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Abstract

Hierarchical text classification (HTC) is an
important task in natural language process-
ing (NLP). Existing methods typically utilize
both text features and the hierarchical structure
of labels to categorize text effectively. How-
ever, these approaches often struggle with fine-
grained labels, which are closely similar, lead-
ing to difficulties in accurate classification. At
the same time, contrastive learning has signifi-
cant advantages in strengthening fine-grained
label features and discrimination. However, the
performance of contrastive learning strongly
depends on the construction of negative sam-
ples. In this paper, we design a hierarchical se-
quence ranking (HiSR) method for generating
diverse negative samples. These samples maxi-
mize the effectiveness of contrastive learning to
enhance the ability of the model to distinguish
between fine-grained labels and improve the
performance of the model in HTC. Specifically,
we transform the entire label set into linear se-
quences based on the hierarchical structure and
rank these sequences according to their quality.
During model training, the most suitable nega-
tive samples are dynamically selected from the
ranked sequences. Then contrastive learning
amplifies the differences between similar fine-
grained labels by emphasizing the distinction
between the ground truth and the generated
negative samples, thereby enhancing the dis-
criminative ability of the model. Our method
has been tested on three public datasets and
achieves state-of-art (SOTA) on two of them,
demonstrating its effectiveness.

1 Introduction

Hierarchical text classification (HTC) involves clas-
sifying text into a structured set of categories ar-
ranged from the most general to the most specific,
capturing the complexity and multidimensionality
of language (Vens et al., 2008). The necessity for
HTC stems from the inherent complexity and vast
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Figure 1: An example of HTC on NYT. The hierarchical
labels are arranged from top to bottom, with granularity
ranging from coarse to fine.

amount of textual data in various fields, includ-
ing but not limited to academic literature (Kowsari
et al., 2017b), legal documents, and online con-
tent (Lewis et al., 2004; Sandhaus, 2008). In HTC,
the hierarchical structures are typically modeled as
trees or directed acyclic graphs (DAGs) (Silla and
Freitas, 2011), as shown in Figure 1.

Existing methods for HTC can be broadly cat-
egorized into local and global approaches. Local
methods (Wehrmann et al., 2018b; Shimura et al.,
2018a; Banerjee et al., 2019a) assign a separate
classifier to each node, resulting in an architecture
with a large number of parameters, which can easily
lead to exposure bias. On the other hand, the global
approaches (Zhou et al., 2020; Yu et al., 2022; Chen
et al., 2021) use a single classifier for the entire hi-
erarchy, resulting in fewer parameters and higher
efficiency. However, these existing methods strug-
gle to address the challenge posed by HTC, where
the imbalanced data distribution and complex de-
pendencies across multiple levels in the hierarchy
lead to reduced discrimination among fine-grained
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labels. Figure 1 provides a clear illustration of
the aforementioned challenge. For example, the
distinction between coarse-grained labels such as
“News”, “Features”, and “Classifieds” is greater
than that between fine-grained labels like “Banking,
Finance and Insurance” and “Sales and Business
Development”. Moreover, distinguishing between
deep, fine-grained labels is crucial for the perfor-
mance of HTC. Fortunately, contrastive learning
is highly effective in enhancing label features and
label distinguishability (Wang et al., 2022a; Zhang
et al., 2024). However, researches combining HTC
with contrastive learning are still at an early stage.
Existing studies (Wang et al., 2022a; Zhang et al.,
2024) have mainly focused on constructing positive
samples through data augmentation from a textual
perspective, without addressing the challenge of
distinguishing similar fine-grained labels. The core
of tackling the challenge is to combine complex
hierarchical structures to construct appropriate pos-
itive and negative samples.

In order to effectively solve the above problems,
we design and propose a hierarchical sequence
ranking (HiSR) method to generate more effec-
tive negative samples from the label perspective,
which aims to assist contrastive learning to enhance
the ability of the model to distinguish fine-grained
labels and improve the performance of the model
to classify. The core idea of this strategy is to
make full use of the overall hierarchical structure
of the label system and the depth-first search algo-
rithm (DFS) (Tarjan, 1972) to construct multiple
sequence negative samples, and then dynamically
select the most challenging negative sample com-
binations during model training, ensuring the high
quality and diversity of negative samples. Not only
that, this targeted dynamic selection process is cru-
cial for amplifying the differences between fine-
grained labels.

The major contributions of this work are as fol-
lows :

• We innovatively designed a negative sample
generation strategy called HiSR, which pro-
vides high-quality negative samples for con-
trastive learning to solve the problem that fine-
grained labels are difficult to distinguish.

• HiSR models labels into sequences and sorts
them according to their quality, which pro-
vides a basis for the introduction of negative-
negative sample comparison. In addition, a
dynamic selection mechanism is used during

training to provide the model with the most
appropriate negative samples.

• Experiments demonstrate that our proposed
method outperforms previous studies on
three widely used public datasets. Our
code is available at https://github.com/
zjcjason/HiSR.

2 Related Work

2.1 Hierarchical Text Classification
The main challenges of HTC include making full
use of the hierarchical information between cate-
gories, distinguishing similar fine-grained labels,
and dealing with data imbalance. In response to
these challenges, extant researches have proposed
various methodologies, which can be broadly cate-
gorized into two main categories: local approaches
and global approaches.

Local approaches employ specialized classifiers
at each node or layer within the hierarchy. (Baner-
jee et al., 2019b) introduced a parameter passing
strategy from parent to child classifiers to improve
node efficiency. Wehrmann et al. (2018a) pro-
posed a hybrid method combining local and global
strategies to reduce exposure bias. Shimura et al.
(2018b) tackled class distribution skewness with a
parameter-sharing mechanism for more balanced
learning. Peng et al. (2018) used N-gram tokens
and GCN with recursive regularization to capture
hierarchical representations. These methods reflect
the dynamic evolution of local approaches in HTC.

Global approaches utilize a unified model to si-
multaneously assign multiple hierarchical labels,
integrating the entire hierarchy within a single pre-
dictive framework. Researchers (Gopal and Yang,
2013; Wu et al., 2019; Mao et al., 2019) have
delved into the intricate relationships between suc-
cessive hierarchies, particularly parent-child dy-
namics. Following investigations have redirected
their focus towards a variety of aspects, including
the probability associated with prior hierarchies
(Zhou et al., 2020), the overall structure of labels
(Wang et al., 2021a), data imbalance (Deng et al.,
2021), the alignment between labels and seman-
tics (Chen et al., 2021), the application of con-
trastive learning in token representation (Wang
et al., 2022b). Furthermore, HJCL (Yu et al.,
2023) built hierarchical-aware joint supervised con-
trastive learning based on HGCLR, and HALB
(Zhang et al., 2024) added multi-label negative su-
pervision and asymmetric loss function. Moreover,

https://github.com/zjcjason/HiSR
https://github.com/zjcjason/HiSR
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advancements have been made in prompt-tuning
and multi-label masking language models aimed at
forming a coherent understanding of hierarchical
semantics by Wang et al. (2022c) and in developing
common representations that incorporate both local
and global hierarchical dimensions as proposed by
Jiang et al. (2022). Recently, NERHTC (Cai et al.,
2024) treated HTC as a named entity recognition
(NER) task.

Consequently, the challenge for HTC is to de-
sign an algorithm that can exploit the hierarchical
relationships among labels to improve the accuracy
and efficiency of classification.

2.2 Contrastive Learning

Contrastive learning (He et al., 2020) is a widely
used technique in machine learning and deep learn-
ing, designed to learn generalizable representations
beneficial for downstream tasks by comparing dif-
ferent examples. A critical aspect of this approach
is the construction of positive and negative sam-
ples. In natural language processing (NLP), stan-
dard methods for constructing these samples in-
clude back-translation (Wang et al., 2021b), dele-
tion, reordering and replacement of words and
spans (Wu et al., 2020), random corruption of orig-
inal tokens (Yu et al., 2021), and so on. These
approaches exemplify the generation of positive
samples, while the inclusion of negative samples
can further enhance the effectiveness of contrastive
learning. For instance, Wang et al. (2021b) gen-
erated negative samples by introducing perturba-
tions through semantic-altering word modifications,
while Pan et al. (2022) adjusted the embedding
layer of the model to generate adversarial samples.

These methods are customized to generate pos-
itive and negative samples according to specific
downstream tasks. However, due to the complex
hierarchical structure of HTC, it is extremely diffi-
cult to generate positive and negative samples that
conform to both text semantics and hierarchical
structure.

3 Methodology

In this section, we focus on negative sample genera-
tion and contrastive learning module, which play a
crucial role in improving the ability of the model to
distinguish fine-grained hierarchical labels. More-
over, we describe the text and structure encoders.
Finally, we provide an overview of the objective
function that integrates all these components to op-

timize the overall performance of the model. Figure
2 illustrates the overall architecture of the proposed
model.

3.1 Problem Definition

In the domain of HTC, the objective is to map a
given collection of texts X = {x1, x2, . . . , xn},
where each xi represents an independent text in-
stance and n is the number of the collection,
to a subset of labels Yi ⊆ Y , with Y =
{y1, y2, . . . , yn} constituting the complete set of
potential labels. Distinct from traditional text clas-
sification, the HTC task is characterized by a prede-
fined hierarchical relationship H among the labels,
which may manifest as a tree structure, a directed
acyclic graph (DAG), or other intricate hierarchi-
cal configurations. This hierarchical organization
not only reflects the semantic relationships among
labels but also plays a pivotal role in the compre-
hension of complex informational content.

3.2 Text Encoder

Given the challenges of HTC, BERT is chosen as
the text encoder for its ability to capture bidirec-
tional context, allowing a comprehensive under-
standing of language. BERT is pre-trained on large-
scale data, and then fine-tuned for specific tasks,
making it highly effective in various NLP applica-
tions.

Assuming the input text as x:

x = {[CLS], t1, t2, . . . , tn−1, [SEP ]} (1)

In this context, [CLS] and [SEP ] serve as spe-
cific placeholder tokens representing the beginning
and end of the input text, respectively. After the
text x is fed into BERT, we can obtain the hidden
states for each token:

Hstatus = BERT (x) (2)

where Hstatus ∈ Rn×dh and dh is the hidden
size. The [CLS] token, due to its positioning and
the function of the self-attention mechanism, can
gather comprehensive information from the entire
text sequence. Consequently, we utilize the hidden
state of the [CLS] token to represent the entire text
in the subsequent process.

3.3 Structure Encoder

Graph Convolutional Networks (GCNs) are widely
utilized as structural encoders for aggregating node



5648

Text

BERT Multi-
label 

Classifier

Classify loss
Logits

Text representation

Structure
Encoder

Root

Ground truth

Normal node
Ergodic

2
2

5
...

F1=0

2

5
2 ... 4

7

F1=0F1=0.5F1=0.8
Mean 

&
Pick up 

maximum

Label Hierarchy
1

32 4

5 6 7 8 9
10

...3

Ground Truth
1

2

5
10

Calculate F1-score

Group(exclude F1=1)

4

9

2

5
10

2

5
2 ...

4

7

F1=0F1=0.8 F1=0.5

Contrast
Learning

HiSR lossPositive Sample

Negative Samples

Figure 2: The overall architecture of the proposed model. The dashed box illustrates the main innovations, including
the overall process of HiSR and the contrastive learning module.

information in NLP, as noted by (Rios and Kavu-
luru, 2018). GCNs are a specific type of neural
network that has been developed for the process-
ing of graph-structured data. They are designed to
effectively capture the complex relationships be-
tween nodes and the overall structure of graphs
by directly manipulating the nodes and edges that
comprise them. The core advantage of GCNs lies
in their ability to utilize the local connectivity pat-
terns of nodes, integrating these local insights to
form a global understanding of the entire graph.

A Hierarchical-GCN is employed to aggregate
global fine-grained hierarchical label structure rela-
tionship information. The Hierarchical-GCN aggre-
gates data flows within and across layers through
top-down, bottom-up and self-loop edges. In the
hierarchical graph, each node represents a corre-
sponding label and each directed edge represents
the related features of relationships between la-
bels. The new feature representation of each node
is computed by combining its own features with
those of adjacent nodes. This process typically in-
volves weighting the features of neighboring nodes,
followed by a linear transformation (e.g., multiply-
ing by a weight matrix) and a nonlinear activation
function to update the node’s feature representa-
tion. However, the aforementioned transformations
utilize independent weight matrices to encode in-
formation for each directed edge. This encoding
significantly increases the number of parameters
and complexity of the model, which may lead to
over-parameterization. Following the approach of
(Zhou et al., 2020), we simplify this transforma-

tion by using hierarchical prior probabilities as the
weighted adjacency matrix.

The hidden state of node i is encoded in the
hierarchical GCN through its associated neighbors
M(i) = {mi, child(i), parent(i)}, specifically:

Firstly, defining the union vector wi,t of node i
and its neighboring node t as:

wi,t = ci,txt + dmi (3)

where ci,t is the hierarchical probability coefficient,
with the self-loop edge ci,i = 1 , top-down edge
hc(qt,i) =

Mi
Mt

and bottom-up edge hp(qt,i) = 1, xt
represents the feature vector of neighboring node t
and di ∈ RN×dim is the bias term.

Then, the eigenvectors of node i are calculated
using weight matrix transformation and activation
function sigmod σ to obtain edge features fi,t :

fi,t = σ(U
e(t,i)
f xi + dif ) (4)

where U
e(t,i)
f ∈ Rdim is the hierarchical direction

weight matrix from node t to node i and dif ∈ RN

is the bias term.
Finally, the output hidden state pi of node i is

calculated by the weighted sum of all neighboring
node features and is activated by the ReLU activa-
tion function:

pi = ReLU(
∑

t∈M(i)

fi,t ⊙ wi,t) (5)

The output hidden state pi of node i represents
its label representation, capturing the hierarchical
structural information.
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3.4 Negative Sample Generation and
Contrastive learning Module

Previous researches on HTC have achieved substan-
tial results. However, at the deeper level, the exist-
ing models still face a challenge in accurately clas-
sifying some complex, fine-grained labels. To navi-
gate this challenge, we employ contrastive learning
to enhance the differentiation between these labels
(Wang et al., 2022b). The quality of negative sam-
ples is a crucial factor for contrastive learning to be
effective (Yu et al., 2023; Zhang et al., 2024). To
address this, we propose a novel negative sample
generation method—HiSR, to provide a compre-
hensive and diverse set of negative samples for
contrastive learning.

Specifically, HiSR first uses the DFS algorithm
to traverse the entire label tree and generate a se-
quence for each label from top to bottom. The
sequence corresponding to each label starts with
the label of the first layer and ends with itself. All
sequences constitute the negative sample set S. The
predicted probability P of each sequence is calcu-
lated as the average of probabilities of all labels in
the sequence, and the formula is as follows:

P =

∑L
i=1 pi
L

(6)

where L represents the sequence length and pi rep-
resents the probability of the i-th label in the se-
quence. In conclusion, the contrastive loss function
of positive-negative samples Lpn can be expressed
as follows:

Lpn =
∑
j∈S

max(0, Pp − Pj + λ) (7)

where Pp represents the prediction probability of
the ground truth, Pj represents the prediction prob-
ability of the j-th sequence and λ is the margin
between negative samples and positive sample.

However, simply comparing positive-negative
samples will cause the model to overlook the subtle
differences between negative samples, so we intro-
duce negative-negative sample comparison. The
negative-negative sample comparison further re-
fines the distinction between negative samples, en-
hances the sensitivity of the model to subtle feature
differences in fine-grained labels, and prevents the
model from simply classifying all negative samples
into one category, thereby improving the ability of
the model to classify fine-grained labels. Further-
more, negative-negative sample comparison can

help the model better understand the complex rela-
tionships in the label hierarchy. In HTC, different
negative samples may share partially overlapping
label paths. By comparing these negative samples,
the model can gain a deep understanding of parent-
child and sibling relationships within the label hi-
erarchy, thereby enhancing its cognitive ability to
discern the intricacies of the label structure. This
enhancement of cognitive ability is crucial to im-
proving the classification performance of the model
in a complex hierarchical label system.

Specifically, in the negative-negative sample
comparison, it is assumed that sequences that are
closer to the ground truth should be assigned a
higher prediction probability. Thus, HiSR ini-
tially calculates the F1 score (Manning et al., 2008)
of the ground truth and the generated sequences,
which is a commonly utilized evaluation metric
in HTC. Thereafter, sequences with the same F1
score are grouped together. Subsequently, these
groups are sorted in descending order according to
the F1 score, so that sequences that are closer to the
ground truth are ranked first. Finally, in the train-
ing phase, the sequence with the highest prediction
probability is selected from the sorted groups in
each epoch as the negative sample. This dynamic
selection strategy will provide the most challenging
negative samples for contrastive learning, thereby
optimally leveraging the potential of contrastive
learning. The negative-negative sample contrastive
loss function is shown below.

Lnn =
∑
i

∑
j>i

max(0, Pi − Pj + λij) (8)

where λij is the margin multiplied by the distance
in rank between the samples, i.e., λij = (j− i) ∗λ.

The negative-negative sample contrastive loss
function improves the capacity of the model to
identify negative samples by assessing samples
with different scores in the absence of standard
samples, thereby showing unique advantages and
broad application prospects in contrastive learning
(Liu et al., 2022).

In conclusion, the total loss function of con-
trastive learning can be expressed as Eq. 9. The in-
tegration of positive-negative and negative-negative
sample comparison strategies can comprehensively
improve the performance of the model in the HTC
task. This approach not only optimizes the capac-
ity of the model to represent features and classify
data accurately but also offers novel insights and
methodologies for the application of contrastive
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learning in intricate label structures.

LHiSR = Lpn + Lnn (9)

3.5 Classification Loss and Objection
Function

Following previous work (Zhou et al., 2020; Wang
et al., 2022a), a binary cross-entropy loss function
LC is employer for classification,

LC
ij = −yij log(pij)− (1−yij) log(1−pij) (10)

LC =
N∑
i=1

k∑
j=1

LC
ij (11)

where yij is the ground truth. LC
ij and pij is the

binary cross-entropy loss and probability of text i
on label j.

The final loss function of training is a combina-
tion of classification and HiSR:

L = LC + αLHiSR (12)

where α is a hyperparameter for balancing the
HiSR loss.

4 Experiments

In this section, we will introduce datasets, evalua-
tion metrics, implementation details, experimental
results, and ablation studies.

4.1 Datasets and Evaluation Metrics

This study employs three widely recognized
datasets to ensure the generalizability and relia-
bility of the experimental results: Web of Sci-
ence (WOS) (Kowsari et al., 2017a), RCV1 (Lewis
et al., 2004) and New York Times (NYT) (Sand-
haus, 2008). RCV1 and NYT are text classification
datasets from the news domain, whereas WOS com-
prises abstracts of research papers collected from
the Web of Science. These datasets are annotated
with hierarchical labels. All data preprocessing and
partitioning are derived from Zhou et al. (2020).
Notably, WOS is suited for HTC with a single-path
framework, while RCV1 and NYT are multi-path
classification labels. Detailed statistical data about
these datasets can be found in Table 1. In accor-
dance with previous researches (Zhou et al., 2020;
Wang et al., 2022c), the same evaluation metrics
are used: Macro-F1 and Micro-F1.

Dataset |L| Depth Avg(Li) Train Val Test
RCV1 103 4 3.24 20,833 2,316 781,265
WOS 141 2 2.0 30,070 7,518 9,397
NYT 166 8 7.6 23,345 5,834 7,292

Table 1: Detailed information on three datasets. |L| is
the number of classes. Depth represents the maximum
level of the hierarchy. Avg(|Li|) is the average number
of classes for each sample in the dataset.

4.2 Baselines
To verify the performance of the proposed method,
we select some representative baselines. HiAGM
(Zhou et al., 2020) leverages a hierarchy-aware
multi-label attention mechanism to exploit the
prior probability of label dependencies for gener-
ating mixed features. HTCInfoMax (Deng et al.,
2021) enhances HiAGM by implementing infor-
mation maximization to model text-hierarchy in-
teractions, optimizing text-label mutual informa-
tion and regularizing label representations to align
with a prior distribution. HiMatch (Chen et al.,
2021) addresses the problem as a semantic match-
ing task by aligning text and label representa-
tions within a joint embedding space, utilizing
this joint representation for classification. HG-
CLR (Wang et al., 2022b) enhances the represen-
tation of the encoder through contrastive learning
and introduces a new graph encoder to extract hi-
erarchical label information. HPT (Wang et al.,
2022c), a Hierarchy-aware Prompt Tuning method,
which constructs dynamic virtual templates and
label words and introduces a zero-bounded multi-
label cross-entropy loss. HJCL (Yu et al., 2023)
combines instance-level and label-level contrastive
learning techniques. HALB (Zhang et al., 2024)
uses a multi-label negative supervision method to
enhance the perception of text representation on
the label hierarchy and introduces an asymmetric
loss function to solve the label imbalance problem.
NERHTC (Cai et al., 2024) transforms HTC into
a named entity recognition (NER) task and com-
bines conditional random fields (CRF) and Global
Pointer to establish hierarchical dependencies.

4.3 Implementation Details
In our study, we implement the model end-to-end
using the PyTorch deep learning framework. We
select the HiAGM-TP variant from Zhou et al.
(2020), substituting the text encoder with bert −
base − uncased from the Hugging Face Trans-
former (Wolf et al., 2020) library while retaining
all default parameters. Additionally, we adhere to
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Model WOS NYT RCV1-V2
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Hierarchy-Aware Models
HiAGM(Zhou et al., 2020) 85.82 80.28 74.97 60.83 83.96 63.35
HTCInfoMax(Deng et al., 2021) 85.58 80.05 - - 83.51 62.71
HiMatch(Chen et al., 2021) 86.20 80.53 - - 84.73 64.11

Pretrained Language Models
BERT (Our implement) 85.72 79.34 77.64 65.91 85.77 67.04
BERT+HiAGM (Our implement) 86.32 80.67 78.27 66.04 86.37 67.14
BERT+HTCInfoMax(Wang et al., 2022b) 86.30 79.97 78.75 67.31 85.53 67.09
BERT+HiMatch(Chen et al., 2021) 86.70 81.06 - - 86.33 68.66
HGCLR(Wang et al., 2022b) 87.11 81.20 78.86 67.96 86.49 68.31
HPT(Wang et al., 2022c) 87.16 81.93 80.42 70.42 87.26 69.53
HJCL(Yu et al., 2023) - - 80.52 70.02 87.04 70.49
HALB(Zhang et al., 2024) 87.45 82.04 79.56 69.28 86.94 69.32
NERHTC(Cai et al., 2024) 87.42 81.93 80.97 70.99 87.5 69.76
HiSR(Ours) 87.52 82.04 80.32 70.11 87.59 70.72

Table 2: Our proposed model is evaluated on three datasets and compared with previous research findings. The
reported results represent the mean values obtained from three independent trials. The best results are in bold.

the original settings for HiAGM-TP as specified in
the corresponding paper.

For our experiments, the batch size is configured
to 8 for WOS and RCV1, but for NYT, it is set
to 4. We employ the Adam optimizer with the
learning rate set to 1e-5. During the training phase,
we apply an early stopping strategy based on the
performance of the model on the development set
after each epoch. Specifically, if neither of the two
F1 scores improves within six consecutive epochs,
training will be terminated immediately.

In the context of contrastive learning, the weight
is denoted as α and set to 0.01. The margin λ for
negative-negative samples is configured to 0.15 and
for positive-negative samples is set to 0.5.

4.4 Results

The experimental results of our method on three
datasets and the comparison with previous re-
searches are shown in Table 2. To ensure an equi-
table comparison, we conducted essential experi-
ments using our own device. Except for NYT, our
method achieves SOTA performance.

HiSR demonstrates significant improvements
over BERT across all datasets. On WOS, we
observe performance gains of 1.8% and 2.7% in
Micro-F1 and Macro-F1 scores compared with
BERT. Compared to NERHTC, HiSR achieves
marginal yet consistent improvements of 0.1% and
0.11% in Micro-F1 and Macro-F1. The hierarchi-
cal two-layer structure of WOS aligns well with
the strengths of HiSR, facilitating efficient con-
struction of appropriate sample sets and yielding

robust performance. For RCV1, characterized by
its four-layer structure and largest test set com-
pared to other datasets, HiSR outperforms BERT
by 1.82% and 3.68% in Micro-F1 and Macro-F1.
When compared to NERHTC, HiSR shows im-
provements of 0.09% and 0.96% in Micro-F1 and
Macro-F1. The NYT, despite its complexity due
to multi-path and multi-label characteristics, which
pose challenges for HiSR, still sees substantial im-
provements. HiSR surpasses BERT by 2.68% and
4.2% in Micro-F1 and Macro-F1 scores. These
results consistently demonstrate the efficacy of our
proposed model across datasets with varying struc-
tures and complexities.

5 Analysis

5.1 Ablation Study

To demonstrate the effectiveness of our proposed
method, we conduct an ablation study on RCV1
and the results are shown in Table 3. The core
component of the model is HiSR. After remov-
ing it, Macro-F1 drops drastically by 3.58% and
Micro-F1 by 1.22%. Such a large drop shows the
effectiveness of HiSR. After that, GCN is a graph
encoder that can encode hierarchical structures. Af-
ter removing it, Micro-F1 and Macro-F1 drop by
1.06% and 2.27% respectively. This shows that
hierarchical encoding is indispensable in HTC.

5.2 Effect of Local Structure

Our approach aims to address the challenge of
fine-grained labels that are difficult to distinguish,
which is common in HTC research. To demonstrate
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Ablation Models Micro-F1 Macro-F1
BERT 85.77 67.04
HiSR(Ours) 87.59 70.72
−r.m. HiSR 86.37 67.14
−r.m. GCN 86.53 68.45

Table 3: Ablation experiments on RCV1. −r.m. stands
for remove, −r.p. stands for replaced with.

the effectiveness of our model, we conduct further
experiments from two aspects: path consistency
and label granularity.

5.2.1 Path Consistency
Failure to accurately classify fine-grained labels
can lead to path inconsistency. Path inconsistency
refers to the situation where the parent node is
correctly predicted and the child node is incorrectly
predicted, or the child node is correctly predicted
and the parent node is incorrectly predicted on the
same path. Following Chen et al. (2021) and Ji et al.
(2023), we use path-constrained metrics and path-
based metrics to evaluate the effectiveness of our
method in solving the path inconsistency problem,
further proving that our method can address the
challenge of fine-grained label misclassification.

In the path-constrained metrics (CMicro-F1 and
CMacroF1), a node is considered to be correctly
predicted only if all of its ancestor nodes are cor-
rectly predicted. The path-based metrics (PMicro-
F1 and PMacro-F1) are used to evaluate the correct-
ness of all labels on the entire path, but they can
only be used on the mandatory-leaf (Bi and Kwok,
2012) dataset, such as WOS.

We conducted further experiments on the three
datasets, and the results are shown in the table 4 and
5. Both path-constraints and path-based metrics are
applicable to WOS, and our model also achieves
SOTA on WOS. This shows that our method per-
forms excellently on a two-layer structure dataset
like WOS. In further experiments, only the path-
constraint metrics can be used for RCV1 and NYT.
In RCV1, HiSR surpasses all existing models as
expected. However, the eight-layer complex struc-
ture and the large number of labels of NYT pose
some challenges to HiSR.

5.2.2 Label Granularity
We analyze the performance with different la-
bel granularity based on their hierarchical levels.
We compute level-based Micro-F1 and Macro-F1
scores of NYT on BERT, HPT, and our model. The
results are shown in Figure 3. Since NERHTC

Model WOS WOS
PMicro-F1 PMacro-F1 CMicro-F1 CMacro-F1

BERT 79.96 78.40 85.43 79.37
HPT 80.69 79.03 86.57 80.85
NERHTC 81.41 79.52 87.14 81.36
HiSR(Ours) 81.66 80 87.29 81.56

Table 4: Further experiments of path-based and path-
constrained metrics on WOS.

Method RCV1-V2 NYT
CMicro-F1 CMacro-F1 CMicro-F1 CMacro-F1

BERT 85.68 66.96 78.05 64.62
HPT 86.95 68.15 79.51 68.38
NERHTC 86.99 68.46 80.11 69.42
HiSR(Ours) 87.12 69.81 79.14 68.16

Table 5: Further experiments of path-constrained met-
rics on RCV1 and NYT.

does not open source their code and report specific
results on label granularity in their paper, we can
not include NERHTC in the comparison. NYT has
eight layers, and the number of labels in each layer
is 4, 27, 51, 47, 17, 12, 6, and 2. We can see that the
number of labels from the second to fourth layers
is larger, and they contain confusing labels with
similar concepts, so the two metrics drop quickly
in these layers. At the same time, as the number
of layers increases, the label granularity becomes
finer, and the performance of the model further
decreases despite the small number of labels. Ac-
cording to Figure 3, our model is slightly inferior
to HPT in the third layer, but the rest of the layers
are better than other models. The gap with other
models is even bigger in deeper layers, which fully
proves the effectiveness of our method in improv-
ing the model’s ability to distinguish fine-grained
labels.

6 Conclusion

This paper proposes a negative sample genera-
tion method called hierarchical sequence ranking
(HiSR) to provide high-quality negative samples
for contrastive learning, thereby solving the chal-
lenge of similar fine-grained labels being difficult
to distinguish, which is common in HTC tasks. The
negative samples generated by HiSR can not only
transfer the subtle differences between fine-grained
labels to the model, but also the negative-negative
sample comparison introduced according to its or-
dered characteristics can help the model better un-
derstand the complex relationship between label
levels. HiSR provides a new idea for construct-
ing negative samples for hierarchically structured
data. Experiments show that HiSR achieves consis-
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Figure 3: Results of the performance of hierarchical
label granularity on NYT.

tent improvements over the selected baselines and
reaches SOTA performance on some datasets.

Limitations

Experimental results show that HiSR can improve
the discrimination of fine-grained labels. However,
it does not achieve SOTA on NYT. We speculate
that it is difficult for HiSR to construct perfect nega-
tive samples due to the excessive number of layers
and the existence of multiple paths of different
lengths. In addition, the ranking metric may not
be optimal. We will investigate the above issues
further in future work.
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