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Abstract
Symbols such as numerical sequences, chemi-
cal formulas, and table delimiters exist widely,
playing important roles in symbol-related tasks
such as abstract reasoning, chemical prop-
erty prediction, and tabular question-answering.
Compared to tasks based on natural language
expressions, large language models (LLMs)
have limitations in understanding and reason-
ing on symbol-based representations, making
it difficult for them to handle symbol-related
problems. In this paper, we propose symbol-to-
language (S2L), a method that converts symbol-
based representations to language-based rep-
resentations, providing valuable information
for language models during reasoning. We
found that, for both closed-source and open-
source LLMs, the capability to solve symbol-
related problems can be largely enhanced by
incorporating such language-based represen-
tations. For example, by employing S2L for
GPT-4, there can be substantial improvements
of +21.9% and +9.5% accuracy for 1D-ARC
and Dyck language tasks, respectively. There
are also consistent improvements in other six
general symbol-related tasks such as table
understanding and Tweet analysis. We re-
lease the GPT logs in https://github.com/
THUNLP-MT/symbol2language1.

1 Introduction

Symbols, or more broadly, non-natural language
representations such as numerical sequences, brack-
ets, chemical formulas, emojis, table delimiters,
and abbreviations can be frequently encountered
in the real world. They convey special meanings
and play important roles in a variety of tasks such
as abstract reasoning (Moskvichev et al., 2023; Xu
et al., 2024c), chemical property prediction (Ross
et al., 2022; Guo et al., 2023), and tabular question-
answering (Chen et al., 2020; Chen, 2023). Fur-
thermore, the understanding and reasoning abilities
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Figure 1: (a) An example of abstract reasoning prob-
lem (move 1 pixel forward). (b) The same problem in
symbol-based representation (Xu et al., 2024c) and the
response by GPT-4. (c) The same problem in our lan-
guage-based representation and the response by GPT-4.
The overall accuracy has been largely improved.

of symbols are of great value in assessing current
artificial intelligence (Chollet, 2019).

Recently, large language models (LLMs; Brown
et al., 2020; OpenAI, 2022, 2023a; Jiang et al.,
2023; Google et al., 2023) are developing rapidly
and can be applied to various tasks. GPT-3 (Brown
et al., 2020) has showcased capabilities of zero-
shot inference for solving problems directly with-
out demonstrations. Kojima et al. (2022) further
propose zero-shot-CoT through additional prompt-
ing like “Let’s think step by step” for solving arith-
metic and commonsense reasoning tasks, achieving
promising results. However, compared to prob-
lems expressed by natural language, the capability
of LLMs for solving the aforementioned symbol-

https://github.com/THUNLP-MT/symbol2language
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Figure 2: Comparison between zero-shot, zero-shot chain-of-thought (CoT), and our proposed symbol-to-language
(S2L) for using LLMs to solve symbol-related problems. The main difference is that we leverage the language-based
representation beyond the original symbol-based representations for LLMs.

related problems are still unsatisfied. Mitchell et al.
(2023) reveal that GPT-4 (OpenAI, 2023a) and
GPT-4V (OpenAI, 2023b) only achieve 65% and
25% accuracy on abstract reasoning tasks requir-
ing inductive ability through a series of regular
numbers, which is significantly lower than the 95%
accuracy by humans. Gendron et al. (2024) further
demonstrate that existing LLMs exhibit limited per-
formance for symbol-related problems in contrast
to natural language tasks.

The reasons for the limited performance can be
twofold: First, symbols are significantly underrep-
resented in the training corpus compared to nat-
ural language (Ohsuga, 2007), leading to the un-
derstanding gap for low-frequency symbols using
language models (Kandpal et al., 2023; Tang et al.,
2023). Second, the abstract reasoning task further
introduces the challenge that requires the model
to understand symbol-based representations and
perform reasoning simultaneously. As an exam-
ple shown in Figure 1(b), GPT-4 model responds
incorrectly to the problem expressed by symbols
of numerical sequences, where such symbol-based
representations have been widely used among exist-
ing work (Chollet, 2019; Xu et al., 2024a; Gendron
et al., 2024; Wang et al., 2024b), which may limit
the ability of LLMs to solve such problems.

Considering the limitations of using language
models to handle symbol-based expressions, our
intuition is to convert symbols into correspond-
ing language-based expressions, which we hope
can serve as a bridge to provide LLMs with more
friendly and comprehensible information when

dealing with symbols. In particular, we propose
symbol-to-language (S2L) conversion, a tuning-
free method that leverages language-based repre-
sentations to enhance model input beyond symbol-
based information, aiming at better solving symbol-
related problems with language models. As an
example shown in Figure 1(c), the response of
the GPT-4 model becomes accurate when dealing
with the same problems expressed by our language-
based representations.

The overall S2L framework is shown in Figure 2.
To validate the effectiveness of our method, we per-
form experiments on eight symbol-related tasks us-
ing three LLMs including GPT-4 (OpenAI, 2023a),
GPT-3.5 (OpenAI, 2022), and OpenChat (Wang
et al., 2024a), an open-source model continuously
trained on Mistral (Jiang et al., 2023). Experi-
mental results demonstrate that our S2L leads to
consistent improvements from symbol-only reason-
ing to conventional natural language processing
tasks involving different types of symbols. These
results underscore the effectiveness of leveraging
language-based representations in better address-
ing symbol-related problems, thereby expanding
the potential applicability of LLMs in a broader
range of scenarios.

2 Method

2.1 Task Definition

We consider a range of symbol-related problems
depicted in Table 1, in which interpreting the mean-
ings of symbol is crucial for performing the asso-
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Symbol Instance (si) Task Example of Symbol-related Problem (qs)

Sequence of Numbers 1,0,0 Abstract Reasoning (§ 3.1) 1,0,0→ 0,0,1; 5,0,0→ ?

String of Brackets {[()]} Dyck Language (§ 3.2) ([] → ); {(<>)→ }; {}[→ ?

SMILES CCCO Property Prediction (§ 3.3) CCCO (Toxicity: Yes or No?)

Emoji (Unicode) (U+1F62D) Emotion Analysis (§ 3.3) (Anger? Fear? Joy? Sadness?)

Table Delimiter |,\n Question Answering (§ 3.3) rank|name|wins\n1|jack|3\n
Fact Verification (§ 3.3) (Statement: [...] True or False?)

Abbreviation LMAO
Stance Detection (§ 3.3) Imagine being that bold LMAO
Sentiment Classification (§ 3.3) (Positive or Negative?)

Table 1: Symbols, instances, and examples across eight different types of tasks in our experiments, varying from
symbol-only inductive abstract reasoning to traditional sentiment classification in social media.

ciated tasks. We formalize this type of problem
as a question qs that incorporates a set of symbols
s = {s1, ..., sm} and try to use LLMs to solve qs.

Vanilla zero-shot (Brown et al., 2020) and zero-
shot-CoT (Kojima et al., 2022) methods directly
solve the original problem qs. The responses of
these two methods by LLM M can be written as:

Rzs = M(qs); Rzsc = M(qs ⊕ p), (1)

where zs and zsc indicate zero-shot and zero-shot-
CoT, respectively. p is a prompt like “Let’s think
step by step”, and ⊕ is the concatenation operation.

The above methods directly tackle the problem
with symbol-based representations. Instead of
designing an external prompt p, we focus on
converting the question qs and propose utiliz-
ing language-based representation to leverage the
strong capabilities of LLMs in natural language
to better solve symbol-related problems. Specifi-
cally, the S2L framework first converts the symbols
si (i = 1, ...,m) to its corresponding plain text
li with a conversion operation f , which can be
implemented by either LLMs themselves or exter-
nal tools. Then the S2L framework incorporates
the converted language-based representation li into
question ql or qs⊕l as the converted or combined
input for LLMs to generate answers.

2.2 Symbol-to-Language Conversion
Conversion with LLMs. We first employ the LLM
M to convert symbols si to language-based repre-
sentations lLLMi via zero-shot prompting:

lLLMi = fLLM ◦ si = M(ps2l ⊕ si), (2)

where fLLM ◦ si denotes converting si using the
LLM M, ps2l is the task-specific prompt facilitat-
ing the S2L conversion. For instance, when the

symbol-related question qs is about property pre-
diction and si is a SMILES (simplified molecular-
input line-entry system) string, ps2l could be “What
does the following SMILES represent?”. Alterna-
tively, if qs involves emotion analysis and si is an
emoji, ps2l could be “Describe the emoji in plain
text:”. lLLMi denotes the language-based represen-
tations of corresponding SMILES or emoji. See
appendix A for results of different prompts.
Conversion with Tools. Considering there exist
some matched “symbol-language” pairs, we further
propose using external tools for conversion, which
can take on several forms. (i) Rule-based codes, for
example, can convert si = “rank|nation\n1|SWE”
into lrulei = “rank: 1; nation: SWE” according
to the table delimiters “|” and “\n”; (ii) Transla-
tors can transform SMILES strings into their for-
mal names, such as converting si = “CCCO” into
ltranslatori = “Propionylo”; (iii) Unicode dictionar-
ies can provide descriptions of emojis, like con-
verting si = “U+1F62D” into ldicti = “crying face”.
Despite having some limitations in terms of usage
scenarios, conversion with tools offers two primary
advantages: 1) it avoids the costs associated with
using LLMs; 2) it provides verified language-based
information, which can help reduce potential errors
in descriptions generated by LLMs.

2.3 Using Language-Based Representations

We propose two alternative ways that incorporate
the converted language-based representation li into
the final input question for LLMs.
Substitution. The first way of utilization is to
directly substitute symbol-based representation si
with language-based representation li. To some
extent, li can be regarded as the language-based
equivalent of si. Thus, we can use them to replace
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(c.1) Conversion with LLM

(b) Symbol-Based Representation

(c.2) Language-Based Representation with LLM

(Prompt)
Describe the sequence of digits using language. 
0,0,1,1,0,0,0,0

(Response by LLM)
The sequence starts with two zeros,
followed by two ones, then four zeros.
 

(Answer: 0,0,0,0,2,2,2,0)
?

(Answer:                              )

(a) Underlying Visual Problem (Move-2p)
input 1: 0,0,1,1,0,0,0,0   output 1: 0,0,0,0,1,1,0,0
input 2: 0,6,6,6,6,0,0,0   output 2: 0,0,0,6,6,6,6,0
input 3: 0,0,2,2,2,0,0,0   output 3: 

(d.1) Conversion with Rule
(Input) 0,0,1,1,0,0,0,0

(Rules, a manually written python function)
def SeqTransition(Input):...return Output

(Output of SeqTransition)
Two 0, Two 1, Four 0.

input 1: 0,0,1,1,0,0,0,0 (The sequence starts
with two zeros, followed by two ones, then
four zeros.)   

input 2: 0,6,6,6,6,0,0,0 (The sequence ...) 

input 3: 0,0,2,2,2,0,0,0 (The sequence ...)
(Answer: 0,0,0,0,2,2,2,0 (...))

input 1: Two 0, Two 1, Four 0.
output 1: Four 0, Two 1, Two 0.

input 2: One 0, Four 6, Three 0. 
output 2: Three 0, Four 6, One 0.

input 3: Two 0, Three 2, Three 0.           
output 3: (Answer: Four 0, Three 2, One 0.)

(d.2) Language-Based Representation with Rule

output 1: 0,0,0,0,1,1,0,0 (The sequence ...)

output 2: 0,0,0,6,6,6,6,0 (The sequence ...)

output 3: 

Figure 3: Example of applying symbol-to-language for 1D abstract reasoning task. We convert each numerical
sequence to its language-based representation by prompting LLM or using simple rules implemented in code, and
then we transform the symbolized problem to language-enhanced or language-only representations.

the symbol-based representations for both the ques-
tion and ground-truth label. The response by using
S2L can be written as:

Rs2l = M(ql),

ql = qf◦{s1,...,sm} = qf◦s1,...,f◦sm .
(3)

Concatenation. However, in some other tasks, the
generated li by LLMs may not always be a per-
fect substitution or convey complete information of
si. This can occur for two reasons: 1) li might be
incorrect due to the undesired output formats, mis-
leading content, or noisy context; and 2) li could
lose some information during S2L conversion. For
instance, the ground truth might be a span-based ab-
breviation for table understanding (e.g., the “SWE”
in table “rank|nation\n1|SWE” ), meaning that
the converted li as a full name (e.g., “Sweden”)
may not exactly match the final answer. Therefore,
the second method uses both the original symbol-
based representation si and the language-based rep-
resentation li as combined input. This allows LLM
M to reason on questions that include rich contex-
tual information from two distinct perspectives:

Rs2l = M(qs⊕l),

qs⊕l = qs1⊕l1,...,sm⊕lm

= qs1⊕{f◦s1},...,sm⊕{f◦sm}.

(4)

3 Experiments

We evaluate both closed-source and open-source
models, including GPT-4 (gpt-4-0613), GPT-
3.5 (gpt-3.5-turbo-1106), and OpenChat-7B
(openchat-3.5-0106, Wang et al., 2024a). The
decoding temperature is set as 0 during inference.

3.1 Abstract Reasoning

Abstract reasoning (Webb et al., 2023; Gendron
et al., 2024; Wang et al., 2024b) involves summariz-
ing patterns from limited observations. We perform
experiments on tasks from the 1D-ARC benchmark
introduced by Xu et al. (2024c). The 1D-ARC com-
prises various 1D object-based visual problems, as
depicted in Figure 3(a). To enable LLMs to process
these problems, visual information is transformed
into a symbol-based representation with sequences
of numbers, as illustrated in Figure 3(b).
Symbol-to-Language Conversion. We apply both
LLMs and rule-based codes to convert the se-
quences. We find that LLMs describe the sequence
similar to humans coincidentally, which employs
merging or counting when describing numerical
sequences. Thus, for the conversion with rules, we
implement code as a rule for merging and counting
numbers in a sequence. The specific prompts for
LLMs and the rule-based codes are presented in
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Method
Move-1p Move-2p Move-3p

AVG.
#obs = 3 #obs = 4 #obs = 3 #obs = 4 #obs = 3 #obs = 4

GPT-4 93.3 90.0 48.3 46.7 35.0 45.0 59.7
+S2L w/ model (ours) 90.0 (−3.3) 91.7 (+1.7) 48.3 (−) 56.7 (+10.0) 38.3 (+3.3) 48.3 (+3.3) 62.2 (+2.5)

+S2L w/ rule (ours) 96.7 (+3.4) 100.0 (+10.0) 88.3 (+40.0) 96.7 (+50.0) 48.3 (+13.3) 60.0 (+15.0) 81.6 (+21.9)

GPT-4-CoT 93.3 90.0 55.0 50.0 36.7 41.7 61.1
+S2L w/ model (ours) 95.0 (+1.7) 91.7 (+1.7) 53.3 (−1.7) 51.7 (+1.7) 43.3 (+6.6) 48.3 (+6.6) 63.9 (+2.8)

+S2L w/ rule (ours) 96.7 (+3.4) 100.0 (+10.0) 86.7 (+31.7) 88.3 (+38.3) 50.0 (+13.3) 66.7 (+25.0) 81.4 (+20.3)

GPT-3.5 68.3 71.7 11.7 25.0 23.3 26.7 37.8
+S2L w/ model (ours) 80.0 (+11.7) 75.0 (+3.3) 31.6 (+19.9) 26.6 (+1.6) 33.3 (+10.0) 31.7 (+5.0) 46.4 (+8.6)

+S2L w/ rule (ours) 71.6 (+3.3) 88.3 (+16.6) 25.0 (+13.3) 31.7 (+6.7) 25.0 (+1.7) 26.7 (−) 44.7 (+6.9)

GPT-3.5-CoT 76.7 78.3 15.0 25.0 26.7 25.0 41.1
+S2L w/ model (ours) 75.0 (−1.7) 80.0 (+1.7) 30.0 (+15.0) 35.0 (+10.0) 35.0 (+8.3) 30.0 (+5.0) 47.5 (+6.4)

+S2L w/ rule (ours) 75.0 (−1.7) 86.7 (+8.4) 30.0 (+15.0) 36.7 (+11.7) 21.7 (−5.0) 25.0 (−) 45.8 (+4.7)

OpenChat-7B 61.7 71.7 15.0 21.6 11.7 11.7 32.2
+S2L w/ model (ours) 68.3 (+6.6) 78.3 (+6.6) 23.3 (+8.3) 25.0 (+3.4) 25.0 (+13.3) 21.7 (+10.0) 40.3 (+8.1)

+S2L w/ rule (ours) 63.3 (+1.6) 75.0 (+3.3) 16.6 (+1.6) 18.3 (−3.3) 15.0 (+3.3) 11.7 (−) 33.3 (+1.1)

OpenChat-7B-CoT 63.3 71.7 18.3 26.7 11.7 13.3 34.2
+S2L w/ model (ours) 71.7 (+8.4) 81.7 (+10.0) 20.0 (+1.7) 30.0 (+3.3) 23.3 (+11.6) 21.7 (+8.4) 41.4 (+7.2)

+S2L w/ rule (ours) 66.7 (+3.4) 76.7 (+5.0) 21.7 (+3.4) 35.0 (+8.3) 23.3 (+11.6) 26.7 (+13.4) 41.7 (+7.5)

Table 2: Results for abstract reasoning task. #obs indicates the number of input-output observations given. w/ rule
denotes conversion with manually designed rules using codes.

input 1:  [   (   ) 

(Answer: close angle bracket)
input 1: open square bracket; open parenthesis; close parenthesis

(b) Conversion with LLM

(c) Language-Based Representation

(Response by LLM)
open square bracket; open curly bracket; open parenthesis; open angle bracket;
close square bracket; close curly bracket; close parenthesis; close angle bracket
 

(Answer:  >)

input 2:  {   }   <   

output 2:

output 2:

(Prompt) Translate each symbol one by one using language and separate them with ';'
[  {  (  <  ]  }  )  >

(a) Symbol-Based Representation

input 2: open curly bracket; close curly bracket; open angle bracket 

output 1: close square bracket

output 1:  ]

Figure 4: Example of applying symbol-to-language for Dyck language task. We convert every symbol (e.g., “[”) to
its textual description (e.g., “open square bracket”) by prompting LLMs.

Figure 3(c.1) and Figure 3(d.1). Due to the poten-
tial loss of information in the generated description
lLLMi , we attach the language-based representation
to each original sequence of numbers to generate
answers, as shown in Figure 3(c.2). In contrast, the
outputs of the rule-based codes lrulei are equal to
the original sequence of numbers, so we directly
use them as shown in Figure 3(d.2).

Settings and Results. We use Move-1p, Move-2p,
and Move-3p tasks (move 1, 2, and 3 pixels, re-
spectively). We collect the 1D sequence and result
in 60 problems for each task with 3 or 4 input-
output observations. The experimental results are
presented in Table 2. GPT-4 achieves an accuracy
above 90.0% on Move-1p. However, the perfor-
mance drops rapidly to 30∼50% on Move-2p and
Move-3p, demonstrating that the model struggles
to reason on sequences with slightly more complex

patterns. This phenomenon is even more evident
for GPT-3.5 and OpenChat, where the overall accu-
racy is much lower. By employing conversion with
LLMs (i.e., S2L w/ model), the results improve
by +2.5∼8.6%, suggesting the positive impact of
additional language-based information. By employ-
ing conversion with rule-based codes, GPT-4 gets
100% accuracy given 4 input-output observations,
and the performance on Move-2p and Move-3p
improves substantially, with 96.7% and 60.0% ac-
curacy, respectively. Moreover, we observe varying
degrees of improvement among three LLMs, indi-
cating the positive and distinct impact of additional
language-based representation across models.

3.2 Dyck Language
Dyck language aims to predict the closing paren-
theses of a given sequence (Srivastava et al., 2023).
To evaluate the inductive reasoning ability on sym-
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Method
Dyck Language

AVG.
#obs = 1 #obs = 2 #obs = 3 #obs = 4 #obs = 5

GPT-4 60.0 82.2 86.6 91.4 92.2 82.5
+S2L w/ model (ours) 77.6 (+17.6) 90.0 (+7.8) 95.6 (+9.0) 98.2 (+6.8) 98.6 (+6.4) 92.0 (+9.5)

GPT-4-CoT 56.0 80.2 86.4 91.6 92.6 81.4
+S2L w/ model (ours) 75.4 (+19.4) 91.2 (+11.0) 95.8 (+9.4) 97.6 (+6.0) 98.4 (+5.8) 91.7 (+10.3)

GPT-3.5 65.0 77.0 78.0 80.8 78.2 75.8
+S2L w/ model (ours) 69.6 (+4.6) 82.8 (+5.8) 88.2 (+10.2) 93.2 (+12.4) 94.0 (+15.8) 85.6 (+9.8)

GPT-3.5-CoT 73.0 75.0 74.2 80.4 78.0 76.1
+S2L w/ model (ours) 68.8 (−4.2) 83.0 (+8.0) 90.0 (+15.8) 93.6 (+13.2) 93.8 (+15.8) 85.8 (+9.7)

OpenChat-7B 3.4 3.6 4.2 5.2 7.8 4.8
+S2L w/ model (ours) 21.6 (+18.2) 22.0 (+18.4) 32.0 (+27.8) 43.8 (+38.6) 59.0 (+51.2) 35.7 (+30.9)

OpenChat-7B-CoT 3.4 3.8 4.6 5.2 7.4 4.9
+S2L w/ model (ours) 22.0 (+18.6) 22.6 (+18.8) 31.6 (+27.0) 44.6 (+39.4) 59.0 (+51.6) 36.0 (+31.1)

Table 3: Results for Dyck language task. #obs indicates the number of input-output observations given.

bols, we do not ask LLMs to “complete parenthe-
ses” (i.e., prompting LLMs to output the remaining
parentheses). Instead, following abstract reasoning,
we only give some input-output observations and
let LLMs to “deduce the output” according to the
implicit patterns, as shown in Figure 4(a).
Symbol-to-Language Conversion. The symbols
include totally eight brackets (“[]{}()<>”). We
convert each symbol si to language description
lLLMi . Thus, we can convert the problem into
language-based representations as in Figure 4(c).
Settings and Results. We first set the number of
observations as 5 and evaluate the accuracy among
500 questions. Then we gradually remove the last
input-output observations to test the ability with
fewer (i.e., 4, 3, 2, and 1) observations. The re-
sults are shown in Table 3. For GPT-4 and GPT-
3.5, the performance ranges from 60.0∼92.2% and
65.0∼78.2%, respectively. The accuracy further
improves with +9.5% and +9.8% by using S2L.
For OpenChat, the performance is extremely low
with accuracy below 10% and S2L improves the
performance by a large margin with +30.9%.

3.3 Other Tasks

We further show results for six more general tasks.
Due to the space limit, the readers are referred
to appendix B and C for settings of symbol-to-
language conversion and case study for these tasks.
Chemical Property Prediction. ChemLLM-
Bench (Guo et al., 2023) is used for property predic-
tion given SMILES string, including BACE (bind-
ings results for a set of inhibitors of human beta-
secretase), BBBP (penetration to the brain-blood

Method BACE BBBP Tox21 AVG.

GPT-4 48.2 40.2 47.2 45.2
+S2L w/ model (ours) 53.0 (+4.8) 53.0 (+12.8) 48.6 (+1.4) 51.5 (+6.3)

+S2L w/ translator (ours) 48.4 (+0.2) 58.8 (+18.6) 49.0 (+1.8) 52.1 (+6.9)

GPT-4-CoT 50.4 36.8 37.4 41.5
+S2L w/ model (ours) 55.6 (+5.2) 54.2 (+17.4) 44.0 (+6.6) 51.3 (+9.8)

+S2L w/ translator (ours) 51.2 (+0.8) 64.0 (+27.2) 45.2 (+7.8) 53.5 (+12.0)

GPT-3.5 52.4 24.6 34.2 37.1
+S2L w/ model (ours) 53.0 (+0.6) 35.0 (+10.4) 34.8 (+0.6) 40.9 (+3.8)

+S2L w/ translator (ours) 54.8 (+2.4) 53.8 (+29.2) 51.0 (+16.8) 53.2 (+16.1)

GPT-3.5-CoT 44.2 32.0 35.8 37.3
+S2L w/ model (ours) 48.2 (+4.0) 35.8 (+3.8) 38.2 (+2.4) 40.7 (+3.4)

+S2L w/ translator (ours) 48.6 (+4.4) 41.4 (+9.4) 41.8 (+6.0) 43.9 (+6.6)

OpenChat-7B 48.2 46.8 62.6 52.5
+S2L w/ model (ours) 48.8 (+0.6) 56.2 (+9.4) 65.0 (+2.4) 56.7 (+4.2)

+S2L w/ translator (ours) 55.8 (+7.6) 59.2 (+12.4) 67.8 (+5.2) 60.9 (+8.4)

OpenChat-7B-CoT 49.6 46.2 62.2 52.7
+S2L w/ model (ours) 47.8 (−1.8) 48.4 (+2.2) 60.4 (−1.8) 52.2 (−0.5)

+S2L w/ translator (ours) 52.2 (+2.6) 65.2 (+19.0) 61.4 (−0.8) 59.6 (+6.9)

Table 4: Results for chemical property prediction. w/
translator denotes conversion with an external translator.

barrier), and Tox21 (toxicity of compounds).
Following Guo et al. (2023), we randomly sam-

ple 500 instances from the full test set over repeated
five times and report the averaged accuracy, the re-
sults are shown in Table 4. The overall performance
of GPT-4 and GPT-3.5 is relatively low, showing
the difficulty for LLMs to understand the chemical
formula and their property. Similarly, the chain-
of-thought reasoning does not always effective and
even lead to performance drop for GPT-4 model
(from 45.2% to 41.5%). Our method generally
lead to better performance with varying degrees.
For example, the improvement is large for the
BBBP dataset (+12.8∼27.2%) while it becomes
relatively low for the BACE dataset (+0.2∼5.2%)
using GPT-4. Overall, the results show that S2L is
effective by providing language-based information
that aids in chemical property prediction tasks.
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Method
EmoTag1200 (Pearson correlation r×100)

AVG.
ANGER ANTICIPATE DISGUST FEAR JOY SADNESS SURPRISE TRUST

GPT-4 85.5 29.0 78.2 80.9 88.7 90.3 53.1 73.1 72.4
+S2L w/ model (ours) 87.8 30.8 79.2 81.9 89.7 92.2 56.2 76.6 74.3 (+1.9)
+S2L w/ dict (ours) 85.6 34.5 75.3 81.3 89.4 92.6 61.6 76.0 74.5 (+2.1)

GPT-4-CoT 85.4 20.5 72.3 81.0 88.9 91.7 50.7 74.4 70.6
+S2L w/ model (ours) 85.4 33.0 70.5 81.4 88.9 92.3 63.2 74.1 73.6 (+3.0)
+S2L w/ dict (ours) 86.5 33.7 66.1 82.5 88.9 93.0 62.7 73.0 73.3 (+2.7)

GPT-3.5 71.0 21.4 33.4 58.9 69.5 79.0 19.2 56.0 51.0
+S2L w/ model (ours) 70.0 15.6 40.1 62.9 78.6 85.0 48.3 63.0 57.8 (+6.8)
+S2L w/ dict (ours) 75.7 26.9 48.7 69.6 79.6 85.4 28.5 70.0 60.5 (+9.5)

GPT-3.5-CoT 55.9 1.30 5.10 15.6 26.4 14.5 −8.40 6.00 14.6
+S2L w/ model (ours) 70.2 15.2 39.3 63.1 78.5 84.5 48.5 63.3 57.8 (+43.2)
+S2L w/ dict (ours) 73.4 20.6 50.5 66.4 79.9 85.3 35.4 54.3 58.2 (+43.6)

OpenChat-7B 41.3 3.00 43.8 26.4 16.1 23.2 22.1 −8.60 20.9
+S2L w/ model (ours) 46.5 6.60 53.5 63.9 35.5 58.3 1.00 −11.8 31.7 (+10.8)
+S2L w/ dict (ours) 57.2 0.20 58.7 64.8 37.7 58.7 2.30 −7.80 33.9 (+13.0)

OpenChat-7B-CoT 45.5 −1.40 27.7 34.8 45.4 74.1 16.3 1.20 30.5
+S2L w/ model (ours) 63.2 17.2 43.8 53.2 66.9 69.2 34.4 9.80 44.7 (+14.2)
+S2L w/ dict (ours) 56.4 −5.00 38.1 61.3 68.4 58.1 19.4 6.40 38.0 (+7.5)

Table 5: Results for emotion analysis of emojis. The numbers are Pearson correlation coefficient with ratings by
humans. w/ dict denotes conversion with the Unicode dictionary.

Emotion Analysis of Emojis. We use the Emo-
Tag1200 (Shoeb and de Melo, 2020) for analyzing
the emotions of the emojis. Specifically, 150 most
frequently used emojis are evaluated and the task
is to score each of them from 0∼1 based on eight
basic emotions, including anger, anticipation, dis-
gust, fear, joy, sadness, surprise, and trust.

The results are shown in Table 5. GPT-4 gives
a relatively high correlation coefficient of 72.4.
However, GPT-3.5 and OpenChat perform poorly
with results of 51.0 and 20.9, respectively. Again,
the performance does not improve consistently
when adding “Let’s think step by step” for chain-of-
thought reasoning, even lead to large performance
decrease for GPT-3.5. By employing S2L with
model or dictionary, the performance improves to
different degrees, showing that language informa-
tion plays an role for analyzing emojis.

Table Understanding. For structured data, we
use WikiTableQuestions (Pasupat and Liang, 2015)
for tabular question-answering, including ques-
tions based on Wikipedia tables. We also use Tab-
Fact (Chen et al., 2020) for fact verification, which
consists of claims annotated by the crowd workers.

For each task, we evaluated 500 pairs of tables
and questions and the results are shown in Table 6.
The overall performance for different models is rel-
atively high compared with previous symbol-only
tasks, for example, GPT-4 gives around 79.8% ex-
act match score and 93.6% accuracy for question-

Method TableQA TableQA TabFact AVG.
(F1) (EM) (Acc.)

GPT-4 82.0 79.8 93.6 85.1
+S2L w/ model (ours) 84.6 (+2.6) 82.0 (+2.2) 95.6 (+2.0) 87.4 (+2.3)

+S2L w/ rule (ours) 86.5 (+4.5) 84.2 (+4.4) 95.8 (+2.2) 88.8 (+3.7)

GPT-4-CoT 80.7 76.8 93.2 83.6
+S2L w/ model (ours) 82.9 (+2.2) 80.2 (+3.4) 94.6 (+1.4) 85.9 (+2.3)

+S2L w/ rule (ours) 84.2 (+3.5) 80.6 (+3.8) 96.4 (+3.2) 87.1 (+3.5)

GPT-3.5 66.4 63.0 82.0 70.5
+S2L w/ model (ours) 69.0 (+2.6) 66.0 (+3.0) 84.6 (+2.6) 73.2 (+2.7)

+S2L w/ rule (ours) 68.5 (+2.1) 64.8 (+1.8) 86.2 (+4.2) 73.2 (+2.7)

GPT-3.5-CoT 73.4 69.8 77.0 73.4
+S2L w/ model (ours) 73.6 (+0.2) 71.2 (+1.4) 83.0 (+6.0) 75.9 (+2.5)

+S2L w/ rule (ours) 77.0 (+3.6) 72.8 (+3.0) 83.0 (+6.0) 77.6 (+4.2)

OpenChat-7B 61.7 58.2 79.0 66.3
+S2L w/ model (ours) 64.1 (+2.4) 59.0 (+0.8) 81.0 (+2.0) 68.0 (+1.7)

+S2L w/ rule (ours) 62.1 (+0.4) 58.8 (+0.6) 83.0 (+4.0) 67.9 (+1.6)

OpenChat-7B-CoT 60.8 57.0 83.8 67.2
+S2L w/ model (ours) 64.2 (+3.4) 60.4 (+3.4) 83.2 (−0.6) 85.9 (+2.3)

+S2L w/ rule (ours) 66.1 (+5.3) 63.0 (+6.0) 84.6 (+0.8) 87.1 (+3.5)

Table 6: Results for tabular question-answering and fact
verification. w/ rule denotes conversion with manually
designed rules for aligning the contents of table rows.

answering and fact verification, respectively. Nev-
ertheless, S2L with model can still consistently
bring about +1.7∼4.2% improvements among dif-
ferent models, showing that external natural lan-
guage information is still effective for tabular tasks.

Tweet Analysis. We use the TweetSentimentEx-
traction dataset from Massive Text Embedding
Benchmark (Muennighoff et al., 2023) for senti-
ment classification, and we follow Zhang et al.
(2023) by using the P-Stance (Li et al., 2021)
dataset for stance detection.
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Method P-Stance P-Stance Sentiment AVG.
(Acc.) (F1) (Acc.)

GPT-4 86.2 86.7 89.4 87.4
+S2L w/ model (ours) 87.1 (+0.9) 88.2 (+1.5) 90.3 (+0.9) 88.5 (+1.1)

GPT-4-CoT 83.8 84.0 86.1 84.6
+S2L w/ model (ours) 86.6 (+2.8) 87.5 (+3.5) 87.2 (+1.1) 87.1 (+2.5)

GPT-3.5 65.3 68.6 83.7 72.5
+S2L w/ model (ours) 71.0 (+5.7) 71.5 (+2.9) 89.9 (+6.2) 77.5 (+5.0)

GPT-3.5-CoT 61.5 60.8 76.5 66.3
+S2L w/ model (ours) 64.7 (+3.2) 63.5 (+2.7) 78.4 (+1.9) 68.9 (+2.6)

OpenChat-7B 70.9 66.7 89.1 75.6
+S2L w/ model (ours) 71.4 (+0.5) 67.5 (+0.8) 89.0 (−0.1) 76.0 (+0.4)

OpenChat-7B-CoT 72.2 69.1 84.8 75.4
+S2L w/ model (ours) 77.1 (+4.9) 75.8 (+6.7) 82.1 (−2.7) 78.3 (+2.9)

Table 7: Results for stance detection and sentiment
analysis in social media texts.

For sentiment classification, we predict senti-
ment polarity from either positive or negative in a
total of 2,104 tweets. For stance detection, we eval-
uate the attitude towards “Donald Trump” from ei-
ther favor or against in 777 test tweets. The results
are shown in Table 7. We find that, although stance
and sentiment analysis in social media has been
extensively studied in NLP, our S2L can improve
the performance of current advanced models, even
by a large margin of +5.0% accuracy for GPT-3.5.

4 Analysis

Conversion with LLMs or Tools. As shown in
Figure 5(left), we find that using tools generally
yields better results than using models for S2L con-
version2. For abstract reasoning, the tools enable
LLMs to explicitly discover patterns of numeri-
cal sequences from language-based representations.
For other tasks, LLMs may already capture some
knowledge of SMILES, emojis or table delimiters,
thus the benefits brought by tools is reduced. In
general, both approaches outperform zero-shot rea-
soning over symbol-based representations.
Substitution or Concatenation. We also com-
pare the different ways for leveraging the language-
based representation in Figure 5(right). For ab-
stract reasoning and Dyck language, the language-
based representation can convey enough informa-
tion for solving the problems, thus directly substi-
tuting language-based representation for symbol-
based representation can slightly improve the re-
sults, without influenced by abstract symbols. How-
ever, for other tasks, we find that concatenate both

2We find that conversion with LLMs are effective in inter-
preting the brackets for Dyck language, leading to the same
results by using tools such as dictionary. Also, the types of
symbol involved in Tweet are not fixed. Therefore, we do not
employ S2L conversion with specific tools for these two tasks.

Figure 5: Using LLMs or tools (left) and substituting
or concatenating (right) for S2L conversion with GPT-
4. AR: abstract reasoning, DL: Dyck language, PP:
property prediction, EE: emotion of emojis, TU: table
understanding, TA: tweet analysis.

representations further improve the performance.
The reasons can be that LLMs have already trained
on similar dataset, allowing them to provide better
answers by simultaneously combining information
from both types of representations.

5 Related Work

Reasoning on Symbol-Related Problems. Vari-
ous studies have explored the capabilities of LLMs
in symbol-based tasks. Gendron et al. (2024)
demonstrate that LLMs possess a limited capac-
ity for symbol-based reasoning compared to other
natural language tasks. Wang et al. (2024b) suggest
that LLMs can improve the performance of abstract
reasoning once having strong ability to generate ex-
ecutable codes. Qiu et al. (2024) assess LLMs on
inductive reasoning tasks, uncovering a range of
counter-intuitive behaviors. These works indicate
that there is room for improving reasoning ability
for symbol-related problems with LLMs.
Reasoning by Chain-of-Thought Prompting.
Chain-of-Thought prompting (Wei et al., 2022; Ko-
jima et al., 2022; Chen et al., 2023; Yao et al.,
2023; Besta et al., 2024) have become integral in
augmenting the reasoning abilities of LLMs. In
particular, Xu et al. (2023) propose to re-read the
question before reasoning. Deng et al. (2023) in-
troduce rephrase-and-respond to tackle ambiguous
questions by using self-rephrased questions, which
shares similarities with our method in rephrasing.
However, we aim to address symbol-related prob-
lems, convert symbols into their natural language
equivalents to allow LLMs to engage with more ac-
cessible language-based information for reasoning.
Reasoning with Symbolic Methods. There is a
series of studies on the integration of symbolic
methods to solve general reasoning tasks. Wei et al.
(2023) propose symbol-tuning to fine-tune LLMs
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using substituted labels, aiming to enhance their in-
context learning abilities. Hu et al. (2024) propose
chain-of-symbol to solve planning-based tasks.
Wang et al. (2024c) introduce meta-reasoning as
a means to construct generic symbolic representa-
tions for reasoning tasks. Xu et al. (2024b) inte-
grates logic rules with CoT prompting. In contrast,
we propose eliciting capabilities of LLMs by lever-
aging converted information in language-level to
help solving the symbol-related problems.

6 Conclusion

We propose symbol-to-language conversion to
leverage language-based representation for solving
symbol-related problems using LLMs. The motiva-
tion is to elicit the knowledge behind the symbols
through natural language, serving as useful infor-
mation for models. Experiments with three LLMs
show that we consistently improve performance
across eight tasks, e.g., abstract reasoning, Dyck
language, and chemical property prediction. We
hope it can further harness the power of language-
based representations and explore the untapped po-
tential of LLMs to play roles in more scenarios.

Limitations

Although we verified symbol-to-language conver-
sion on different models across various tasks, there
are still some limitations. First, not all non-natural
language representations can be easily converted
into natural language. For example, some of
the original 2D visual problems from the ARC
dataset (Chollet, 2019) are still difficult to de-
scribe in brief language-based representations, even
with tools. Second, for tasks that we cannot rely
on external tools with sufficient prior knowledge,
prompting LLMs may generate incorrect descrip-
tions or explanations of the symbols due to hallu-
cinations, which may mislead the understanding
of symbols that were originally comprehensible di-
rectly, though we propose to append the original
information to alleviate the impact.
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A Performance of Different Prompts for
Conversion with LLM

We compare using different prompts for S2L con-
version with LLM in Table 8. We found that differ-
ent prompts have a slight impact, but overall do not
affect the effectiveness of the proposed method.

Prompts for Conversion w/ LLM Perf.

1D-ARC
Describe the sequence of digits using language. 62.2
Describe the string of digits using verbal expressions. 61.7
Explain the series of numbers using words. 60.5

GPT-4 (w/o using our method) 59.7

Dyck Language
Translate each symbol one by one using language and
separate them with ’;’.

92.0

Translate each symbol sequentially into words and sepa-
rate them with ’;’.

91.6

Interpret each symbol individually into words and de-
limit them using ’;’.

91.6

GPT-4 (w/o using our method) 82.5

Property Prediction
What does the following SMILES represent? 51.5
Briefly describe what the following SMILES represents. 50.4
Explain the SMILES notation using plain texts: 49.7

GPT-4 (w/o using our method) 45.2

Emotion Analysis
Describe the emoji in plain text: 74.3
Explain the emoji using text: 73.3
Provide a textual description of the emoji: 72.9

GPT-4 (w/o using our method) 72.4

Tabular Question-Answering
Describe the table in plain texts: 84.6
Describe the table row by row: 84.3
Describe all the details of the table: 83.9

GPT-4 (w/o using our method) 82.0

Sentiment Classification
Transfer to plain text tweets: 90.3
Convert the tweet into plain text: 89.8
Transfer the tweet and emoji to plain texts: 89.7

GPT-4 (w/o using our method) 89.4

Table 8: Compare different prompts for S2L conversion.

B Settings and Example of Applying S2L
Conversion for Different Tasks

(a) Conversion with LLM

(b) Conversion with Translator

(Prompt)
What does the following SMILES represent?

(Response by LLM) 

(Source)

(Target)

(SMILES-IUPAC Translator)
Source:SMILES→Target:IUPAC Names 

The SMILES C(C)Cl represents a molecule of
chloroethane, which is a simple alkyl halide.

chloroethane

C(C)Cl

C(C)Cl

Figure 6: Example of applying symbol-to-language for
property prediction. We convert each SMILES to its
language-based representation by prompting LLMs or
using a translator.

Chemical Property Prediction. We use a unified
prompt to transfer each SMILES to its language-
based representation lLLMi in all three datasets, as
shown in Figure 6(a). Instead of using LLMs, we
further propose S2L with STOUT V2.03 (Rajan
et al., 2021), a translator offering the IUPAC (A
universally accepted naming scheme established
by the International Union of Pure and Applied
Chemistry) name ltranslatori of a given SMILES,
as shown in Figure 6(b). Finally, we append the
obtained information to each SMILES notation as
language-enhanced input for LLMs.

(a) Conversion with LLM

(b) Conversion with Dict

(Prompt)

(Response by LLM) 

(Key)

(Value) enraged face

(Unicode Dict)

 angry face emoji

{1F621: “enraged face”}, {1F622: “crying face”} ...... 

Describe the emoji in plain text:

Figure 7: Example of applying symbol-to-language
for emotional reranking of emojis. We convert each
emoji to its language-based representation by prompting
LLMs or using the names from the Unicode dictionary.

Emotion Analysis of Emojis. To understand emo-
jis with language-based information, we get the

3https://github.com/Kohulan/
Smiles-TO-iUpac-Translator.

https://proceedings.neurips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://arxiv.org/abs/2304.03087
https://arxiv.org/abs/2304.03087
https://arxiv.org/abs/2304.03087
https://github.com/Kohulan/Smiles-TO-iUpac-Translator
https://github.com/Kohulan/Smiles-TO-iUpac-Translator
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(a) Conversion with LLM

(Response by LLM)
Sweden is ranked first with 4 gold, 3 silver, and
0 bronze medals, making a total of 7 medals. 

(Prompt)
 
 

(b) Conversion with Rule
(Input)
 

(Rules, a manually written python function)
def TableTransition(Input):...return Output

(Output of TableTransition)
Rank: 1; Nation: Sweden (SWE); Gold: 4;
Silver: 3; Bronze: 0; Total: 7

Rank|Nation|Gold|Silver|Bronze|Total\n1|Sweden
(SWE)|4|3|0|7\n

Describe the table in plain texts: 

Rank|Nation|Gold|Silver|Bronze|Total\n1|Sweden
(SWE)|4|3|0|7\n

Figure 8: Example of applying symbol-to-language for
tabular question-answering task. We convert each ta-
ble to its language-based representation by prompting
LLMs or using simple rules implemented in codes.

description lLLMi by prompting LLMs or directly
obtaining the names ldicti from the Unicode dictio-
nary4, as shown in Figure 7.
Table Understanding. As shown in Figure 8, S2L
describes every table in plain text lLLMi by prompt-
ing. Alternatively, we can get the representation
lrulei by using simple rule-based codes to align the
content with the table header according to the de-
limiters “|” row by row. Then we append the ex-
ternal natural language information to the original
symbol-based representation for each question.

(Prompt) 
Transfer to plain text tweets: lmaooo all day everyday ‼ 
(Response by LLM) 
laughing my ass off all day everyday! I'm laughing so hard.

Figure 9: Example of applying symbol-to-language for
tweet understanding. We convert each tweet to plain
text by prompting LLMs.

Tweet Analysis. Non-natural language expressions
are widely exist in social media such as Tweet,
including abbreviations (e.g., LOL: “Laughing Out
Loud”), slang (e.g., FTW: “For the Win”), hashtags
(e.g., #Trump), emojis (e.g., ), etc. We convert
the entire tweet to plain text lLLMi via prompting,
as shown in Figure 9, and then we use it as external
input for each question.

4https://unicode.org/emoji/charts/
full-emoji-list.html

C Case Study

We show responses by GPT-4 with and without our
method for 1D-ARC task in figures below.

1D-ARC task (by GPT-4)
(Prompt)
Let’s play some puzzles that focus on reasoning
and logic. In each puzzle, you will be provided
a few demonstrations of how an “input grid” gets
transformed into a corresponding “output grid”.
At the end, you will get a brand new “input
grid”, then you must answer the corresponding
“output grid”.

input 1: 0,0,0,0,3,3,3,3,3,0,0,0,0,0
output 1: 0,0,0,0,0,3,3,3,3,3,0,0,0,0
input 2: 0,7,7,7,7,7,7,7,7,0,0,0,0,0
output 2: 0,0,7,7,7,7,7,7,7,7,0,0,0,0
input 3: 0,0,2,2,2,0,0,0,0,0,0,0,0,0
output 3: 0,0,0,2,2,2,0,0,0,0,0,0,0,0
input 4: 0,0,0,0,7,7,7,7,7,7,0,0,0,0
output 4:

(Response)
0,0,0,0,0,7,7,7,7,7,7,0,0,0,0 (✗)

1D-ARC task (by GPT-4 w/ our method)
(Prompt)
Let’s play some puzzles that focus on reasoning
and logic. In each puzzle, you will be provided
a few demonstrations of how an “input grid” gets
transformed into a corresponding “output grid”.
At the end, you will get a brand new “input
grid”, then you must answer the corresponding
“output grid”.

input 1: 0,0,0,0,3,3,3,3,3,0,0,0,0,0
(The sequence starts with four zeros, followed
by five threes, and ends with five zeros.)
output 1: 0,0,0,0,0,3,3,3,3,3,0,0,0,0
(The sequence consists of five 0s, followed by
five 3s, and then followed by four 0s.)
input 2: 0,7,7,7,7,7,7,7,7,0,0,0,0,0
(The sequence starts with a single zero,
followed by eight sevens, and then ends with
five zeros.)
output 2: 0,0,7,7,7,7,7,7,7,7,0,0,0,0
(The sequence starts with two zeros, followed
by eight sevens, and ends with four zeros.)
input 3: 0,0,2,2,2,0,0,0,0,0,0,0,0,0
(The sequence starts with two zeros, followed
by three twos, and then nine zeros.)
output 3: 0,0,0,2,2,2,0,0,0,0,0,0,0,0
(The sequence starts with three 0s, followed by
three 2s, and then eight 0s.)
input 4: 0,0,0,0,7,7,7,7,7,7,0,0,0,0
(The sequence consists of four zeros, followed
by six sevens, and then ends with four zeros.)
output 4:

(Response)
0,0,0,0,0,7,7,7,7,7,7,0,0,0 (✓)
(The sequence starts with five zeros, followed
by six sevens, and then ends with three zeros.)

https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
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We show responses by GPT-4 with and without
our method for Dyck Language in figures below.

Dyck Language task (by GPT-4)
(Prompt)
Let’s play some puzzles that focus on reasoning
and logic. In each puzzle, you will be
provided a few demonstrations of how an “input
sequence” gets transformed into a corresponding
“output sequence”. At the end, you will
get a brand new “input sequence”, then you
must answer the corresponding “output sequence”.

input 1: ( { }
output 1: )
input 2: { { ( ) }
output 2:

(Response)
( ) ) (✗)

Dyck Language task (by GPT-4 w/ our method)
(Prompt)
Let’s play some puzzles that focus on reasoning
and logic. In each puzzle, you will be
provided a few demonstrations of how an “input
sequence” gets transformed into a corresponding
“output sequence”. At the end, you will
get a brand new “input sequence”, then you
must answer the corresponding “output sequence”.

input 1: open parenthesis; open curly
bracket; close curly bracket
output 1: close parenthesis
input 2: open curly bracket; open curly bracket;
open parenthesis; close parenthesis; close
curly bracket
output 2:

(Response)
close curly bracket (✓)

We show responses by GPT-4 with and without
our method for property prediction in figures below.

Property prediction task (by GPT-4)
(Prompt)
You are an expert chemist, your task
is to predict the property of molecule
using your experienced chemical property
prediction knowledge. Given the SMILES
string of a molecule, the task focuses on
predicting molecular properties, specifically
penetration/non-penetration to the brain-blood
barrier, based on the SMILES string
representation of each molecule. The task
is to predict the binary label for a given
molecule whether it has penetrative property
(Yes) or not (No), please answer with only Yes
or No.

SMILES: FC(Br)C(F)(F)F

Penetration:

(Response)
No (✗)

Property prediction task (by GPT-4 w/ our method)
(Prompt)
You are an expert chemist, your task
is to predict the property of molecule
using your experienced chemical property
prediction knowledge. Given the SMILES
string of a molecule, the task focuses on
predicting molecular properties, specifically
penetration/non-penetration to the brain-blood
barrier, based on the SMILES string
representation of each molecule. The task
is to predict the binary label for a given
molecule whether it has penetrative property
(Yes) or not (No), please answer with only Yes
or No.

SMILES: FC(Br)C(F)(F)F

The SMILES represents the chemical structure of
Halothane, a type of general anesthetic.

Penetration:

(Response)
Yes (✓)

We show responses by GPT-4 with and with-
out our method for tabular question-answering in
figures below.

Tabular QA task (by GPT-4)
(Prompt)
Your task is to answer the question based on
the table. Please show the final answer with
only one or few words.

Table:
Rank | Nation | Gold | Silver | Bronze | Total
1 | Malaysia | 3 | 0 | 1 | 4
2 | Indonesia | 1 | 3 | 2 | 6
3 | Korea | 1 | 1 | 2 | 4
4 | Thailand | 1 | 0 | 0 | 1
5 | Chinese Taipei | 0 | 1 | 2 | 3
6 | Denmark | 0 | 1 | 0 | 1
7 | Japan | 0 | 0 | 2 | 2
8 | India | 0 | 0 | 1 | 1
9 | Spain | 0 | 0 | 1 | 1

Question:
how many times has bronze been won total?

Answer:

(Response)
10 (✗)
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Tabular QA task (by GPT-4 w/ our method)
(Prompt)
Your task is to answer the question based on
the table. Please show the final answer with
only one or few words.

Table:
Rank | Nation | Gold | Silver | Bronze | Total
1 | Malaysia | 3 | 0 | 1 | 4
2 | Indonesia | 1 | 3 | 2 | 6
3 | Korea | 1 | 1 | 2 | 4
4 | Thailand | 1 | 0 | 0 | 1
5 | Chinese Taipei | 0 | 1 | 2 | 3
6 | Denmark | 0 | 1 | 0 | 1
7 | Japan | 0 | 0 | 2 | 2
8 | India | 0 | 0 | 1 | 1
9 | Spain | 0 | 0 | 1 | 1

Description:
The table ranks nations based on the number
of gold, silver, and bronze medals they have
won. Malaysia is ranked first with 3 gold
medals, no silver medals, and 1 bronze medal,
making a total of 4 medals. Indonesia is
second with 1 gold, 3 silver, and 2 bronze
medals, totaling 6 medals. Korea is third
with 1 gold, 1 silver, and 2 bronze medals,
totaling 4 medals. Thailand is fourth with
1 gold medal and no silver or bronze medals.
Chinese Taipei is fifth with 1 silver and 2
bronze medals, totaling 3 medals. Denmark is
sixth with 1 silver medal and no gold or bronze
medals. Japan is seventh with 2 bronze medals
and no gold or silver medals. India and Spain
are ranked eighth and ninth respectively, each
with 1 bronze medal and no gold or silver medals.

Question:
how many times has bronze been won total?

Answer:

(Response)
11 (✓)

We show responses by GPT-4 with and without
our method for emotion analysis in figures below.

Emotion analysis task (by GPT-4)
(Prompt)
As a social scientist, Your task is to analyze
eight emotions (anger, anticipation, disgust,
fear, joy, sadness, surprise, trust) of the
emoji. For each emotion, please assign a score
from 0 to 1 according to the emoji. Please
provide your best estimation of the emotion
scores with two decimal places.

(Response)
Anger: 0.10 (score by human: 0.06)
Anticipation: 0.60 (score by human: 0.25)
Disgust: 0.10 (score by human: 0)
Fear: 0.10 (score by human: 0)
Joy: 0.20 (score by human: 0)
Sadness: 0.10 (score by human: 0)
Surprise: 0.70 (score by human: 0.03)
Trust: 0.20 (score by human: 0.17)

Emotion analysis task (by GPT-4 w/ our method)
(Prompt)
As a social scientist, Your task is to analyze
eight emotions (anger, anticipation, disgust,
fear, joy, sadness, surprise, trust) of the
emoji. For each emotion, please assign a score
from 0 to 1 according to the emoji. Please
provide your best estimation of the emotion
scores with two decimal places.

(backhand index pointing right)

(Response)
Anger: 0.05 (score by human: 0.06)
Anticipation: 0.20 (score by human: 0.25)
Disgust: 0.05 (score by human: 0)
Fear: 0.05 (score by human: 0)
Joy: 0.20 (score by human: 0)
Sadness: 0.05 (score by human: 0)
Surprise: 0.20 (score by human: 0.03)
Trust: 0.20 (score by human: 0.17)

We show responses by GPT-4 with and without
our method for sentiment analysis in figures below.

Sentiment classification task (by GPT-4)
(Prompt)
Sentiment classification, please answer with
only Positive or Negative.

aw that wee lassie made me cry tears streamin
doon ma face lol thats a wee shame x

(Response)
Positive (✗)

Sentiment classification task (by GPT-4 w/ our method)
(Prompt)
Sentiment classification, please answer with
only Positive or Negative.

aw that wee lassie made me cry tears streamin
doon ma face lol thats a wee shame x
(Aw, that little girl made me cry. Tears
streaming down my face, lol, that’s a little
shame x.)

(Response)
Negative (✓)
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