTE
is shown in Figure 2 and Figure 6. The distribution
of query and value LoRA for MRPC is shown in
Figure 7 and Figure 8.

As observed, the squared norm distribution of
∆Wixi for each layer is highly concentrated, show-
ing a peak Gaussian frequency distribution, which
suggests stability. Furthermore, Observations show
that the squared norm of ∆Wixi for certain layers
consistently remains close to zero, indicating that
LoRA for these layers has almost no impact on
the frozen model. Conversely, some layers show a
more significant impact on the frozen model.

Moreover, RTE and MRPC exhibit different dis-
tribution patterns. It indicates that different layers
play varying roles across different tasks.

This preliminary experiment demonstrates that
we can prune the LoRA to reduce the number of
trainable parameters. LoRA with small ∆Wixi is
insignificant, and can be pruned.

3 Methodology

In this section, we introduce LoRA-drop, a novel
parameter-efficient fine-tuning method that prunes
based on LoRA output. We design a process to
quantify the importance of LoRA for different lay-
ers based on its output. Then, we retain the more
important LoRA and replace the less important
ones with a shared LoRA parameter, thereby reduc-
ing the number of parameters required for LoRA
training while maintaining performance compara-
ble to that of the standard LoRA.

Specifically, LoRA-drop consists of two parts:
Importance Evaluation and Task Adaptation.
The overall process is illustrated in Figure 3.

3.1 Importance Evaluation

This step evaluates the importance of LoRA for dif-
ferent layers, providing a reference for its retention
strategy in the Task Adaptation step.

Since the A and B matrices of LoRA are initial-
ized with Kaiming and zero initialization, the initial
output is all zeros. The output of LoRA becomes
meaningful only after certain update steps.

So, we first perform stratified sampling on the
downstream task dataset to obtain a subset Ds of
training data D. The sampling ratio is set to α,
where 0<α<1. After that, the LoRA parameters are
updated with several steps using this subset.

Next, we compute the sum of the squared norm
of the LoRA output for each layer, denoted as g,

5533

the g of the i-th layer LoRA as expressed in Equa-
tion 2.

gi =
∑
x∈Ds

∥∆Wixi∥2 (2)

From section 2, the magnitude of g reflects the
importance of LoRA. To better represent the rel-
ative importance of LoRA for each layer, we nor-
malized g, resulting in the importance I for each
layer of LoRA.

Ii =
gi∑
i gi

(3)

Thus, the importance of each layer of LoRA is
bounded between 0 and 1, with a total sum of 1.

We find that sampling a small subset from the
training data is able to obtain a LoRA importance
distribution similar to that of the full dataset. This
was verified by experiments in Section 4.3. Our
experiments’ default value of α is set to 10%.

3.2 Task Adaptation

This step sets the LoRA-drop fine-tuning strat-
egy suitable for the downstream task based on the
LoRA importance distribution.

With the importance of LoRA for each layer,
we sort the layers according to Ii. We select the
layers from most to least important until the sum
importance of the selected layer reaches a threshold
T . In this paper, T is set to 0.9 by default, and the
value of T is discussed in section 4.3.

The LoRA of these selected layers will be re-
tained during training, while a shared LoRA pa-
rameter will replace the LoRA of the other layers.
The hyper-parameter T controls the number of the
selected layers. Finally, we fine-tune the model
using the training dataset under the new LoRA set-
ting.

4 Experiments

4.1 Setup

Datasets. We evaluate our method on both Nat-
ural Language Understanding (NLU) and Natural
Language Generation (NLG) tasks.

For NLU, we evaluate our method on the GLUE
benchmark (Wang et al., 2018), which consists of
eight datasets: CoLA, SST-2, MRPC, QQP, STS-B,
MNLI, QNLI, and RTE. We use Matthew’s correla-
tion coefficient, Spearman’s correlation coefficient,
and overall accuracy (for both matched and mis-
matched sentences) to evaluate the CoLA, STS-B,

and MNLI datasets. For the remaining datasets, we
apply accuracy as the evaluation metric.

The NLG tasks in our experiments include the
table-to-text datasets E2E (Dušek et al., 2020)
and DART (Nan et al., 2021), the summariza-
tion dataset DialogSum (Chen et al., 2021),
as well as the Mathematical Reasoning dataset
GSM8K (Cobbe et al., 2021). We use BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), and ac-
curacy to evaluate the E2E(&DART), DialogSum,
and GSM8K datasets.

Baselines. The following methods are chosen as
baselines: FULL-FT updates all model param-
eters which need a lot of computing resources.
LoRA (Hu et al., 2021) represents the original
LoRA method. Sparse Adapter (He et al., 2022)
applies typical pruning methods to LoRA and re-
duces the trainable parameters. VeRA (Kopiczko
et al., 2024) shares and freezes randomly initial-
ized LoRA and introduces trainable vectors for
each layer to reduce the parameters of LoRA.
Tied-LoRA (Renduchintala et al., 2024) makes
the frozen LoRA in VeRA trainable. SoRA (Ding
et al., 2023)uses a gate unit with proximal gradient
methods to control LoRA’s sparsity.

Models & Implementation. To evaluate the ef-
fectiveness of our method on various models, we
conduct experiments on RoBERTa-base, RoBERTa-
large(Liu et al., 2019), and Llama2-7b(Touvron
et al., 2023). We conduct NLU experiments on
the GLUE benchmark using all three models. We
performed 3 runs with different random seeds for
each dataset and recorded the best results for each
run. The average results and the standard deviation
are calculated.

To evaluate the effectiveness of our method on
NLG tasks, we conduct experiments using the
Llama2-7b on the table2text datasets: E2E and
DART, the summarization dataset DialogSum, and
the Mathematical Reasoning dataset GSM8K.

The hyperparameter settings for each baseline
and LoRA-drop can be found in Section A.1.

4.2 Main Results
The main results of RoBERTa-base with differ-
ent training methods on the GLUE benchmark are
shown in Table 1. It is noted that our motivation is
to reduce the number of trainable parameters while
ensuring that the performance does not degrade,
or even improve. As shown in Table 1, with an
approximately 50% reduction in standard LoRA

5534

Model
RoBERTa-base

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT* 125M 78.7 90.2 91.2 63.6 94.8 92.8 87.6 91.9 86.4
LoRA 0.29M 80.8±1.5 89.1±0.6 91.2±0.2 62.4±0.7 94.3±0.3 93.0±0.2 87.5±0.2 90.3±0.1 86.1
SoRA 0.21M 79.7±0.7 89.7±1.0 89.8±0.1 63.8±1.0 94.8±0.4 92.4±0.3 86.1±0.1 88.9±0.3 85.6
Sparse Adapter 0.15M 78.7±1.1 88.0±0.5 89.5±0.4 60.1±0.7 94.1±0.1 92.8±0.1 87.1±0.2 89.6±0.1 85.0
VeRA 0.03M 78.0±1.1 88.4±0.1 89.8±0.2 60.9±0.5 93.7±0.1 89.6±0.1 83.7±0.1 86.8±0.1 83.9
Tied-LoRA 0.15M 80.0±0.9 89.1±0.6 90.3±0.1 62.0±0.8 94.1±0.3 91.6±0.4 86.9±0.1 89.7±0.1 85.5
LoRA-drop (ours) 0.15M 81.4±0.5 89.5±0.5 91.0±0.1 62.9±0.2 94.5±0.2 93.1±0.1 87.3±0.2 90.1±0.1 86.2

Table 1: Results of the RoBERTa-base with different training strategies on the GLUE benchmark. The results are
averaged from three seeds to produce solid results. The subscript is the standard deviation. Bold and underlined
indicate the first and second best results in the corresponding regime. #Tr. refers to trainable. * refers to the results
directly from their original paper, in which Full-FT is derived from (Liu et al., 2019).

Model #Tr. E2E DART Dialogsum GSM8K
Avg.

Llama2 7b Params (BLEU) (BLEU) (ROUGE) (Acc)

Full-FT 6.6B 55.65 59.68 40.77 31.16 46.82
LoRA 0.13B 56.38 58.51 41.03 34.04 47.49
LoRA-drop (ours) 0.09B 57.06 58.82 40.68 34.50 47.77

Table 2: Results of Llama2-7b with different training strategies on two table2text datasets including E2E and DART,
the summarization dataset Dialogsum, and the mathematical reasoning dataset GSM8K. For all the scores, BLEU,
ROUGE, and Acc, higher is better.

parameters, our proposed LoRA-drop achieves an
average score of 86.2, on par with Full-FT (86.4)
and LoRA (86.1). This indicates the effectiveness
of LoRA-drop, which outperforms LoRA by 0.1
scores while reducing training parameters.

Moreover, LoRA-drop achieves 0.6, 1.2, 2.3,
and 0.7 improvements in average scores com-
pared to the four baselines: SoRA, Sparse Adapter,
VeRA, and Tied-LoRA respectively. Although all
four methods effectively reduce LoRA parameters,
their performance drops significantly. The results
demonstrate that LoRA-drop is a superior strategy
for evaluating the importance of trainable param-
eters and reducing less important ones, thereby
enhancing parameter efficiency.

The results of RoBERTa-large and Llama2-7b
with different training strategies on the GLUE
benchmark are presented in Table 6 and Table 7. It
is noted that we use Llama2-7b to obtain the token
representation rather than generate the answer. On
both models, our method utilizes about 52% of the
standard LoRA parameters and achieves average
scores of 89.1 and 89.3 for RoBERTa-large and
Llama2-7b respectively, outperforming LoRA and
Full-FT. This demonstrates the effectiveness of our
method across models of different scales.

The results of NLG tasks, including table2text,
summarization, and mathematical reasoning, are
shown in Table 2. On Llama2-7b, our method

achieves results on par with the Full-FT and LoRA
while using approximately 68% of the original
LoRA parameters for all three tasks. Additionally,
the average score of our method (47.77) exceeds
that of Full-FT (46.82) and LoRA (47.49). This
confirms the effectiveness of our method across
both NLU and NLG.

4.3 Analysis

The value of LoRA output indicated the impor-
tance. As described in Section 3.1, the impor-
tance evaluation step quantifies the importance of
LoRA based on its output. In this section, we ver-
ify the effectiveness of the output-based evaluation
method. Specifically, we first perform standard
LoRA fine-tuning and obtain the importance score.
Based on this score, we retain either the largest or
the smallest of the LoRA layers for inference, the
number of retained LoRA is equal to the number
retained by LoRA-drop in Section 4.2. We then
evaluate these two settings, and the results are pre-
sented in Table 3.

It is evident that when only approximately half
of the LoRA modules are retained, the model’s per-
formance decreases significantly. When we retain
the LoRA modules with larger I , the performance
is substantially better than those with smaller I .
This indicates that the LoRA-drop method’s layer-
specific LoRA Importance Evaluation is effective.

5535

Model
(RoBERTa-base)

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

LoRA 79.4 89.2 91.0 63.1 94.6 92.7 87.6 90.3 86.0
LoRA(large I) 72.2 77.5 85.9 58.9 92.9 73.6 71.2 82.6 76.9
LoRA(small I) 47.7 69.9 49.6 23.5 88.2 55.4 32.2 63.9 53.8

Table 3: Verification of Importance Evaluation Method. The data in the table represents the results from a single run
with the same random seed. LoRA (large I) retains the few LoRAs with the highest I values, while LoRA (small I)
retains the few with the lowest I values. The number retained is consistent with the LoRA-drop setting in Table 1.

0 1 2 3 4 5 6 7 8 9 10 11
Layers

MRPC
RTE

QNLI
QQP

CoLA
MNLI
SST2
STSB

Da
ta

se
t

Query

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11
Layers

MRPC
RTE

QNLI
QQP

CoLA
MNLI
SST2
STSB

Da
ta

se
t

Value

0.2

0.4

0.6

0.8

1.0

Figure 4: LoRA Importance Distribution in Different Downstream Task Data. To unify the importance scales across
different datasets, we divide the importance of each dataset by its maximum value. In Figure 4, for a specific dataset,
the heatmap entry corresponding to the i-th layer has a value of Ii/maxmax_layer

j=0 Ij .

LoRA with a larger squared norm output indeed has
a greater contribution to the model’s fine-tuning.

Distribution of LoRA importance varies across
different tasks. The insight of our approach is
to derive LoRA importance adapted to the distri-
bution of different downstream task data, enabling
the simplification of LoRA parameters. To fur-
ther validate the rationality of this insight, we plot
heatmaps illustrating the distribution of LoRA im-
portance I for eight different datasets in GLUE on
RoBERTa-base and Llama2.

The results are presented in Figure 4 and Fig-
ure 11. We observe that the importance distribu-
tions differ across datasets, indicating that the im-
portance assigned by LoRA is data-dependent.

The influence of LoRA share. In our method,
the layers with low importance are shared with the
same LoRA parameters. We investigate the influ-
ence after the LoRA parameters are shared. Fol-
lowing the LoRA share operation on the RoBERTa-
base model trained on 20% of the RTE training set
data for 4 epochs, we plot the importance distribu-
tion for each layer of the model.

The results of query and value distribution are
shown in Figure 9 and Figure 10. It shows that
the importance distribution of LoRA for each layer

remains almost consistent with the original LoRA
after the LoRA parameters are shared. This sug-
gests that the sharing LoRA for layers with low
importance does not affect the importance distri-
bution of other layers, thereby maintaining good
performance.

0 1 2 3 4 5 6 7 8 9 10 11
Layers

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sa
m

pl
e

pr
op

or
tio

n

Query

0.05

0.10

0.15

0.20

0.25

0.30

Figure 5: Importance distribution of LoRA for query in
RTE under different sample proportions. Each heatmap
entry represents the importance Ii of the query LoRA
in layer i under α sample proportion.

The influence of sample proportion. We inves-
tigate the influence of the sample proportion when
calculating the importance of LoRA. We sample

5536

Threshold
Avg. layer num RTE

(ACC)
CoLA
(Matt.)

QNLI
(ACC)

QQP
(ACC)

Avg.
W_query W_value

1(LoRA) 12 12 82.3 61.9 93.1 90.4 82.0
0.95 6 9 83.0 62.6 93.1 90.2 82.2
0.9 5 7 81.9 63.1 93.2 90.2 82.1
0.8 5 5 80.9 63.1 93.2 89.6 81.7
0.7 4 4 78.3 62.1 92.5 89.3 80.6

Table 4: The influence of the threshold T and its equivalent average number of layers.

Model
(RoBERTa-base)

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

LoRA-drop* 81.9 90.0 91.1 63.1 94.7 93.2 87.5 90.2 86.5
LoRA-drop(w/o share) 80.4 88.9 90.7 62.8 94.1 92.9 86.9 89.7 85.8
LoRA-drop(∆Wx inv) 79.1 89.7 90.4 60.5 94.3 92.9 87.3 89.9 85.5
LoRA-drop(random) 79.1 89.2 90.2 62.0 94.6 92.7 86.9 89.8 85.6
LoRA-drop(top k) 81.9 89.2 90.7 62.3 94.5 93.0 86.8 89.8 86.0

Table 5: Ablation experiments.

ten different-sized datasets from the RTE dataset
with sampling ratios from 10% to 100%. We train
the RoBERTa-base model using LoRA for the same
number of steps and obtain the LoRA importance
for each sample proportion.

The results of LoRA for Query and Value are
shown in Figure 5 and Figure 12. As the training
data increases, the importance order of each layer
remains relatively consistent. For LoRA applied
to the query matrices, the 10th layer has always
been the most important, while the importance of
layers 7, 8, and 9 maintains a consistently high
level of importance. Indicating that this operation
is insensitive to the size of the sampled data and
exhibits robustness.

Selection of threshold T . LoRA-drop introduces
a hyper-parameter T to control the number of se-
lected layers. We select four datasets from GLUE
to analyze the impact of threshold T .

The results are shown in Table 4. When T is
set to 1, all layers are preserved, representing the
standard LoRA method. When T is less than 0.9,
the model performance increases with T , at this
time, LoRA modules with higher importance are
selected. When T equals 0.9, approximately half
of the layers’ LoRA are selected on average. If
T continues to increase, the newly added LoRA
modules have lower importance, and the model per-
formance no longer significantly improves. Hence
in our experiments, we default to setting T as 0.9.

4.4 Ablation Study
In this subsection, we conduct ablation experiments
to verify the following two questions:

• Q1: Is replacing LoRA for layers with small
I with shared parameters better than directly
removing them in the task adaptation step?

• Q2: Is retaining LoRA with large I in the task
adaptation step reasonable?

To answer these two questions, we compare
LoRA-drop with the following variants on the
RoBERTa-base model, where k refers to the num-
ber of LoRA retained by LoRA-drop.

LoRA-drop (w/o share) directly removes the
low-importance layers of LoRA without using
additional shared parameters in the Task Adap-
tation step. As opposed to LoRA-drop, LoRA-
drop (∆Wx inv) replace high-importance layers
of LoRA with shared LoRA and retain the other
LoRA. LoRA-drop (random) randomly selects k
layers that retain LoRA parameters. Houlsby et al.
(2019) found that lower layers often have a small
impact on performances, so LoRA-drop (top k)
selects the top k layers of the 12-layer model. We
experiment with these four settings on the valida-
tion set of the GLUE benchmark. The results are
shown in Table 5.

Regarding Q1, directly removing less important
LoRA parameters, i.e., the LoRA-drop (w/o share)
setting, performs worse across all tasks than LoRA-
drop, with an average reduction of 0.7 scores.

This indicates that sharing a LoRA among the
layers with low importance is necessary to achieve

5537

better fine-tuning results compared to directly re-
moving them.

Regarding Q2, the ∆Wx inv setting achieved
the worst average performance, slightly worse than
the random setting. This indicates that LoRA with
smaller I contributes less to model performance
improvement. The top k setting, which empirically
retains the top k layers, performed well but had an
average performance gap of 0.5 scores compared
to the LoRA-drop.

LoRA-drop yields better performance compared
to all the other three variants. It confirms the rea-
sonableness of retaining the LoRA of layers with
significant importance and further validates the ef-
fectiveness of the method proposed in this paper
for evaluating the importance of LoRA.

5 Related Work

Parameter Efficient Fine-Tuning (PEFT) is the
mainstream method for the current fine-tuning of
pre-trained models, which can be broadly catego-
rized into additive methods, selective methods, and
reparameterized (Han et al., 2024).

5.1 Additive Methods
Additive methods inject new trainable modules or
parameters into pre-trained models. During fine-
tuning for a specific downstream task, only the
weights of these newly added modules are updated.

Adapter (Houlsby et al., 2019) involves inserting
small adapter layers within Transformer blocks.
There are two ways to inject adapters into pre-
trained models: Serial Adapter (Houlsby et al.,
2019) adds two adapter modules in each Trans-
former block. Parallel Adapter (He et al., 2021)
transforms the serial adapter layers into parallel
side networks. Adapter Drop (Rücklé et al., 2021)
empirically removes lower-layer Adapters consid-
ered to have a small impact on task performance.

Soft Prompt uses continuous embedding of soft
prompts instead of optimizing discrete token rep-
resentations through in-context learning. Prefix-
tuning (Li and Liang, 2021) inserts trainable vec-
tors prepended to keys and values at all Trans-
former layers. P-tuning (Liu et al., 2021) and
Prompt-tuning (Lester et al., 2021) only insert train-
able vectors at the initial word embedding layer.

5.2 Selective Methods
Selective methods make a small subset of parame-
ters in the pre-trained model trainable while keep-
ing the rest frozen. Diff pruning (Guo et al., 2021)

employs a learnable binary mask on model weights.
BitFit (Zaken et al., 2022) only fine-tunes the bias
parameters of each FFN, achieving competitive re-
sults for small models. Lee et al. (2019) fine-tunes
only the last quarter of BERT and RoBERTa’s fi-
nal layer, achieving 90% of the performance of
full fine-tuning. HiFi (Gui and Xiao, 2023) fine-
tunes attention heads that are highly informative
and strongly correlated for a specific task.

5.3 Reparameterized Methods

In the context of PEFT, reparameterization involves
constructing a low-rank parameterization to en-
hance parameter efficiency during training.

LoRA (Hu et al., 2021) introduces low-rank
matrices during fine-tuning and can merge
with pre-trained weights before inference.
QLoRA (Dettmers et al., 2023) quantifies the
parameters of large models doubly, significantly
reducing memory usage. AdaLoRA (Zhang
et al., 2022) transforms the low-rank matrices
in LoRA into SVD matrices PΛQ. During
training, the singular values are iteratively pruned.
SoRA (Ding et al., 2023) eliminates the matrix
orthogonality premise of P and Q in AdaLoRA
and instead applies a gating unit between them.
Sparse Adapter (He et al., 2022) enhances the
parameter efficiency of LoRA and other Adapters
using network pruning methods. S2-LoRA (Liu
et al., 2024b) shares the LoRA parameters, and
introduces trainable scaling vectors with inter-layer
variations. VeRA (Kopiczko et al., 2024) and
Tied-LoRA (Renduchintala et al., 2024), further
reduce the parameter count by sharing parameters
for all layers and modules of LoRA. DoRA (Liu
et al., 2024a) decomposes LoRA into magnitude
and direction components, updating the parameters
separately.

6 Conclusion

In this paper, we propose a new parameter-efficient
fine-tuning method LoRA-drop based on LoRA.
our motivation is to reduce the number of train-
able parameters during fine-tuning while ensuring
that the performance does not degrade, or even im-
prove. Concretely, we calculate the importance
of LoRA for each layer based on the output. The
LoRA parameters of layers with large importance
are retained and the other layers share the same
parameter, resulting in a significant reduction in
the number of parameters that need to be trained

5538

compared to the original LoRA. Abundant exper-
iments on multiple NLU and NLG datasets show
that LoRA-drop can achieve comparable results
with origin LoRA with 50% of LoRA parameters.

Limitations

Currently, our method operates on the LoRA struc-
ture as a whole, with a relatively coarse granularity.
Future work will refine this method to a finer gran-
ularity. While this technique reduces the number of
training parameters during LoRA training, it does
not decrease the inference cost. Pruning increases
the model’s complexity, making it more difficult
to identify the sources of issues when performance
falls short of expectations. This, in turn, compli-
cates the processes of debugging and error analysis.

Acknowledgements

The research in this article was supported by the
National Key R&D Program of China under grant
2023YFC3804600.

References
Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.

2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association for
Computational Linguistics, pages 5062–5074.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Proceedings of the Con-
ference on Neural Information Processing Systems.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.
Sparse low-rank adaptation of pre-trained language
models. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, pages 123–
156.

Anchun Gui and Han Xiao. 2023. Hifi: High-
information attention heads hold for parameter-
efficient model adaptation. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8521–8537.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the annual Meeting of the
Association for Computational Linguistics.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
In Proceedings of the International Conference on
Learning Representations.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034.

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang,
and Dacheng Tao. 2022. Sparseadapter: An easy
approach for improving the parameter-efficiency of
adapters. In Findings of the Association for Compu-
tational Linguistics, pages 2184–2190.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Pro-
ceedings of the International Conference on Machine
Learning, pages 2790–2799.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In Proceedings of the International
Conference on Learning Representations.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. VeRA: Vector-based random matrix
adaptation. In Proceedings of the Annual Meeting of
the International Conference on Learning Represen-
tations.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What
would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
H. S Torr. 2018. Snip: Single-shot network prun-
ing based on connection sensitivity. arXiv preprint
arXiv:1810.02340.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
3045–3059.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics and the International

5539

Joint Conference on Natural Language Processing,
pages 4582–4597.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024a. Dora: Weight-
decomposed low-rank adaptation. In Proceedings
of Forty-first International Conference on Machine
Learning.

Wei Liu, Ying Qin, Zhiyuan Peng, and Tan Lee. 2024b.
Sparsely shared lora on whisper for child speech
recognition. In ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 11751–11755. IEEE.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma,
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher,
and Nazneen Fatema Rajani. 2021. DART: Open-
domain structured data record to text generation. In
Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 432–447.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
annual meeting of the Association for Computational
Linguistics, pages 311–318.

Adithya Renduchintala, Tugrul Konuk, and Oleksii
Kuchaiev. 2024. Tied-lora: Enhancing parameter
efficiency of lora with weight tying. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 8686–8697.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7930–7946.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the International Conference on Learning Repre-
sentations.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 1–9.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2022. Adaptive budget allocation for
parameter-efficient fine-tuning. In Proceedings of
the International Conference on Learning Represen-
tations.

5540

A Appendix

A.1 Implementation Details
Our LoRA configuration aligns with the experi-
mental setup of (Hu et al., 2021), where LoRA is
applied to the query and value matrices in each
self-attention module. We each use a shared LoRA
in place of the low-importance query LoRA and
value LoRA.

The low-rank matrix A of the LoRA architecture
is initialized using Kaiming initialization (He et al.,
2015), while matrix B is initialized with zeros.
Unless specified otherwise, the default rank for
LoRA is set to 8.

We conducted NLU experiments on the GLUE
benchmark using RoBERTa-base (Liu et al., 2019).
The data sampling ratio α is set to 0.1, the number
of training epochs n is set to 3, and the threshold T
for LoRA-drop is set to 0.9. To ensure consistency
in the trainable parameter count between the base-
line and our method, we set the sparsity rate of the
Sparse Adapter to 0.5. We set the pruning method
of the Sparse Adapter to the performance-optimal
SNIP (Lee et al., 2018). The rank of Tied-LoRA is
set to 56. The design characteristics of the VeRA
method determine that its trainable parameter count
cannot reach the same order of magnitude as LoRA;
otherwise, VeRA would no longer be a low-rank
matrix. Therefore, we set the rank of VeRA to 512
based on the best hyperparameters provided in the
original paper.

To evaluate the effectiveness of our method on
generation tasks, we conducted NLG experiments
using the Llama2 7b on the table2text datasets:
E2E and DART, the summarization dataset Dialog-
Sum, as well as the mathematical reasoning dataset
GSM8K. For all three tasks, we set the rank of
LoRA to 64. It is worth noting that, in the NLG ex-
periment we applied LoRA to the query, key, value,
and output matrices in Attention, and up and down
matrices in MLP, as we found that only fine-tuning
the query and value matrices with LoRA would
cause significant performance degradation.

5541

Figure 6: The frequency distribution of the squared norm of value LoRA output ∆Wixi after fine-tuning on the
RTE task.

Figure 7: The frequency distribution of the squared norm of query LoRA output ∆Wixi after fine-tuning on the
MRPC task.

Model
RoB-large

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT* 355M 86.6 90.9 92.4 68.0 96.4 94.7 90.2 92.2 88.9
LoRA 0.79M 88.5±0.7 90.1±0.8 92.4±0.1 67.8±1.3 96.0±0.1 94.8±0.1 90.6±0.0 91.4±0.1 88.9
LoRA-drop (ours) 0.41M 88.8±0.7 89.9±0.3 92.2±0.1 68.5±1.7 96.2±0.1 94.9±0.1 90.7±0.1 91.3±0.5 89.1

Table 6: The performance of the RoBERTa-large on GLUE benchmark. * refers to the results directly from their
original paper, in which Full-FT is derived from (Liu et al., 2019).

5542

Figure 8: The frequency distribution of the squared norm of value LoRA output ∆Wixi after fine-tuning on the
MRPC task.

Model
Llama2 7b

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT 6.6B 88.4 88.7 89.8 67.9 92.3 93.6 86.3 91.7 87.3
LoRA 4.2M 89.2±0.5 89.7±0.5 89.9±0.1 70.6±0.7 96.8±0.2 94.7±0.2 90.9±0.2 91.6±0.1 89.2
LoRA-drop (ours) 2.2M 91.0±0.5 90.2±0.3 90.1±0.1 69.0±1.2 96.8±0.2 94.8±0.2 90.6±0.1 91.6±0.3 89.3

Table 7: The performance of the Llama2-7b on GLUE benchmark.

Figure 9: The query LoRA output ∆Wixi squared norm frequency distribution of LoRA and LoRA-drop.

5543

Figure 10: The value LoRA output ∆Wixi squared norm frequency distribution of LoRA and LoRA-drop.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layers

MRPC
RTE

QNLI
QQP

CoLA
MNLI
SST2
STSB

Da
ta

se
t

Query

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layers

MRPC
RTE

QNLI
QQP

CoLA
MNLI
SST2
STSB

Da
ta

se
t

Value

0.2

0.4

0.6

0.8

1.0

Figure 11: The relative magnitudes of LoRA outputs across different layers of Llama2-7b on various datasets. The
left subplot shows the LoRA outputs corresponding to each layer’s query matrix, and the right subplot shows the
LoRA outputs corresponding to each layer’s value matrix. For display, the value of the largest layer’s LoRA output
is normalized to 1 for each dataset.

0 1 2 3 4 5 6 7 8 9 10 11
Layers

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sa
m

pl
e

pr
op

or
tio

n

Value

0.05

0.10

0.15

0.20

0.25

Figure 12: Importance distribution of LoRA for value in
RTE under different sample proportions. Each point on
the heatmap represents the importance Ii of the query
value in layer i under α sample proportion.

	Introduction
	Preliminary Experiment
	Methodology
	Importance Evaluation
	Task Adaptation

	Experiments
	Setup
	Main Results
	Analysis
	Ablation Study

	Related Work
	Additive Methods
	Selective Methods
	Reparameterized Methods

	Conclusion
	Appendix
	Implementation Details

