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Abstract

This paper presents a novel approach named
Contextually Relevant Imputation leveraging
pre-trained Language Models (CRILM) for
handling missing data in tabular datasets. In-
stead of relying on traditional numerical es-
timations, CRILM uses pre-trained language
models (LMs) to create contextually relevant
descriptors for missing values. This method
aligns datasets with LMs’ strengths, allowing
large LMs to generate these descriptors and
small LMs to be fine-tuned on the enriched
datasets for enhanced downstream task perfor-
mance. Our evaluations demonstrate CRILM’s
superior performance and robustness across
MCAR, MAR, and challenging MNAR sce-
narios, with up to a 10% improvement over the
best-performing baselines. By mitigating bi-
ases, particularly in MNAR settings, CRILM
improves downstream task performance and
offers a cost-effective solution for resource-
constrained environments.

1 Introduction

‘Well! I’ve often seen a cat without a
grin,’ thought Alice; ‘but a grin without
a cat! It’s the most curious thing I ever
saw in all my life!’

Lewis Carroll, Alice’s Adventures in
Wonderland (1865)

Missing data in tabular datasets is a ubiquitous
problem often arising from real-life data collection
processes (Kumar et al., 2017). Handling miss-
ing data is crucial for downstream machine learn-
ing (ML) tasks, necessitating data imputation to
fill in missing entries with plausible values. How-
ever, imputation that overlooks the data context
can introduce unintended biases, leading to aber-
rant model behavior (Schelter et al., 2018, 2021;
García-Laencina et al., 2010; Stoyanovich et al.,
2020; Yang et al., 2020; Abedjan et al., 2018).

Data may be missing because it was never col-
lected or because collected data was lost. These
causes are driven by domain-specific contexts. For
example, in the medical domain, data might not be
collected due to various reasons, such as a patient’s
characteristics not being recorded during a visit,
some tests not being performed, intentional omis-
sions by patients, or the difficulty and danger of
acquiring certain information (Yoon et al., 2017;
Alaa et al., 2018; Yoon et al., 2018b). Data loss can
occur through application or transmission errors or
due to data integration errors.

Typically, imputation methods estimate missing
values based on observed data, such as a patient’s
blood pressure and heart rate (Yoon et al., 2018c).
However, missing data do not always depend on
the observed data. Rubin’s widely used categoriza-
tion of missingness mechanisms identifies three
cases (Rubin, 1976): missing completely at ran-
dom (MCAR), missing at random (MAR), and
missing not at random (MNAR). In MCAR, the
missingness is independent of the data, whereas
in MAR, the probability of being missing depends
only on observed values. In MNAR, the probability
of missingness depends on unobserved values, and
imputation in this case can introduce significant
biases to the data. Therefore, to achieve accurate
imputation, it is crucial for methods to account for
the specific context of the missingness.

Existing imputation methods use various nu-
meric estimation techniques to capture the data
context, preserving joint and marginal distributions
of the imputed data. Many methods, including
traditional statistical approaches and machine/deep
learning methods, aim to learn the joint distribution
of the data either implicitly or explicitly (Van Bu-
uren et al., 2006; Yoon et al., 2018a; Gondara and
Wang, 2018; Mattei and Frellsen, 2019; Nazabal
et al., 2020; Zhao et al., 2023). However, these
methods have several limitations: often requiring
fully observed training data, being challenging to
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implement, needing separate models for each fea-
ture, and lacking support for column-specific mod-
eling. See Section 3 for more details. Moreover,
most approaches, with notable exceptions (Kim
and Ying, 2018; Mohan and Pearl, 2019), primar-
ily address MCAR and MAR data, struggling with
the more challenging yet prevalent MNAR case
(Muzellec et al., 2020).

Parallel to numeric estimation-based imputation,
we explore alternative methods for capturing data
context to handle missing values. Specifically, we
examine whether it is possible to bypass modeling
the data distribution entirely. In scenarios where
numeric-estimation methods may introduce bias,
such as in MNAR settings, or prove inadequate, we
develop an approach that avoids direct estimation
of missing values. Instead of estimating missing
values directly, we investigate whether an artifi-
cial intelligence (AI) model can implicitly handle
missingness through its prior general knowledge.

To address these challenges, we explore the po-
tential of utilizing general-purpose pre-trained lan-
guage models (LMs) (Brown et al., 2020; Chowd-
hery et al., 2022; Touvron et al., 2023a; OpenAI,
2023b) for handling diverse missingness in tabular
datasets. These models possess expansive knowl-
edge (Raffel et al., 2020; Roberts et al., 2020), rea-
soning capabilities (Chowdhery et al., 2022; Wei
et al., 2023; Bhatia et al., 2023), and extensive lin-
guistic expertise (Petroni et al., 2019; Mahowald
et al., 2024), and have demonstrated exceptional
performance across various downstream natural
language processing (NLP) tasks (Bubeck et al.,
2023; Raffel et al., 2020; Yang et al., 2024a). Our
aim is to leverage the advanced capabilities of LMs
to enhance the performance of downstream tasks
on tabular data with missing values.

To achieve this goal, we approach the down-
stream task by treating it as an NLP problem and
harnessing the capabilities of LMs to handle miss-
ing values. We propose a novel method named
Contextually Relevant Imputation leveraging pre-
trained Language Models (CRILM), which oper-
ates through a dual-phase process. Initially, large
LMs (LLMs), such as those with more than 10 bil-
lion parameters, generate contextually relevant nat-
ural language descriptors for missing values. For
instance, in the UCI Wine dataset (Aeberhard and
Forina, 1991), a contextually relevant descriptor for
missing values in the feature malic acid could be:
Malic acid quantity missing for this wine sample.
These descriptors replace missing values, trans-

forming numeric datasets into natural language
contextualized formats, thereby aligning the data
with the strengths of LMs and augmenting their
processing capabilities.

Subsequently, these missingness-aware textual
datasets are used for solving downstream tasks such
as classification, modeled as NLP tasks. The tex-
tual datasets serve as the foundation for fine-tuning
smaller pre-trained LMs such as those with less
than 10 billion parameters, showcasing a unique
and effective use of language models beyond their
conventional applications. By incorporating con-
textually relevant descriptors for missing data,
CRILM addresses variability and specificity across
different domains and navigates the complexities
of various missingness mechanisms.

Recently, Transformer-based (Vaswani et al.,
2017) methods have been proposed to handle miss-
ing values in tabular data, such as masked Trans-
former for generating synthetic tabular data (Gulati
and Roysdon, 2023) and pre-training LMs using
enriched tabular data (Yang et al., 2024b). How-
ever, these approaches overlook diverse missing-
ness patterns, raising questions about their ability
to address the biases introduced by the imputa-
tion methods and whether downstream task perfor-
mance improves as a result. Through the innovative
integration of LMs into the data imputation process,
CRILM aims to deliver a more nuanced, accurate,
and reliable method for handling missing data in a
context-aware fashion, essential for improving the
quality of downstream NLP tasks.

Our approach offers a cost-effective solution by
leveraging publicly available LLMs for zero-shot
inference and employing smaller LMs for down-
stream tasks, which can be efficiently fine-tuned
in low-resource environments. This feasibility is
demonstrated through experiments using accessi-
ble resources like ChatGPT-3.5 (OpenAI, 2023a)
for inference and smaller LM-based fine-tuning,
ensuring efficient implementation.

To evaluate CRILM’s effectiveness, we analyze
its performance across three missing data mecha-
nisms—MCAR, MAR, and MNAR (Rubin, 1976).
CRILM is compared against various existing im-
putation methods, investigating different phras-
ing choices for missingness descriptors in LM-
based tasks. We also explore the influence of
decoder-only and encoder-decoder pre-trained LMs
on downstream transfer learning, assessing their
impact on task performance. Our empirical studies
address two key research questions (RQs):
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• [RQ1]: To what extent does CRILM effectively
perform in imputing missing values across dis-
tinct missingness mechanisms (MCAR, MAR,
and MNAR), compared to existing methods,
in terms of accuracy and robustness on varied
datasets?

• [RQ2]: How do feature-specific versus generic
missingness descriptors impact the performance
of LM-based downstream tasks?

The contributions of this work are multifaceted.
Firstly, CRILM introduces an innovative imputa-
tion approach for missing values in tabular datasets,
running parallel to existing numeric-estimation-
based methods. By utilizing LMs to gener-
ate context-specific descriptors for missing data,
CRILM sets a new benchmark in data imputa-
tion, departing from traditional numerical meth-
ods. Secondly, our empirical evaluation highlights
CRILM’s superior performance over existing meth-
ods across varied datasets and missingness patterns,
particularly excelling in MNAR settings where bi-
ases introduced by numeric-estimation-based tech-
niques can be significant. Specifically, CRILM
demonstrates a substantial performance lead of up
to 10% over the best-performing baseline imputa-
tion method in the challenging MNAR scenarios.
Thirdly, we advance the understanding of the NLP
capabilities of pre-trained LMs by demonstrating
their potential in handling complex data imputation
tasks. Additionally, the cost-effectiveness of our
approach, achieved by leveraging smaller LMs for
transfer learning, enhances its practicality and ac-
cessibility. Lastly, our analysis comparing feature-
specific and generic descriptors offers insights into
optimizing LM performance for imputation tasks,
emphasizing contextual accuracy. These contribu-
tions advance data preprocessing techniques and
open novel pathways for leveraging LMs in ad-
dressing complex data science challenges.

2 Method

2.1 Problem Formulation

Consider a tabular dataset represented by a matrix
X consisting of a collection of n instances (rows)
where each instance Xi is a d-dimensional ran-
dom variable: Xi = (Xi

1, ..., X
i
d) (thus d columns).

These variables are continuous and/or categorical.
The dataset X has an observed portion denoted by
XO and a missing portion denoted by XM. The
missingness pattern in X is denoted by M, which
is a matrix of the same dimensions as X in which

cells have a value of 1 if missing and 0 otherwise.
CRILM takes X and transforms it into a

missingness-aware contextualized natural language
dataset Xmissingness_aware by replacing the miss-
ing values by contextually relevant descriptors. Our
goal is to demonstrate the efficacy of CRILM via
the performance of a downstream classification task
by fine-tuning an LM using Xmissingness_aware.

2.2 Generating Missing Values
We construct synthetic datasets with up to 30%
missing values by applying the following three
missingness mechanisms on complete datasets:
MCAR, MAR and MNAR. The implementations of
these mechanisms are modified from (Jäger et al.,
2021).
MCAR. It is introduced by randomly removing
30% of the observations from each feature.
MAR. First, we select all observations within the
30th percentile range of an independent feature,
typically the first column in the dataset. Then, we
randomly remove 60% of the values from each cor-
responding (dependent) feature within this subset,
ensuring that missingness is related to the inde-
pendent feature but random within the dependent
features.
MNAR. We remove the observations of a feature
if the observations fall within the 30th percentile
range of the feature value.

2.3 Description of CRILM
Figure 1 illustrates the CRILM process, which en-
compasses four stages: (1) constructing a contex-
tualized natural language dataset, (2) generating
suitable descriptors for missing values, (3) creating
a missingness-aware contextualized dataset, and (4)
adapting an LM for downstream tasks. We detail
these stages below.

Figure 1: An overview of CRILM.

Constructing a Contextualized Natural Lan-
guage Dataset. We construct a contextualized
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natural language dataset from a numeric dataset
X containing missing values. The objective is to
generate contextually suitable description of each
attribute and its measures in natural language. For
instance, a record from the UCI Wine dataset (Ae-
berhard and Forina, 1991) with numeric input and
output attributes is contextualized as follows: “The
alcohol content in the wine is 12.47. The level
of malic acid in the wine is 1.52 ... The class of
the wine is classified as class 1 wine.”1 This step
converts numeric values into detailed descriptions,
preparing the dataset for embedding missing value
descriptors.

Generating Suitable Descriptors for Missing Val-
ues. Unlike conventional imputation methods that
estimate missing values from observed data using
numerical methods, we utilize contextually relevant
descriptors of missing values for imputation. We
generate these descriptors by a conversational LLM
(e.g., OpenAI’s ChatGPT-3.5 (OpenAI, 2023a)).
We prompt the LLM with a dataset description and
instruct it to generate missing value descriptors,
such as: “For any missing attribute values, suggest
contextually relevant descriptors to fill in the miss-
ing data.” This method relies on LLM’s extensive
knowledge base and linguistic capabilities to pro-
duce appropriate missing value descriptors. A list
of feature-specific contextually relevant missing-
value descriptors for selected datasets are provided
in Appendix A.4.

Creating a Missingness-Aware Contextualized
Dataset. We construct the missingness-aware con-
textualized natural language dataset, denoted as
Xmissingness_aware, by replacing the missing val-
ues with generated descriptors. This process en-
sures that each data instance is “aware” of its miss-
ing attributes, thereby enhancing the downstream
LM’s ability to learn from incomplete data by pro-
viding explicit context. Additionally, we use dis-
tinct descriptors for different features in the dataset
that contain missing values. This approach implic-
itly informs the downstream LM to handle the miss-
ingness of each feature in a contextually appropri-
ate manner, ultimately improving the performance
of the downstream task.

Adapting an LM for Solving Downstream
Tasks. The final step involves fine-tuning a pre-
trained small LM with the missingness-aware,

1The Python script used for contextualization is provided
in the Supplementary Material.

contextually-rich dataset. During the fine-tuning
process, we incorporate specific task instructions
and strategies for handling missing data. For in-
stance, in classification tasks, we include instruc-
tions such as: “Predict the class based on the given
measurements. Use the context provided by the
missing value descriptors to inform the prediction.”
This approach ensures that an LM effectively uti-
lizes the contextual information embedded in the
descriptors, thereby enhancing its predictive per-
formance despite the presence of missing data. Us-
ing smaller LMs for fine-tuning not only makes
the process cost-effective but also allows for effi-
cient adaptation to the specific characteristics of
the dataset and task at hand.

3 Related Work

The challenge of missing data in tabular datasets
has led to the development of numerous imputation
methods, broadly categorized into those modeling
feature distribution and those that do not. The lat-
ter category includes methods such as distribution
matching and traditional non-parametric methods.
In the former category, two distinct types of impu-
tation methods exist: those treating features sep-
arately and those treating them jointly. Separate
feature treatment methods, like Multivariate Impu-
tation by Chained Equations (MICE) (Van Buuren
et al., 2006; van Buuren and Groothuis-Oudshoorn,
2011), which is an iterative method as well as a
discriminative method, specify a univariate model
for each feature based on others, with other notable
iterative methods also existing (Heckerman et al.,
2000; Raghunathan et al., 2001; Gelman, 2004; Liu
et al., 2014; Zhu and Raghunathan, 2015). Joint
treatment methods aim to learn a joint distribution
of all features, with recent developments includ-
ing deep learning-based generative methods like
GAIN (Yoon et al., 2018a), utilizing Generative Ad-
versarial Nets (Goodfellow et al., 2014), although
their effectiveness varies compared to traditional
methods (Jäger et al., 2021). Other types of gener-
ative models that are based on Denoising Autoen-
coders (Vincent et al., 2008), have been proposed
(Gondara and Wang, 2018; Rezende et al., 2014;
Mattei and Frellsen, 2018; Nazabal et al., 2020;
Ivanov et al., 2019; Richardson et al., 2020a; Mattei
and Frellsen, 2019), though most of these models
either rely on fully-observed training data or are
suitable only for the MCAR data. Another recent
approach, Distribution Matching (DM) (Muzellec
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et al., 2020), bypasses direct modeling of data dis-
tributions. A notable DM method is Transformed
Distribution Matching (Zhao et al., 2023), which
is suitable for real-world data with complex ge-
ometry. Non-parametric methods like k-nearest
neighbors (k-NN) imputation (Troyanskaya et al.,
2001), which is a discriminative method, and Miss-
Forest (Stekhoven and Bühlmann, 2012), which is
an iterative and discriminative method, have shown
effectiveness compared to sophisticated methods
(Emmanuel et al., 2021; Jäger et al., 2021), par-
ticularly in the MAR setting (Jarrett et al., 2022).
Additionally, simple imputation approaches like
mean substitution (Hawthorne and Elliott, 2005)
provide basic alternatives. More details are pro-
vided in Appendix A.1.

4 Experiments

We systematically assess CRILM’s efficacy in ad-
dressing the research questions outlined in Sec-
tion 1 through a series of experiments. Uti-
lizing two types of LMs—decoder-only and
encoder-decoder—we evaluate the performance of
LMs fine-tuned with missingness-aware contextual
datasets in downstream classification tasks post-
imputation. Specifically, we investigate three types
of missingness mechanisms: MCAR, MAR, and
MNAR. For comparison with the baseline methods,
we first impute the numeric datasets using exist-
ing methods (described further below). Then, the
datasets are transformed into contextualized natu-
ral language datasets using the method described
in Section 2.3, which are used for fine-tuning the
LMs.

Datasets. We evaluate CRILM’s performance us-
ing six real-life multivariate classification datasets
from the UCI repository (Dua and Graff, 2017),
which are selected based on their prior usage in ex-
isting numeric imputation-based studies (Muzellec
et al., 2020; Yoon et al., 2018a; Camino et al., 2019;
Gondara and Wang, 2018; Lu et al., 2020; Hallaji
et al., 2021; Nazabal et al., 2018; Zhao et al., 2023).
This selection ensures a fair comparison with previ-
ous research efforts. Dataset statistics are provided
in Appendix A.3.

Baseline Imputation Methods. We compare
CRILM against a diverse set of imputation ap-
proaches by focusing on the following six base-
line methods: (1) Mean substitution (Hawthorne
and Elliott, 2005) (simple imputation method),
(2) k-NN (Troyanskaya et al., 2001; Batista and

Monard, 2002) (non-parametric and discrimina-
tive method), (3) MissForest (Stekhoven and
Bühlmann, 2012) (non-parametric, discriminative,
and iterative method), (4) MICE (Van Buuren et al.,
2006; van Buuren and Groothuis-Oudshoorn, 2011)
(discriminative and distribution modeling iterative
approach that treats each feature separately), (5)
GAIN (Yoon et al., 2018a) (generative and dis-
tribution modeling iterative approach that treats
features jointly), and (6) Transformed Distribution
Matching (TDM) (Zhao et al., 2023) (distribution
matching method).

LMs for Downstream Tasks. We utilize two types
of smaller pre-trained LMs for transfer learning:
decoder-only Llama 2 (Touvron et al., 2023b) and
encoder-decoder FLAN-T5 (Chung et al., 2022)
with 7 billion (7B) and 770 million (770M) param-
eters, respectively.

Experimental Settings. The hyperparameter set-
tings for the various imputation methods and the
LMs used in our experiments are detailed below.

Hyperparameters for Baseline Imputation Meth-
ods. For GAIN, we adhere to the hyperparameters
specified in the original publication, setting α to
100, the batch size to 128, the hint rate at 0.9, and
the number of iterations to 1000 for optimal per-
formance. MissForest and MICE are configured
with their respective default parameters as provided
in their PyPI implementations2, i.e., MissForest:
maxiter = 10, ntree = 100, and MICE: m = 5 for
the number of multiple imputations. The PyPI
MICE implementation utilizes random forests for
efficiency. For k-NN, we determine the optimal
values for k for each dataset through hyperparame-
ter tuning based on the downstream classification
task. For a list of optimal k values, refer to the Ap-
pendix A.5. Regarding TDM, we use the original
implementation with the reported settings (Zhao
et al., 2023).

Pre-trained LMs for Transfer Lerning. The
Llama model is fine-tuned with the parameter-
efficient QLoRA method (Dettmers et al., 2023).
The settings are r = 16, α = 64,
dropout = 0.1 with the task type set to
“CAUSAL_LM”. The learning rate is 2e-4, using
the “paged_adamw_32bit” optimizer. The FLAN-
T5 model (Chung et al., 2022) is fine-tuned us-
ing an AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate set to 3e-4.

2https://pypi.org/



5673

(a) MCAR (Llama) (b) MCAR (FLAN-T5)

(c) MAR (Llama) (d) MAR (FLAN-T5)

(e) MNAR (Llama) (f) MNAR (FLAN-T5)

Figure 2: [RQ1]: Comparison of CRILM and baseline imputation methods across MCAR, MAR, and MNAR
missingness patterns using Llama and FLAN-T5 models. Evaluation involves post-imputation LM-based down-
stream task performance, with CRILM fine-tuned on missingness-aware contextual datasets and baseline methods
on contextual datasets. “No Imputation” cases show LM performance on complete datasets without missing values.

Experiments are conducted with a batch size
of 4 across 50 epochs, considering memory con-
straints during fine-tuning. Two Tesla A40 GPUs
are used for distributed training, ensuring efficient
processing, with each experiment completing in
less than twenty minutes, except for the Breast Can-
cer dataset with more than 500 instances, which
takes about an hour. An estimated training time on
a single GPU would require between 45 minutes to
2 hours to complete all experiments. For evaluation,
20% of instances are randomly sampled from each
dataset. Models are evaluated five times, and both
the average performance and standard deviation are

reported for comprehensive analysis.

4.1 Results

Figure 2 displays experimental outcomes using
two types of downstream LMs across six datasets,
benchmarking CRILM against existing imputation
methods. Performance metrics for LMs fine-tuned
on complete datasets (without missing values, thus
no imputation needed) are included for comparison.
This approach highlights CRILM’s effectiveness
by providing a reference baseline, offering a clear
view of its advantages over traditional imputation
methods.
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[RQ1]: To what extent does CRILM effectively
perform in imputing missing values across dis-
tinct missingness mechanisms (MCAR, MAR, and
MNAR), compared to existing methods, in terms of
accuracy and robustness on varied datasets?

MCAR: CRILM demonstrates superior accuracy
in imputing missing values across all datasets com-
pared to baseline imputation methods. Both the
Llama and FLAN-T5 performed well, with Llama
showing a slight advantage (1 to 8% higher accu-
racy). CRILM’s performance under the MCAR
assumption, where missingness is independent of
any data, suggests that it efficiently leverages con-
textual information for imputation. This efficacy
is particularly evident in its ability to significantly
close the gap toward the performance of fully com-
plete datasets, showcasing its effectiveness.

MAR: CRILM’s adaptability is further high-
lighted under MAR, where missingness depends
on observed data. It outperforms other methods by
a considerable margin, indicating its proficiency in
utilizing available data points to predict missing
values accurately. The Llama consistently exhibits
superior performance, similar to the MCAR case
(2 to 5% higher accuracy).

MNAR: The MNAR scenario, characterized
by missingness that depends on unobserved data,
poses the most significant challenge. Here,
CRILM’s performance remains notably superior
to traditional imputation methods. This robustness
in the face of the most difficult missingness mech-
anism illustrates CRILM’s potential to effectively
mitigate biases introduced by MNAR missingness,
utilizing the LMs’ capacity to infer missing infor-
mation from complex patterns. Similar to the pre-
vious cases, Llama exhibits better performance (2
to 4% higher accuracy)

To further demonstrate CRILM’s superior perfor-
mance over traditional baseline imputation meth-
ods, particularly in the MNAR setting, we assess
its efficacy on three challenging datasets: Glass
Identification, Seeds, and Wine. These datasets are
selected due to the observed lower performance of
LMs when utilizing fully complete versions (refer
to Figure 2), highlighting their complexity and serv-
ing as a rigorous evaluation benchmark for CRILM.
According to the results (see Table ??), CRILM
consistently outperforms the best baseline methods.
The performance gains are 10.0%, 6.0%, and 10.0%
for Glass Identification, Seeds, and Wine, respec-
tively, using Llama, and 13.6%, 5.6%, and 8.2%

using FLAN-T5. This significant improvement un-
derscores CRILM’s effectiveness in addressing the
intricacies of MNAR missingness, confirming its
position as a robust tool for managing various miss-
ing data scenarios. Additional analysis details on
MCAR and MAR are provided in Appendix A.2.

LM Data Best Baseline CRILM Gain

Glass 44.80% (TDM) 54.80% +10.0%
Llama Seeds 76.40% (TDM) 82.40% +6.0%

Wine 75.60% (MissFor-
est)

85.60% +10.0%

Glass 39.20% (MICE) 52.80% +13.6%
FLAN-
T5

Seeds 73.80% (TDM) 79.40% +5.6%

Wine 74.20% (TDM) 82.40% +8.2%

Table 1: Comparison of CRILM accuracy with leading
imputation methods on MNAR missingness across three
datasets.

Discussion on RQ1. CRILM’s consistent superior-
ity across diverse missingness patterns and datasets
confirms its effectiveness, addressing RQ1. This
underscores the advantages of integrating con-
textualized natural language models into imputa-
tion, particularly in challenging MNAR scenar-
ios where traditional numeric-estimation methods
may introduce biases. The robust performance of
CRILM across MCAR, MAR, and MNAR miss-
ingness mechanisms highlights its broad applica-
bility, distinguishing it from conventional meth-
ods. This generalizability can be attributed to
CRILM’s missingness-aware data contextualiza-
tion approach, which effectively taps into the prior
knowledge of the pre-trained LMs to implicitly han-
dle missing cases in the data. Notably, Llama (7B)
performs slightly better than FLAN-T5 (770M),
likely due to its larger model size, which enhances
its ability to capture and utilize complex patterns
in the data. Furthermore, minimal performance
variation across iterations underscores CRILM’s
stability and reliability, crucial for real-world appli-
cations. Its ability to maintain a consistently low
error margin highlights its potential as a reliable
solution for data imputation.

[RQ2]: How do feature-specific versus generic
missingness descriptors impact the performance
of LM-based downstream tasks? Initially, we uti-
lize contextually relevant, feature-specific descrip-
tors for missing values, leading to unique phrases
for different features within a dataset. To address
RQ2, we aim to determine whether using a uniform,
yet contextually relevant, descriptor for all fea-
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(a) MCAR (Llama) (b) MCAR (FLAN-T5)

Figure 3: [RQ2]: Impact of feature-specific vs. generic (“NaN”, “Missing value”, and “Value not recorded”)
missingness descriptors on LM Performance in MCAR scenario.

tures would offer comparable benefits. To this end,
we experiment with three consistent descriptors:
“NaN”, “Missing value”, and “Value not recorded”.
These experiments, focusing on the MCAR sce-
nario, sought to ascertain whether it is more ben-
eficial to use contextually nuanced descriptors or
whether a generic descriptor is adequate to harness
LMs’ general knowledge for managing missing
values in datasets.

The experimental findings (Figure 3) illuminate
the influence of missing data phrasing on the effec-
tiveness of LMs in addressing such situations. The
results reveal a distinct pattern across both types of
LMs: generic descriptors, such as “NaN”, consis-
tently perform worse than context-specific descrip-
tors designed for each feature and dataset. Among
the three fixed descriptors tested, there are some
variations in performance. Both “NaN” and “Miss-
ing value” outperformed “Value not recorded”,
with “Missing value” achieving the best results
in most cases among the static descriptors.

Discussion on RQ2. The findings on RQ2 high-
light the importance of context in LMs’ handling of
missing data. The superior performance of feature-
specific descriptors shows that LMs better manage
missing data when it is described in a way that
accurately reflects the context of the missing infor-
mation. For example, a descriptor like “Malic acid
quantity missing for this wine sample” allows an
LM to interpret and address the missing data point
more effectively than a generic descriptor like “The
level of malic acid in the wine is NaN”. This pref-
erence for context-specific descriptors stems from
LMs’ extensive linguistic capability. When missing
data aligns with the specific context of a feature, an
LM can better utilize its knowledge to handle the
missing values. However, effectiveness drops when

generic labels are used, as they provide minimal
contextual information for the LM to draw upon.

Cost-Effective Implementation of CRILM. Our
method provides an economically viable solution
by utilizing publicly available LLMs for zero-shot
inference and smaller LMs for downstream tasks,
allowing for efficient fine-tuning even in resource-
constrained settings. This feasibility is demon-
strated through experiments employing accessi-
ble resources like ChatGPT-3.5 for inference and
single GPU fine-tuning, ensuring experiments are
completed within an hour on average, thereby high-
lighting its cost-effectiveness.

5 Conclusion

CRILM demonstrates robust handling of miss-
ing data across MCAR, MAR, and notably
MNAR mechanisms, consistently outperforming
traditional methods. Our experiments highlight
CRILM’s remarkable effectiveness in MNAR sce-
narios, achieving up to a 10% performance margin
over baseline methods, underscoring its efficacy in
the most challenging missingness setting. By lever-
aging contextualized LMs, CRILM offers a novel
imputation method alongside numeric-estimation
approaches, particularly beneficial in mitigating bi-
ases and enhancing reliability in MNAR case. Its
cost-effective implementation, using publicly avail-
able LLMs for inference and smaller LMs for down-
stream tasks, enhances practicality in resource-
constrained settings.

Future work will explore extending CRILM to
diverse data types such as time-series, images, and
unstructured text.



5676

6 Limitations

Despite the notable advancements presented by
CRILM in addressing missing data within tabular
datasets, this work has several limitations. Firstly,
CRILM’s efficacy depends heavily on the qual-
ity and diversity of the training data used to de-
velop the underlying LLMs. In scenarios where
LLMs lack exposure to data similar to the specific
domain or context of missing information, their
ability to generate accurate imputations may be
compromised. Additionally, the approach assumes
that the descriptive context provided for missing
values sufficiently informs the LLM, which may
not always be the case. Furthermore, processing
large datasets with CRILM, even though we utilize
smaller LMs for fine-tuning with contextualized
missingness-aware data, may pose scalability chal-
lenges, as the fine-tuning process could increase in
duration. Moreover, while CRILM performs well
across various missingness mechanisms, its appli-
cation in highly specialized domains where expert
knowledge heavily influences data interpretation
requires further exploration. Lastly, it is important
to note that our evaluation focused on classifying
downstream tasks, leaving its efficacy in other task
types for future investigation.
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A Appendix

In this section, we begin with a comprehensive
discussion of the related work. Following this,
we conduct a comparative analysis of CRILM’s
effectiveness on a selected set of challenging down-
stream tasks. Next, we provide a summary of the
datasets, along with a list of feature-specific contex-
tually relevant missing-value descriptors for three
selected datasets. Lastly, we present the optimal
values of k obtained through hyperparameter tun-
ing for k-NN imputation across three missingness
patterns—MCAR, MAR, and MNAR—using the
Llama and FLAN-T5 models on the six datasets.

A.1 Related Work

The challenge posed by missing data in tabular
datasets has led to the development of numerous
imputation methods, broadly classified into two
categories: those modeling feature distribution and
those that do not model distributions. The latter cat-
egory includes methods such as distribution match-
ing and traditional non-parametric methods. In the
former category, where the focus is on modeling
feature distribution, methods aim to model the dis-
tribution of missing values while maximizing the
observed likelihood (Muzellec et al., 2020). Within
this line of approach, two distinct types of impu-
tation methods exist (Zhao et al., 2023): methods
that treat features separately and those that treat
them jointly.

For methods treating features separately, an iter-
ative approach is employed, specifying a univari-
ate model for each feature based on all others. A
prominent example is the Multivariate Imputation
by Chained Equations (MICE) method (Van Bu-
uren et al., 2006; van Buuren and Groothuis-
Oudshoorn, 2011), which adopts a discriminative
approach for imputation. MICE sequentially im-
putes missing values for each variable based on
the others, cycling through the variables iteratively
until predictions stabilize. MICE is particularly ef-
fective for handling MCAR and MAR data (Jarrett
et al., 2022). Other notable iterative methods in-
clude (Heckerman et al., 2000; Raghunathan et al.,
2001; Gelman, 2004; Liu et al., 2014; Zhu and
Raghunathan, 2015). Given the potential variation
in the conditional distribution of each feature, these
methods necessitate the specification of separate
models for each feature. This approach may prove
ineffective, especially in cases where the nature of
the missing values remains uncertain.

On the other hand, methods that treat features
collectively aim to learn a joint distribution of all
features, either explicitly or implicitly. A classi-
cal approach for explicit joint modeling assumes
a Gaussian distribution for the data, with param-
eters estimated using EM algorithms (Dempster
et al., 1977). Recent developments have seen
the utilization of deep learning-based generative
methods such as Denoising Autoencoders (DAE)
(Vincent et al., 2008) and Generative Adversar-
ial Nets (GAN) (Goodfellow et al., 2014). Gen-
erative methods can be categorized into implicit
and explicit modeling. Implicit models include im-
puters trained as generators in GAN-based frame-
works (Yoon et al., 2018a; Li et al., 2019; Yoon and
Sull, 2020; Dai et al., 2021; Fang and Bao, 2022).
However, these models produce imputations that
are only valid for the MCAR data (Yoon et al.,
2018a; Li et al., 2019; Yoon and Sull, 2020). A
notable GAN-based method is GAIN (Yoon et al.,
2018a), specifically designed for imputing miss-
ing data without the need for complete datasets.
In GAIN, the generator outputs the imputations,
while the discriminator classifies the imputations
on an element-wise basis. However, GAIN can be
quite difficult to implement in practice (Muzellec
et al., 2020). Moreover, it often falls short com-
pared to more traditional machine learning meth-
ods such as the non-parametric k-nearest neigh-
bors (k-NN) in terms of performance (Jäger et al.,
2021). Explicit generative models refer to deep
latent-variable models trained to approximate joint
densities using variational bounds. Most of these
models either rely on fully-observed training data
(Gondara and Wang, 2018; Rezende et al., 2014;
Mattei and Frellsen, 2018) or are suitable only for
the MCAR data (Nazabal et al., 2020; Ivanov et al.,
2019; Richardson et al., 2020a). MIWAE (Mattei
and Frellsen, 2019) is an exception in this category
that adapts the importance-weighted autoencoders
(Burda et al., 2015) objective to approximate maxi-
mum likelihood in MAR settings. However, its ac-
curacy depends on the assumption of infinite com-
putational resources. Additionally, with the excep-
tion of methods that use separate decoders for each
feature (Nazabal et al., 2020), generative methods
generally do not support column-specific modeling.
Other approaches in the category of methods that
learn a joint distribution include those based on
matrix completion (Mazumder et al., 2010; Hastie
et al., 2015), graph neural networks (You et al.,
2020; Vinas et al., 2021; Chen et al., 2022; Huang
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et al., 2022; Morales-Alvarez et al., 2022; Gao
et al., 2023), normalizing flows (Richardson et al.,
2020b; Ma and Ghosh, 2021; Wang et al., 2022),
and Gaussian processes (Dai et al., 2022).

Distribution Matching (DM) methods represent
a recent alternative approach that bypasses the need
for modeling data distributions directly (Muzellec
et al., 2020; Zhao et al., 2023). The core idea be-
hind DM is that any two batches of data (including
those with missing values) originate from the same
underlying data distribution. Therefore, an effec-
tive method should impute the missing values to
ensure that the empirical distributions of the two
batches are closely matched. In (Muzellec et al.,
2020), the authors achieve DM by minimizing the
optimal transport (OT) distance, with the cost func-
tion being the quadratic distance in the data space
between samples. Another notable method, suit-
able for real-world data with complex geometry, is
Transformed Distribution Matching (TDM) (Zhao
et al., 2023). TDM performs OT-based imputa-
tion in a transformed space, where the distances
between transformed samples better reflect their un-
derlying similarities and dissimilarities, respecting
the data’s inherent geometry.

Non-parametric methods like k-NN imputation
(Troyanskaya et al., 2001; Batista and Monard,
2002) and random forest imputation, such as Miss-
Forest (Stekhoven and Bühlmann, 2012), have
demonstrated effectiveness in comparison to other
sophisticated imputation methods (Emmanuel et al.,
2021; Jäger et al., 2021). The k-NN method em-
ploys a discriminative algorithm that utilizes the
similarity between instances, typically measured
by Euclidean distance, to impute missing values,
offering flexibility in handling both continuous and
categorical data. Conversely, MissForest is an it-
erative method harnessing the power of random
forests, excelling in datasets with complex interac-
tions and non-linear relationships, often surpassing
other methods in terms of accuracy and robustness.
MissForest is particularly adept in the MAR setting
(Jarrett et al., 2022).

Finally, simple imputation approaches like mean
substitution (Hawthorne and Elliott, 2005) and hot
deck imputation (Marker et al., 2002) provide basic
alternatives.

A.2 Comparative Analysis of CRILM’s
Effectiveness

To demonstrate the superior performance of
CRILM over traditional baseline imputation meth-

Dataset Best Baseline CRILM Gain

Glass Identification

MCAR 52.40% (k-NN) 59.60% 7.2%
MAR 60.20% (MICE) 62.20% 2.0%
MNAR 44.80% (TDM) 54.80% 10.0%

Seeds

MCAR 80.40% (MICE) 84.60% 4.2%
MAR 81.80% (MICE) 84.80% 3.0%
MNAR 76.40% (TDM) 82.40% 6.0%

Wine Quality

MCAR 82.00% (MICE) 84.40% 2.4%
MAR 86.60% (MICE) 87.80% 1.2%
MNAR 75.60% (MissForest) 85.60% 10.0%

Table 2: Performance Comparison of CRILM accuracy
with leading imputation methods using Llama across
three challenging datasets. Best performing baseline
methods are in bold.

ods, we investigate its performance on three partic-
ularly challenging datasets: Glass Identification,
Seeds, and Wine. These datasets were chosen due
to the comparatively lower performance exhibited
by the LMs when using fully complete versions of
the datasets (i.e., no missing values), underscoring
their complexity and providing a rigorous testing
ground for evaluating CRILM’s effectiveness.

A.2.1 Llama
Table ?? presents a detailed comparative analysis
based on Llama. In the MCAR setting, CRILM
demonstrates substantial superiority over the best
baseline method (k-NN, achieving 52.40% accu-
racy) with a performance gain of 7.2%. This
underscores CRILM’s robustness in effectively
handling missing data within complex datasets.
The challenge intensifies with the Seeds dataset,
where CRILM surpasses the top-performing base-
line method (MICE) by 4.2% under the MCAR
setting. Similar trends are observed in the Wine
dataset, where CRILM outperforms the best base-
line performance under MCAR by 2.4%.

Under MAR conditions, the performance gaps
between CRILM and the best-performing baseline
methods are relatively modest—2%, 3%, and 1.2%
for Glass Identification, Seeds, and Wine, respec-
tively. This suggests that while the predictability of
missingness from observed data in MAR scenarios
provides some advantage to traditional imputation
methods, CRILM still maintains a performance
edge.

The MNAR scenario, characterized by the
most complex pattern of missingness, highlights
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CRILM’s distinct advantage. Across all three
datasets, CRILM not only outperforms the best
baseline methods but does so with remarkable per-
formance gains of 10.0%, 6.0%, and 10% for Glass
Identification, Seeds, and Wine, respectively. This
substantial improvement underscores CRILM’s ef-
fectiveness in navigating the intricacies of MNAR
missingness, further establishing its status as a ro-
bust tool for handling various missing data scenar-
ios.

A.2.2 FLAN-T5
Table ?? provides a FLAN-T5-based compara-
tive analysis of CRILM against leading imputa-
tion methods across the three challenging datasets,
echoing similar trends observed with the Llama
model. In the Glass Identification dataset, FLAN-
T5 exhibits significant improvements with CRILM.
Under the MCAR setting, CRILM surpasses the
best baseline method (TDM, achieving 45.60% ac-
curacy) by 6.0%, highlighting its robust capabil-
ity to handle missing data effectively, particularly
where traditional methods struggle. The Seeds
dataset presents a competitive landscape, where
CRILM outperforms the top-performing baseline
(MICE) by 4.0% under MCAR conditions. Sim-
ilarly, in the Wine Quality dataset under MCAR
conditions, CRILM achieves a 1.2% performance
gain over MICE, reinforcing its reliability.

In the MAR scenario for Glass Identification,
CRILM shows a pronounced advantage over the
best baseline method (TDM, achieving 52.40%),
with a notable gain of 5.4%. This underscores
CRILM’s efficacy in scenarios where missingness
can be predicted from observed data, showcasing
its versatility across different missing data patterns.
However, in the challenging Seeds dataset, the per-
formance gap narrows, with CRILM outperform-
ing k-NN by 1.0%, indicating its continued edge
despite the predictability leveraged by traditional
methods. The Wine Quality dataset reflects a sim-
ilar trend, where CRILM achieves a 1.4% perfor-
mance gain over k-NN.

In the MNAR condition, known for its complex-
ity, CRILM demonstrates a significant advantage.
In the Glass Identification dataset, CRILM outper-
forms MICE by an impressive 13.6%. This substan-
tial improvement is mirrored in the Seeds and Wine
Quality datasets, where CRILM achieves gains of
5.6% and 8.2% over TDM, respectively. These re-
sults underscore CRILM’s exceptional capability in
handling the intricate challenges posed by MNAR

missingness, firmly establishing it as a powerful
tool for addressing diverse imputation challenges.

Dataset Best Baseline CRILM Gain

Glass Identification

MCAR 45.60% (TDM) 51.60% 6.0%
MAR 52.40% (TDM) 57.80% 5.4%
MNAR 39.20% (MICE) 52.80% 13.6%

Seeds

MCAR 79.80% (MICE) 83.80% 4.0%
MAR 81.20% (k-NN) 82.20% 1.0%
MNAR 73.80% (TDM) 79.40% 5.6%

Wine Quality

MCAR 81.20% (MICE) 82.40% 1.2%
MAR 82.40% (k-NN) 83.80% 1.4%
MNAR 74.20% (TDM) 82.40% 8.2%

Table 3: Performance Comparison of CRILM accuracy
with leading imputation methods using FLAN-T5 across
three challenging datasets. Best performing baseline
methods are in bold.

A.3 Dataset Summary
Table 4 provides a summary of the six UCI datasets.

A.4 Missing-value Descriptors
Table 5 reports the list of feature-specific contex-
tually relevant missing-value descriptors for three
selected datasets.

A.5 Optimal k Values for k-NN Imputation in
Various Missingness Patterns

Table 6 shows the optimal values of k for k-NN im-
putation across three missingness patterns (MCAR,
MAR, and MNAR) using the Llama and FLAN-
T5 models on six datasets. These optimal values
were determined through hyperparameter tuning,
where k was varied between 3 and 9, based on the
downstream classification task to achieve the best
imputation performance for each dataset and miss-
ingness pattern combination. This tuning process
ensures that the k-NN imputation method is tailored
to the specific characteristics and requirements of
each dataset, enhancing overall performance.
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Table 4: Description of the datasets. N=size of the dataset and d=number of features.

Dataset N d Description

Iris 150 4 The dataset contains 3 classes of 50 instances each, referring to
types of iris plants.

Wine 178 13 Results of a chemical analysis of wines grown in Italy, with three
types represented.

Seeds 210 7 Properties of three varieties of wheat: Kama, Rosa, and Canadian.
Glass Identification 214 9 Classification of types of glass for criminological investigation.
Ionosphere 351 34 Phased array of 16 high-frequency antennas, targeting free elec-

trons in the ionosphere.
Breast Cancer Wisconsin 569 30 Binary classification from digitized images of a fine needle aspirate

of breast masses.

Table 5: Feature-specific contextually relevant descriptors for three selected datasets.

Dataset Features containing Missing values Descriptors of missing values

Iris

1. Sepal Length
2. Sepal Width
3. Petal Length
4. Petal Width

1. Sepal Length: Unavailable
2. Sepal Width: Unavailable
3. Petal Length: Unavailable
4. Petal Width: Unavailable

Wine

1. Alcohol
2. Malic acid
3.Ash
4. Alcalinity of ash
5. Magnesium
6. Total phenols
7. Flavanoids
8. Nonflavanoi phenols
9. Proanthocyanins
10. Color Intensity
11. Hue
12.OD280/OD315 of diluted wines
13. Proline

1. Alcohol content not provided for this wine sample.
2. Malic acid quantity missing for this wine sample.
3. Ash content data not recorded for this wine sample.
4. Alcalinity of ash information unavailable for this wine sample.
5. Magnesium level not specified for this wine sample.
6. Total phenols data missing for this wine sample.
7. Flavanoids content not available for this wine sample.
8. Nonflavanoid phenols quantity not provided for this wine sample.
9. Proanthocyanins data missing for this wine sample.
10. Color intensity information not recorded for this wine sample.
11. Hue value not specified for this wine sample.
12. OD280/OD315 data missing for this wine sample.
13. Proline content not available for this wine sample

Seeds

1. Area
2. Perimeter
3. Compactness
4. Length of kernel
5. Width of kernel
6. Asymmetry coefficient
7. Length of kernel groove

1. Kernel area not provided.
2. Kernel perimeter information missing.
3. Kernel compactness data not recorded.
4. Length of kernel data missing.
5. Width of kernel data missing.
6. Asymmetry coefficient information missing.
7. Length of kernel groove information missing.
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Table 6: Optimal k values for k-NN imputation across
MCAR, MAR, and MNAR missingness patterns using
Llama and FLAN-T5 models on six datasets.

Dataset Missing Model k Accuracy
pattern (%)

Iris

MCAR Llama 5 84.60
FLAN-
T5

5 78.80

MAR Llama 5 87.40
FLAN-
T5

3 82.20

MNAR Llama 7 76.60
FLAN-
T5

5 72.20

Wine

MCAR Llama 3 80.20
FLAN-
T5

3 74.60

MAR Llama 5 86.20
FLAN-
T5

5 82.40

MNAR Llama 5 73.20
FLAN-
T5

3 71.60

Seeds

MCAR Llama 3 79.40
FLAN-
T5

3 79.00

MAR Llama 3 81.60
FLAN-
T5

5 81.20

MNAR Llama 3 72.20
FLAN-
T5

5 71.60

Glass

MCAR Llama 5 52.40
FLAN-
T5

5 44.20

MAR Llama 5 57.60
FLAN-
T5

5 49.20

MNAR Llama 3 41.40
FLAN-
T5

5 36.60

Ionosphere

MCAR Llama 5 86.80
FLAN-
T5

5 87.20

MAR Llama 5 85.80
FLAN-
T5

5 83.40

MNAR Llama 3 79.60
FLAN-
T5

5 78.20

Cancer

MCAR Llama 5 85.20
FLAN-
T5

3 83.00

MAR Llama 5 89.80
FLAN-
T5

5 85.60

MNAR Llama 5 82.40
FLAN-
T5

5 78.40
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