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Abstract

Integrating information from various reference
databases is a major challenge for Retrieval-
Augmented Generation (RAG) systems be-
cause each knowledge source adopts a unique
data structure and follows different conventions.
Retrieving from multiple knowledge sources
with one fixed strategy usually leads to under-
exploitation of information. To mitigate this
drawback, inspired by Mix-of-Expert, we in-
troduce Mix-of-Granularity (MoG), a method
that dynamically determines the optimal gran-
ularity of a knowledge source based on input
queries using a router. The router is efficiently
trained with a newly proposed loss function
employing soft labels. We further extend MoG
to MoG-Graph (MoGG), where reference doc-
uments are pre-processed as graphs, enabling
the retrieval of distantly situated snippets. Ex-
periments demonstrate that MoG and MoGG
effectively predict optimal granularity levels,
significantly enhancing the performance of the
RAG system in downstream tasks. The code of
both MoG and MoGG will be made public.

1 Introduction

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) has become a popular method for en-
hancing Large Language Models (LLMs). The core
concept of RAG involves retrieving relevant infor-
mation from external knowledge bases to provide
additional context to the LLM, enabling it to gen-
erate more precise and grounded responses. RAG
offers a promising and practical solution to mitigate
LLMs’ hallucinations because (1) it can be applied
to any LLM, even those accessible only via APIs,
and (2) the reference information is easy to modify
or update. Many LLM-based products are sup-
ported by RAG systems, with examples spanning
various industries such as customer service, ad-
vertising and marketing, education and e-learning,
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healthcare, and e-commerce and retailing (Khan,
2023; Xiong et al., 2024; Soman and Roychowd-
hury, 2024; Ke et al., 2024; Radeva et al., 2024).

The quality of the retrieved snippets is crucial
for the final generation, consequently, much re-
search has focused on the retrieval phase. Currently,
most RAG systems follow the Dual-Encoder Ar-
chitecture (Dong et al., 2022) (DEA) paradigm, in
which the reference documents are divided into
small snippets (chunks), encoded by specific en-
coders, and then stored in the vector database (e.g.
FAISS (Johnson et al., 2017) or Neo4j (Company,
2012)) as embeddings. Thanks to its scalability, the
DEA paradigm shows great potential for connect-
ing LLMs with knowledge database of different
formats, including knowledge graphs, textbooks,
or Wikipedia articles.

Optimizing the chunk size of the reference
knowledge database is essential for enhancing the
precision and recall during the retrieval phase.
However, this optimization presents significant
challenges in the implementation of RAG systems
for two primary reasons: (1) An optimal chunking
size needs to be determined for each knowledge
database due to their dissimilar data structures and
information densities. For example, the optimal
chunking size for medical textbooks is longer than
the one for Medical Knowledge Graph Database
(MKGD like Hetionet (Himmelstein et al., 2017)),
as Medical textbooks typically contain lengthy pas-
sages, while an MKGD consists of entities repre-
sented by shorter terms. (2) Even within a single
knowledge database, using a uniform chunking size
for all input queries can yield suboptimal retrieval
results, as the queries themselves exhibit varying
levels of granularity. As shown in Figure 1), when
the user asks about one disease (fine-grained ques-
tion), chunking the reference document in finer
granularity is better; whereas, when the user asks
for broader information (coarse-grained question),
a more coarse granularity is preferred. In practice,
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Figure 1: MoG automatically selects the optimal granularity when extracting information from the reference
database (scenarios 1 and 2), achieving both high pertinence and coverage. When relevant information is dispersed
across distant sections (scenario 3), the reference documents are pre-processed as graph, then MoGG is applied to
retrieve these separate snippets from the best hopping range.

the optimal "uniform chunking size" is determined
through parameter tuning, which is not only te-
dious but also does not guarantee high precision
and recall.

Therefore, the community calls for a method
to dynamically determine the optimal chunking
size, for which we propose the Mix-of-Granularity
(MoG). We draw inspiration from Mix-of-Experts
(Chen et al., 2022), which is a machine learning
architecture that dynamically selects the most per-
tinent “expert sub-network” for each input token
using a router module. Similarly, MoG involves
leveraging a router to select the best granularity lev-
els from which the reference snippets are extracted.

Even with this flexibility newly introduced, MoG
still has difficulty dealing with broader queries
that require distantly situated snippets, e.g. snip-
pets stored in different knowledge databases. In
such cases (cross-document question in Figure 1),
adjusting only the granularity is not helpful be-
cause the necessary information is so distantly lo-
cated that it can never be covered by a reasonably
large chunking window. To better answer these
broader queries, we extend MoG to MoG-Graph
(MoGG). In MoGG, the reference documents are
pre-processed as a graph, allowing relevant snip-
pets to be included as neighbors of each other, re-
gardless of their distance in the original databases.
This extension further improves the performance
of cross-source retrieval.

When training MoG(G) under the supervised
learning setting, the backward propagation is
blocked by the top-k selection at the end of the
retrieval phase, which is a common practice in
most RAG systems. To solve it, we introduce a

loss function using soft labels. Soft labels are ap-
proximate training signals generated using offline
algorithms or models like TF-IDF (Ramos, 2003)
or RoBERTa (Liu et al., 2019). With the soft labels,
the top-k selection is excluded from the training
process, thus the issue of backward propagation is
circumvented and the training is accelerated.

In conclusion, the main contributions of this
work are:

(1) We propose MoG, which dynamically de-
termines the optimal granularity level for retrieval
with the help of a router, achieving a balanced trade-
off between precision and recall.

(2) We extend MoG to MoGG by reorganiz-
ing the reference document in the form of a
graph, thereby further improving the quality of
cross-source retrieval involving multiple knowl-
edge databases.

(3) We introduce a loss function utilizing soft
labels to overcome the challenges associated with
training with top-k selection.

2 Related Work

2.1 Retrieval-Augmented Generation

RAG (Lewis et al., 2020) has emerged as a stan-
dard practice to enhance the LLMs by mitigating
their problems of “hallucinations” and knowledge
cut-off. A RAG system typically includes a Re-
triever that extracts relevant information from an
external knowledge database, and a backbone LLM
to generate grounded responses by in-context learn-
ing (Dong et al., 2023). Previous retrieval-focused
methods have evolved from retrieving tokens
(Khandelwal et al., 2020) or entities (Nishikawa
et al., 2022) to more complex structures like chunks
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(Ram et al., 2023) or graphs (Kang et al., 2023).
Granularity matters a lot in retrieval, as coarse-
granularity-retrieval yields more information with
lower precision, while fine-granularity-retrieval of-
fers comprehensive information at the cost of effi-
ciency. More strategies like single (Wang et al.,
2023b; Shi et al., 2023), adaptive (Jiang et al.,
2023; Huang et al., 2024), or multiple retrieval
(Izacard et al., 2022b) are introduced to improve
the retrieval phase’s performance. Regarding the
generation phase, various information fusion tech-
niques are developed to integrate retrieval results to
LLM in its input (Khattab et al., 2023), intermedi-
ate (Borgeaud et al., 2022), or output layers (Liang
et al., 2024).

2.2 Chunking Optimization

Optimal chunk size is crucial for RAG system as
breaking down documents into small chunks is the
first step to encode them. Naive chunking strate-
gies, such as “fixed-size” chunking and “recursive
chunking,” attempt to create snippets of identical
size. Later works explored more chunking opti-
mization techniques. One line of work focuses
on increasing the recall of retrieval. For example,
the “Sliding Window Chunking” (Safjan, 2023) al-
lows layered retrieval by merging globally related
information across multiple processes. The “Par-
ent Document Retrieval” (team, 2023) retrieves
using small chunks and returns larger blocks of
context for later generation. Another line of work
seeks to include more semantic information of the
context to improve retrieval accuracy. “Metadata
Filtering” (Siegler, 2024) leverages document meta-
data to filter snippets; “Context-Enriched Chunk-
ing” (team, 2024) breaks down information into
segments and adds semantic summaries before re-
trieval; while “Windowed Summarization Chunk-
ing” (team, 2024) enriches each chunk with a win-
dowed summary of the previous chunks. Many of
these techniques, including MoG(G), are compati-
ble with each other and can be combined to achieve
better performance.

2.3 Graph-Based Text Processing

Graph-based text processing techniques combine
research in graphs and text retrieval. Previous
works exploit semantic similarities between small
snippets (a sentence or several words) and reor-
ganize the text material into a graph using Entity
Recognition and Relation Construction algorithms
(Melnyk et al., 2022; Guo et al., 2020; You et al.,

2018). Breaking the constraint of the single dimen-
sion of text corpus, these methods allow chunks
of the same topic to be grouped as neighbors in a
graph, thus show great potential in tasks requiring
long context reasoning or multi-hop reasoning. For
example, “graph indexing” (Gao et al., 2024) trans-
forms entities and relationships into nodes and con-
nections, improving the relevance of retrieved snip-
pets significantly. RAPTOR (Sarthi et al., 2024)
organizes snippets as a tree (a special form of a
graph) by recursively clustering them, where all
non-leaf nodes correspond to summaries of their
child nodes. This processing allows access to in-
formation at different granularity levels, which is
beneficial to summarization tasks. In GMoE (Wang
et al., 2023a), authors use different expert networks
to handle hop-1, hop-2, and mixed hop-1 & hop-2
neighbors of a node in a graph, which inspired our
design of MoGG.

3 Methodology

3.1 Preliminaries

MoG(G) is designed to enhance the Retriever of a
RAG system. A typical RAG system comprises a
Retriever R, a Generator G, and a series of external
reference corpus K = {K1,K2, ...,Kk}. A RAG
system takes a user query q as input, retrieves ref-
erence document pieces (snippets or chunks) from
K, and uses these snippets to help the G produce
the final responses. A popular architecture for the
Retriever is DEA (Dong et al., 2022), where the
query q and all the snippets in K are encoded into
embeddings (eq and es) using the same encoder E .
The extraction of relevant snippets is achieved by
calculating the similarity between eq and es. The
snippets with highest similarity scores are extracted
and injected into the backbone LLM via prompt.

3.2 Naive MoG

3.2.1 Multi-granularity Router
We apply the idea of Mix-of-Expert (Chen et al.,
2022) (MoE) to automatically determine the best
granularity level in the retrieval phase. In a MoE
system, different input tokens are routed to the best
expert network based on the weights output by the
router. Similarly, in MoG, a router is trained to
predict the importance weight of different granu-
larity levels based on the user’s input, so that the
snippets from the best granularity level are priori-
tized. By employing such a routing optimization
method, we can effectively adjust the chunk size ac-
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cording to different scenarios. Take one corpus K
as example, its documents are chunked in ngra can-
didate granularities before the retrieval (in Figure
2, ngra = 5). Although some methods can dynami-
cally adjust chunks using well-trained models, we
prioritize the most commonly used and simplest
chunking method from the perspective of practical
efficiency. The snippets are chunked without over-
lap, and each chunk in j (j ∈ [2, ngra]) granularity
level is formed with 2 adjacent chunks in j−1 gran-
ularity level (granularity level 1 is the finest). Each
chunk is assigned a similarity score using BM25
(Robertson and Zaragoza, 2009) with respect to
user’s input query q. In each granularity, kr most
relevant snippets are extracted (kr = 3 in Figure
2), forming a pool of candidate snippets of size
ngra × kr. In parallel, q is encoded via RoBERTa
before being mapped to a weight w (a vector of the
same length as ngra) by the router. The chunks’
similarity scores are then weighted and summed
with w.

Empirically, directly retrieving the top snip-
pets across different granularities based on their
weighted similarity scores will give biased results,
because the scores of more coarsed granularity lev-
els are systematically higher (more discussions in
Appendix A). Therefore, we adopt another selec-
tion strategy involving two steps: (1) select the top-
k (k = 1 in Figure 2) finest-grained chunk chunkr;
(2) retrieve the chunk containing chunkr from the
optimal granularity level gr. The selection process
can be formalized as follows:

chunkr = topk-argmax
c∈C

(trs(c) · w); (1)

gr = argmax
g∈[1,ngra]|wg ̸=0

wg (2)

where C represents the set of all chunks of the
finest granularity level, trs(.) represents the rele-
vance score of a chunk, and wg represents the g-th
element in w.

Two snippets are highlighted in Figure 2 as ex-
amples to help understanding. For each chunk of
the finest granularity level, if it is retrieved among
the top-kr snippets from one granularity level, its
relevance score for that level is recorded as the
actual relevance score (like the red chunk); other-
wise, it is filled with 0 (like some zeroes padded
for the blue chunk). In this way, we get the rele-
vance scores trs of each finest snippet. The blue
chunk has highest weighted similarity score, it is

therefore selected as chunkr. In this example, the
final snippet selected is the one extracted from 3rd
granularity level containing chunkr.

3.2.2 Soft-labels

In MoG, we train a Multi-Layer Perceptron (MLP)
as the router in a supervised learning method. The
input for the router is the embedding of the input
query q generated with RoBERTa (Liu et al., 2019),
which is then mapped to w by the router. The
intrinsic training signal is the “labels” (l) in the
Medical Question-Answering (MQA) datasets. In
some MQA datasets, the ground truth snippets to
be retrieved are provided, so we use them as “labels”
directly; otherwise, the concatenation of the strings
of the “Question” and “Answer” is used as the “la-
bel”. A natural training objective is to maximize
the semantic similarity between chunkr and l by
adjusting w. Such a label helps us to train the router
to choose the best granularity based on the input
query, which is a prior, with solid posterior infor-
mation (the similarity between the ans and the text
of different granularities). Unfortunately, this label
can not be used to guide the training directly be-
cause there is a non-differentiable top-k selection in
the way. The soft labels are proposed to bypass the
top-k selection during the training: For each query
q, the most relevant snippet (Sbest) is retrieved from
the reference documents of each granularity level
with BM25 (Robertson and Zaragoza, 2009). The
semantic similarity between each snippet in Sbest

and the label l is then calculated (with static models
including TF-IDF (Ramos, 2003), RoBERTa (Liu
et al., 2019), or hitrate score) and stored in simbest.
We create a soft label of 0.8 (resp. 0.2) for the most
(resp. the second) similar snippet in Sbest, and pad
0 for the other snippets.

For example, the soft labels corresponding to
simbest,1 [0, 0.32, 0.11, 0.88, 0.45] and simbest,2

[0.95, 0.07, 0.22, 0.11, 0.19] are sl1 [0, 0, 0, 0.8,
0.2] and sl2 [0.8, 0, 0.2, 0, 0], respectively.

The values of the soft labels are designed to
guide the router in distinguishing the relative im-
portance among the granularity candidates. Empir-
ically, setting these values to either [0.8, 0.2, 0] or
[0.7, 0.3, 0] yields similar results. With the soft
labels (sl) built, we can train the router to predict
a high value (0.8) for the optimal granularity level,
while conserving certain flexibility to choose the
second-best granularity level. The router is trained
by minimizing a Binary Cross Entropy loss func-



5760

Figure 2: MoG mechanism prioritizes the chunks retrieved from optimal granularity level, which is determined by
the router based on the user input query.

tion (lbce):

lbce =
∑

i∈len(w)

−[sli·log(wi)+(1−sli)·log(1−wi)].

(3)

3.3 MoGG: MoG with Graph-context
With MoG, the adjacent snippets with relevant
knowledge can be retrieved altogether by adjusting
the granularity level. This method is particularly ef-
fective when information centered around the same
topic is stored in adjoining sentences. However, in
most cases, answering a complex question requires
reasoning over information stored in different para-
graphs or even different documents. A common
solution is to perform more retrievals at a finer gran-
ularity level, retrieving only highly relevant small
pieces to form a comprehensive reasoning chain.
This approach is inconvenient because determin-
ing the optimal number of retrievals often involves
manually adjusting k, which is challenging because
the whole tuning process is time-consuming and k
can not go infinitely large.

To overcome this challenge, an intuitive ap-
proach is to reorganize the reference document and
group the relevant information together. Motivated
by this, we propose a more applicable framework,
MoGG, by enhancing MoG with a preprocessing
step that organizes the documents in K as a graph.
As illustrated in Figure 3, each document is ini-
tially split into small pieces consisting of one or
two sentences, and each piece is treated as a sepa-
rate node in the graph. To determine the edges in
the graph, an index is first created with all these

nodes. Then, each node is used as a “query” to
search for the kgraph (set as 3 in Figure 3) most
relevant nodes using BM25. An edge is then added
between two nodes if the similarity between them
meets a predefined threshold Tgraph.

This pre-processing extends the concept of “con-
text” in linear text to “neighbors” in a graph. Also,
granularity levels are adapted to “hopping ranges”:
in a non-graph setting, a larger granularity level cor-
responds to more adjacent sentences being grouped
in a chunk; in a graph setting, a larger granular-
ity level corresponds to nodes within a larger hop-
ping range of a centered node being grouped as
one chunk. To avoid context redundancy, dupli-
cate nodes in the neighbors are considered only
once. Similar to MoG, the documents in the exter-
nal knowledge database K are chunked with ngra

different hopping ranges and then encoded into
embeddings, while the rest of the MoG remains
unchanged. By transforming the documents into a
graph and defining granularity based on hopping
ranges, MoGG effectively captures dispersed rele-
vant information, allowing for more comprehensive
and efficient retrieval.

4 Experiments

4.1 Corpus and Medical QA datasets

A reference knowledge database used in a RAG
system is often termed a “corpus”. To form
the corpora, data from various sources were col-
lected, including the widely-used PubMed (Galileo
Mark Namata and Huang, 2012) corpus for all
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Figure 3: Pre-processing the reference document to form graphs. The concept of “granularity level” is changed into
“hopping range” in graphs.

biomedical abstracts, the StatPearls (Publishing,
2024) corpus for clinical decision support, the Text-
books(Jin et al., 2020) corpus covering medical
textbook knowledge, and the Wikipedia (Wikime-
dia Foundation, 2024) corpus for general knowl-
edge. The four corpora are combined to form a
larger corpus, named “MedCorp”. For each corpus
used in our experiments, there are 5 granularity
levels tested. The chunking size of the second gran-
ularity level is set to be the same as the one in
MedRAG to facilitate the comparison of the results.
The chunking size of the {1st, 3rd, 4th, 5th} gran-
ularity level is set to be {1/2, 2, 4, 8} times of the
one in MedRAG.

The performance of the RAG system are evalu-
ated using five MQA datasets following MIRAGE
benchmark (Xiong et al., 2024): MMLU-Med
(Hendrycks et al., 2021), MedQA-US (Zhang et al.,
2018), MedMCQA (Pal et al., 2022), PubMedQA*
(Jin et al., 2019), and BioASQ-Y/N (Tsatsaronis
et al., 2015). Specifically, only the biomedical
questions are kept and the ground truth supporting
contexts are removed during testing.

The detailed descriptions of each copora and
each QA dataset, as well as their important statis-
tics, are included in Appendix B. We have be-
gun to test our method using medical question-
answering datasets, as they represent a knowledge-
intensive domain. We posit that significant im-
provements demonstrated by the tests on this
knowledge-intensive field suggest MoG’s potential
effectiveness in other domains with lower knowl-
edge dependencies and higher error tolerances.

4.2 Experiment Setup
All backbone LLMs, whether accessed via API or
local deployment, are run under off-the-shelf set-
tings. The exact versions of the backbone LLMs
are listed in Appendix C. Experiments are con-
ducted on Nvidia GeForce 3090 and 4090 GPUs.
The code is written using the PyTorch framework,
utilizing an Adam optimizer with a learning rate

of 0.001. Each training job is run until the con-
vergence of the loss value. During the experiment,
there are two top-k selections. Unless specified,
when retrieving snippets from each corpus, we se-
lect the top-3 snippets; when all the snippets are
retrieved from each corpus, we select the top-2
snippets with the highest relevance scores to pass
to the backbone LLM. When snippets are too long,
they are truncated automatically to fit the LLM’s
context window size. The router requires approx-
imately 12GB of GPU memory for training and
6GB for inference. Utilizing a caching mechanism,
we efficiently completed 35 training sessions and
over a hundred inferences, each training session
taking around 4 hours for 1000 epochs.

4.3 Performance of MoG on MQA Task

As mentioned above, we test the effectiveness of
MoG on MQA datasets. For each question, the
RAG system is tasked with choosing the best an-
swer(s) from the given options. The performance
of the entire RAG system is measured by the Ex-
act Matching accuracy of the answers. To prevent
knowledge leakage, only the question is used (op-
tions excluded) to retrieve reference documents
from the external knowledge database. The router
of MoG guides the retrieval system to choose the
optimal granularity. Qualitatively speaking, when
tested on different datasets, the router trained with
Textbook corpus shows a preference for different
granularity levels. For instance, on the PubMedQA
dataset, the finest granularity snippets are selected
most frequently. This is because the questions in
PubMedQA are typically precise and can be an-
swered with short reference snippets. An example
result figure is shown in Figure 4, with a more
detailed discussion included in Appendix D.

MoG is integrated into one same RAG system,
with which we conduct the MQA task. Backbone
LLMs are altered to cover some of the popular ones,
such as ChatGPT (Brown et al., 2020), InternLM2
(Cai et al., 2024), Llama3 (AI, 2024), GLM3 (Du



5762

Figure 4: Averaged weights of different granularity levels on different QA datasets

LLM Method MIRAGE Benchmark Dataset (Acc.)

MMLU MedQA MedMCQA PubMedQA BioASQ Avg.

GLM3
CoT 0.4356±0.04 0.3451±0.03 0.3250±0.02 0.3400±0.05 0.5081±0.04 0.3908

MedRAG 0.4950±0.04 0.3804±0.03 0.3632±0.02 0.5100±0.05 0.6532±0.04 0.4804
MoG 0.5198±0.04 0.3529±0.03 0.3716±0.02 0.5400±0.05 0.6774±0.04 0.4923

GPT-3.5
CoT 0.7525±0.03 0.6118±0.03 0.5890±0.02 0.5200±0.05 0.7339±0.04 0.6571

MedRAG 0.6931±0.03 0.6510±0.03 0.4671±0.02 0.6000±0.05 0.8306±0.03 0.6484
MoG 0.7129±0.03 0.6471±0.03 0.5532±0.02 0.6200±0.05 0.7823±0.04 0.6631

InternLM
CoT 0.7426±0.03 0.6118±0.03 0.5269±0.02 0.3500±0.05 0.7258±0.04 0.5914

MedRAG 0.6040±0.04 0.5294±0.03 0.3847±0.03 0.4300±0.05 0.7661±0.04 0.5428
MoG 0.7129±0.03 0.5961±0.03 0.5436±0.02 0.4100±0.05 0.7661±0.04 0.6057

Llama3
CoT 0.7079±0.03 0.6431±0.03 0.5663±0.02 0.5500±0.05 0.7258±0.04 0.6386

MedRAG 0.6040±0.03 0.5725±0.03 0.4313±0.02 0.5600±0.05 0.7823±0.04 0.5900
MoG 0.7228±0.03 0.6000±0.03 0.5627±0.02 0.6400±0.05 0.7984±0.04 0.6648

Qwen1.5
CoT 0.4604±0.04 0.3255±0.03 0.3883±0.02 0.2000±0.03 0.5484±0.04 0.3845

MedRAG 0.5594±0.03 0.4353±0.03 0.4038±0.02 0.3400±0.05 0.5403±0.04 0.4558
MoG 0.5941±0.04 0.4235±0.03 0.4301±0.02 0.4700±0.05 0.6694±0.04 0.5174

Table 1: Accuracy of Medical Question-Answering task with MoG (trained with MedCorp), best results in bold.

et al., 2022), and Qwen1.5 (Bai et al., 2023). The
router is trained with the soft labels built using
RoBERTa (Liu et al., 2019), this choice is justified
by the experiment in Appendix E. To investigate
the effect of varying the number of candidate snip-
pets on RAG system performance, we conducted
experiments with different snippet counts (details
are provided in Appendix F). The retriever is fixed
as BM25 (Robertson and Zaragoza, 2009), with a
further discussion on the performance of different
retrievers included in Appendix G. In Table 1 we
present the results obtained with the router trained
with MedCorp corpus (the results obtained with
routers trained on four single corpora are presented
in Appendix H).The results are compared with two
baselines: CoT and MedRAG. CoT baseline adopts
Chain-of-Thought (Wei et al., 2022) prompting and
does not leverage any external knowledge database
to enhance its response. MedRAG baseline is a
simple RAG system with only 1 candidate granu-
larity level introduced in MedRAG paper (Xiong
et al., 2024).

The results demonstrate that MoG consistently
enhanced the performance of the RAG system
across different backbone models when compared
with MedRAG, though not necessarily better than
CoT. The reason is that the RAG system we used
has no noise filters or any quality control mech-
anism, thus the noise is injected along with the
knowledge via prompts. A detailed analysis of the
number of samples improved or degraded by the
application of MoG is included in the Appendix I,
in which we manually verified that the majority of
degradation is caused by noise. We also find that
MoG improves the accuracy score more when ap-
plied on weaker LLMs (like ChatGLM and Qwen),
probably because they have less knowledge stored
in their internal parameters and, thus could benefit
more from the retrieved snippets.

4.4 Performance of MoGG on MQA Task
Similarly to the experiment of MoG, we test the per-
formance of MoGG on MQA datasets. We tested
only the performance of MoGG with routers trained
on Textbooks and StatPearls corpora because train-
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LLM Method MIRAGE Benchmark Dataset (Acc.)

MMLU MedQA MedMCQA PubMedQA BioASQ Avg.

GLM3
CoT 0.4356±0.04 0.3451±0.03 0.3250±0.02 0.3400±0.05 0.5081±0.04 0.3908

MedRAG 0.4802±0.04 0.3569±0.03 0.3811±0.02 0.3600±0.05 0.5565±0.04 0.4269
MoG 0.5545±0.04 0.2941±0.03 0.3548±0.02 0.4700±0.05 0.5726±0.04 0.4492

MoGG 0.5347±0.04 0.3176±0.03 0.3608±0.02 0.4500±0.05 0.5645±0.04 0.4455

GPT-3.5
CoT 0.7525±0.03 0.6118±0.03 0.5890±0.02 0.5200±0.05 0.7339±0.04 0.6571

MedRAG 0.7277±0.03 0.6745±0.03 0.4468±0.02 0.2600±0.04 0.5161±0.04 0.5250
MoG 0.7525±0.03 0.6667±0.03 0.5603±0.02 0.5200±0.05 0.7016±0.04 0.6122

MoGG 0.7673±0.03 0.6784±0.03 0.5233±0.02 0.4700±0.05 0.6452±0.04 0.6168

InternLM
CoT 0.7426±0.03 0.6118±0.03 0.5269±0.02 0.3500±0.05 0.7258±0.04 0.5914

MedRAG 0.6188±0.03 0.5569±0.03 0.3118±0.02 0.1400±0.03 0.4839±0.04 0.4223
MoG 0.7277±0.03 0.5725±0.03 0.5281±0.02 0.3400±0.05 0.7339±0.04 0.5804

MoGG 0.7228±0.03 0.5882±0.03 0.5173±0.02 0.3400±0.05 0.7339±0.04 0.5804

Llama3
CoT 0.7079±0.03 0.6431±0.03 0.5663±0.02 0.5500±0.05 0.7258±0.04 0.6386

MedRAG 0.6485±0.03 0.5961±0.03 0.4146±0.02 0.3800±0.05 0.5242±0.04 0.5127
MoG 0.7228±0.03 0.6196±0.03 0.5484±0.02 0.5100±0.05 0.7097±0.04 0.6221

MoGG 0.7030±0.03 0.5961±0.03 0.5460±0.02 0.5200±0.05 0.7661±0.04 0.6262

Qwen1.5
CoT 0.4604±0.04 0.3255±0.03 0.3883±0.02 0.2000±0.03 0.5484±0.04 0.3845

MedRAG 0.5941±0.03 0.4000±0.03 0.3835±0.02 0.3300±0.05 0.4919±0.04 0.4399
MoG 0.5792±0.03 0.3843±0.03 0.4110±0.02 0.3300±0.05 0.6129±0.04 0.4635

MoGG 0.5594±0.03 0.4314±0.03 0.4480±0.02 0.3000±0.05 0.6371±0.04 0.4752

Table 2: Accuracy of Medical Question-Answering task with MoGG (trained with Textbooks), best results in bold.

ing with the other two much larger corpora is too
time-consuming. In Table 2 we present the results
obtained when trained with Textbook corpus (re-
sults obtained with StatPearls showed in Appendix
J with similar patterns). From the table, we can tell
that MoGG can further improve the averaged accu-
racy scores. By comparing Table 1 and Table 2, we
can find that, even when trained with significantly
fewer samples (Textbooks corpus is a tiny subset of
MedCorp corpus, accounting for only about 0.2%
of all the snippets in MedCorp), MoGG brings
more significant improvement in terms of the aver-
aged accuracy score with respect to MedRAG than
MoG. This finding highlights that MoGG is more
efficient than MoG thanks to its flexible way of
organizing the reference snippets (in the form of a
graph). We conducted an ablation test with Llama
3 and the results are included in Appendix K.

There is a general performance drop in the met-
rics in Table 2 compared to Tabel 1 because the
Textbooks corpus is only a tiny subset of the Med-
Corp used in Table 1). To facilitate the comparison,
we conducted the same experiment in Table 1 with
only the Textbooks corpus, and the detailed results
are reported in Appendix L.

4.5 Execution time and storage efficiency

MoG(G) is proposed to increase the precision and
recall of the retrieval phase at a reasonable cost

of computational efficiency because the quality of
the retrieved chunks is prioritized for application
scenarios like the medical environment. We mea-
sured the average inference time with the different
number of candidate granularity levels, and the
results show that increasing the number of granu-
larity levels will only increase a marginal increase
in execution time. (Details in Appendix M)

In terms of storage, while additional space is
required to store the embeddings of the corpus at
different granularities, we only need to store one
copy of the corpus and five sets of embeddings.
This engineering optimization results in a space re-
quirement of only 2.7 times the size of the original
corpus. We believe this represents an acceptable
overhead. Furthermore, in our RAG system spe-
cialized in the medical domain, a corpus containing
about 10GB of plain text can already cover a wide
range of questions. Thus, we believe this will not
be an obstacle to MoG(G)’s wider application.

We believe this overhead of computing resources
added is worthwhile because in most cases, MoG
performs much better than MedRAG and CoT base-
lines. On smaller models, MoG shows an average
improvement of 5% compared to MedRAG and
8.7% compared to CoT. Given the dataset size of
approximately 7000, these improvements are sta-
tistically and practically significant.
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5 Limitations and Broader Impacts

Our work serves as an early trial in dynamic chunk-
ing strategy, with the following major directions for
improvement. (1) MoG(G)’s candidate granular-
ity levels are manually assigned. It could be more
efficient if an algorithm automatically set these
granularity levels to avoid excessive grid-searching
for parameter optimization. (2) Current router uses
only the semantic information of the input query to
predict the best granularity level. (3) Previous stud-
ies have demonstrated that the use of length nor-
malization is crucial in information retrieval-related
fields. This paper primarily focuses on applying
the concept of Mix-of-Experts to this application
scenario. In future work, we will also take related
issues into consideration. Incorporating more in-
formation (like query type or expected response
length) into the router can potentially improve the
results. However, the router also introduces a new
security risk: a compromised router could redirect
knowledge retrieval to malicious sources, inject-
ing incorrect or even harmful information into the
backbone LLM. Therefore, it is crucial to protect
and monitor the router to mitigate this risk.

6 Conclusion

In this work, we present MoG, a mechanism to
dynamically choose the best granularity when re-
trieving information from an external knowledge
database. When applied to a RAG system, MoG
helps retrieve more relevant information while re-
ducing noise. MoG is further extended as MoGG,
where reference documents are pre-processed as
graphs. This extension allows distantly situated
information to be retrieved simultaneously, over-
coming the limitations of a fixed top-k selection
strategy. Finally, we introduce a soft label guided
loss function to address the difficulty of backward
propagation with top-k selection, which could ben-
efit future research.
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A More Discussion About Selection
Process

The intuitive selection process would be to select
the top snippets with the highest weighted similar-
ity scores. However, this method is not adopted for
the following reasons:

(1) It is biased, because more-coarsed snippets
tend to have higher similarity scores, even though
they might include more noise.

(2) It is not rebust to rely on the router’s output
weight to control such imbalance between granu-
larity levels, because the router is not traine for
this objective. The router is trained with soft la-
bels, which are approximate training signals that
can only teach the model to distinguish the 1st and
2nd optimal granularity level from the rest.

(3) In practice, when K is too large, it has to be
stored in separated vector databases. A common
solution is use one vectorbase to store one granu-
larity. This solution will make the similarity scores
across granularity levels NOT directly comparable
with each other.

Based on these reasons, we designed the selec-
tion strategy presented in the paper. The rationale
behind the proposed strategy is that: Since we aim
to extract the globally optimal snippet, we need a
way to calculate a “global highest similarity score”.
Given that the finest-grained snippets are the only
ones that appear across all granularity levels fol-
lowing our initial chunking approach (fixed-size,
non-overlapping), we calculate the weighted sum
based on these finest-grained snippets.

B Details of QA Datasets

B.1 MMLU-Med

The Massive Multitask Language Understanding
(MMLU) benchmark (Hendrycks et al., 2021) eval-
uates the multitask learning capability of language
models. While the full MMLU dataset encom-
passes 57 different tasks, we specifically extracted
the medical questions for our tests, totaling 1089
questions.

B.2 MedQA-US

MedQA (Zhang et al., 2018) is a multiple-choice
QA dataset derived from professional medical
board exams. It is available in Simplified Chinese,
Traditional Chinese, and English. For our experi-
ments, we used 1273 questions from the English
version.

B.3 MedMCQA
MedMCQA (Pal et al., 2022) comprises a large
number of questions from the Indian medical en-
trance exam, covering 2400 healthcare topics and
21 medical subjects. For the MIRAGE benchmark,
we utilized the “dev” set of the original MedMCQA
dataset.

B.4 PubMedQA*
PubMedQA is a research QA dataset in the biomed-
ical field, consisting of 1000 manually annotated
questions constructed from PubMed abstracts. In
the MIRAGE benchmark, the reference contexts
were removed. We selected a subset of 500 ques-
tions, which we refer to as PubMedQA*.

B.5 BioASQ-Y/N
BioASQ (Tsatsaronis et al., 2015) is an annual
biomedical QA competition. For the MIRAGE
benchmark, we selected only the Machine Reading
Comprehensive Track (Task B), focusing on 618
questions from recent years (2019-2023).

The important statistics of the copora and the
QA datasets are presente in Table 3 below.

C Exact Versions of LLMs

The exact versions of the backbone LLMs tested
are listed in Table 4.

D Qualitative Results of the Router

As illustrated in Figure 4, the router effectively as-
signs different weights to various granularity levels.
From the figure, we can infer that a potential global
peak in weights may exist at a granularity level
smaller than level 1 or larger than level 5.

However, we did not test these smaller or larger
granularity levels due to the following reasons: In
our experiments, we focus exclusively on LLMs
with a parameter size of around 7 billion. For these
models, the chunking size at granularity level 5
approaches their maximum context window. Con-
versely, the chunking size at granularity level 1
consists of only a few dozen characters, which is
already quite small.

E Experiment on Soft Labels

In this section, we evaluate the performance of
building soft labels using different methods (TF-
IDF (Ramos, 2003), RoBERTa (Liu et al., 2019),
and hitrate score). For this experiment, we fix
one retriever (BM25) and the backbone LLM
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Corpus #Doc #Snip. L̄. Domain

PubMed 23.9M 23.9M 196 Bio.-Med.
StatPearls 9.3k 301.2k 119 Clinics
Textbooks 18 125.8k 182 Medicine
Wikipedia 6.5M 29.9M 162 General
MedCorp 30.4M 54.2M 221 Mixed

Datasets Size #Opt. L̄ Source

MMLU-Med 1,089 4 63 Exam.
MedQA-US 1,273 4 177 Exam.
MedMCQA 4,183 4 26 Exam.

PubMedQA* 500 3 24 Literature
BioASQ-Y/N 618 2 17 Literature

Table 3: Important statistics of corpora and QA datasets

(Qwen1.5), then build the soft labels using these
three different methods. Different routers are
trained with these different soft labels and tested
on various MQA datasets. The results are grouped
in Table 5.

The results indicate that there is no universal
best method for building soft labels. For instance,
“hitrate score” is the most effective when training
on MedMCQA, while RoBERTa shows advantages
on PubMedQA. Overall, the soft labels built with
RoBERTa demonstrate good performance across
the board. Therefore, for the remainder of the
experiments, RoBERTa is adopted as the default
method to build soft labels.

F Impact of the Number of Candidate
Snippets

In the previous experiment, three candidate snip-
pets were retrieved from each granularity level of
the external knowledge database. In this section,
we investigate the effect of varying the number of
candidate snippets on the overall performance of
the RAG system. The rationale behind this explo-
ration lies in the potential limitation of a small pool
of candidate snippets, such as keeping only three.
In such case, valuable snippets may be overlooked.
For instance, a snippet ranked fourth or fifth in
each retrieval may appear repeatedly across differ-
ent granularity levels and thus might be selected
after its relevance scores adjusted with weights as-
signed by the router. However, despite potentially
high relevance, such snippets are excluded early in
the retrieval process.

In this experiment, we test the RAG system
equipped with MoG using different numbers of can-
didate snippets kr (kr ∈ {3, 8, 16, 32}). For sim-
plicity, the backbone LLM was fixed as Qwen1.5.
The experiment results are shown in Figure 5.

Generally, RAG performance improves as kr
increases, indicating the presence of helpful knowl-
edge in the retrieved snippets. However, too many
irrelevant snippets mislead the inference of LLM
based on its knowledge. MoG stands out with

its high initial performance even at low kr values
(kr<=8 in this case), thanks to its multi-granularity
filtering, which efficiently selects relevant snip-
pets. This enhances the LLM’s accuracy without
requiring a large snippet pool. MoG even strikes
a balance at high kr values (kr>=16 in this case)
due to its threshold limiting of the different cor-
pora, avoiding the pitfalls of excessive information
retrieval. MoG’s consistently high performance
demonstrates its superiority in optimizing the num-
ber of candidate snippets for effective medical
question-answering.

G Choice of Retriever

In the previous experiment, BM25 (Robertson and
Zaragoza, 2009) was used as the retriever because
it is a lightweight and popular choice in practice.
In this section, we replace BM25 with other popu-
lar retrievers to evaluate their performance. Re-
ferring to the setup in MedRAG (Xiong et al.,
2024), we select a general-domain semantic re-
triever called Contriever (Izacard et al., 2022a), a
scientific-domain retriever called SPECTER (Co-
han et al., 2020), and a biomedical-domain retriever
called MedCPT (Jin et al., 2023). Additionally, the
Reciprocal Rank Fusion (RRF) method (Cormack
et al., 2009) is utilized to combine results from dif-
ferent retrievers, including RRF-2 (fusion of BM25
and MedCPT) and RRF-4 (fusion of all four re-
trievers). From Table 6, we can observe the fol-
lowing: Each retriever has a well-performing QA
set, which results in minimal overall differences
among these retrievers. Considering these conclu-
sions, we decide to continue using BM25 for all
other experiments.

H Performance of MoG on Medical QA
Task (Other results)

In this section, we present the experiment result of
MoG on the Medical QA task with four different
corpora as the training datasets for the router. The
results are grouped in Table 7.
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Figure 5: Accuracy of Medical Question-Answering task with different number of candidate snippets

I Analysis on Samples Improved or
Degraded

We counted the number of samples of four cate-
gories before and after applying MoG. The four
categories are 1. improved (CoT gives wrong an-
swer, MoG gives correct answer); 2. degraded
(CoT gives correct answer, MoG gives wrong an-
swer); 3. remain_correct (both CoT and MoG give
correct answers); 4. remain_wrong (both CoT and
MoG give wrong answers). The results are visu-
alized as Figure 6. In this presented figure, the
MoG is trained on the Wikipedia corpus. The pat-
tern observed from this figure is similar to the ones
shown in other test results. The zeroes in bars
named “cot_err” and “mog_err” indicate that all
the responses are correctly parsed when counting.

Around 10% of the degraded samples are ran-
domly chosen and manually verified. We con-
firmed that in most (95%) degraded cases being
verified, all the following statements are true:

• several candidate snippets are retrieved cor-
rectly;

• top-2 candidate snippets are correctly selected
with the weights calculated by the router;

• the prompt is correctly augmented and passed
to backbone LLM;

• the LLM generates the response without error;

• the final choice (A/B/C/D or Yes/No) was cor-
rectly parsed.

In other words, the LLM changed its answer based
on the snippet retrieved, it is infected by the intro-
duced noises. The degradation is caused by the fact
that the tested RAG system lacks a noise filtering
mechanism, rather than by the default of MoG or
MoGG.

J Performance of MoGG on Medical QA
Task (Other results)

In this section, we present the experiment result of
MoGG on the Medical QA task with StatPearls as
the training corpus for the router. The results are
grouped in Table 8.

K MoGG’s Abaltion test

In this section, we rerun the MoGG without the
router on Llama 3 to highlight its effectiveness.
The results of MoGG’s ablation test is in Table 9
(highlighted in bold). The results are similar to
MedRAG, because, without the router, MoGG is
essentially the same as MedRAG, the added flexi-
bility of the graph will only show when used with
a router.

L MoG Trained With Only Textbooks
Corpus

In this Appendix, we present the results of training
MoG only with Textbooks corpus. As Textbooks
are only a subset of MedCorp, the performance is
not as good as the ones shown in Table 1. Com-
pared with Table 10 and Table 2, we can see the
advantage of MoGG more clearly.

M Detailed Analysis of Time
Consumption

In this appendix, we present the detailed experi-
ment results of execution time. We measure the
wall-clock execution time with different number of
granularities using Llama3 as the backbone LLM.
The results organized in Table 11 show that:

(1) the introduction of the router module will
effectively increase the inference time by about
60%;

(2) increasing the number of granularity levels
will only increase a marginal increase in execution
time. The reason is that the bottleneck of execution
time is the API calling time of backbone LLMs.
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Figure 6: Number of samples improved or degraded after application of MoG

LLM name LLM version LLM site

ChatGPT gpt-3.5-turbo-16k https://platform.openai.com/docs/models/gpt-3.5-turbo
Llama3 Meta-Llama-3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

InternLM2 internlm2-123b https://www.sensetime.com/en/news-detail/51167237
ChatGLM3 chatglm3-6b https://huggingface.co/THUDM/chatglm3-6b
Qwen1.5 Qwen1.5-MoE-A2.7B https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B-Chat

Table 4: Versions of the backbone LLMs
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Training
datasets Methods MIRAGE Benchmark Dataset (Acc.)

MMLU MedQA MedMCQA PubMedQA BioASQ Avg.

MedQA
RoBERTa 0.4265±0.04 0.3711±0.04 0.3831±0.02 0.5000±0.06 0.6234±0.06 0.4608

hitrate 0.4779±0.04 0.4088±0.04 0.4330±0.02 0.4194±0.06 0.6753±0.05 0.4829
TF-IDF 0.4559±0.04 0.3019±0.04 0.4023±0.02 0.4355±0.06 0.5714±0.06 0.4334

MedMCQA
RoBERTa 0.4485±0.05 0.3459±0.04 0.4023±0.02 0.4839±0.06 0.5195±0.06 0.4400

hitrate 0.4118±0.04 0.3774±0.04 0.3678±0.02 0.3387±0.06 0.5065±0.06 0.4004
TF-IDF 0.4412±0.04 0.3899±0.04 0.4119±0.02 0.5161±0.06 0.5844±0.06 0.4687

PubMedQA
RoBERTa 0.4485±0.04 0.4528±0.04 0.3966±0.02 0.4677±0.06 0.6623±0.05 0.4856

hitrate 0.4118±0.04 0.4088±0.04 0.3851±0.02 0.4355±0.06 0.6104±0.06 0.4503
TF-IDF 0.4044±0.04 0.3208±0.04 0.3908±0.02 0.4677±0.06 0.5584±0.06 0.4284

Table 5: The performance of the routers trained with the soft labels created with different methods, best method
marked in bold.

Corpus Retriever MIRAGE Benchmark Dataset (Acc.)
MMLU MedQA MedMCQA PubMedQA BioASQ Avg.

Textbooks

BM25 0.6139±0.04 0.3961±0.04 0.3907±0.02 0.3100±0.06 0.5000±0.05 0.4421
Contriever 0.5644±0.03 0.4235±0.03 0.4074±0.01 0.2500±0.04 0.5161±0.04 0.4323
SPECTER 0.5941±0.03 0.4118±0.03 0.3919±0.01 0.1900±0.04 0.4839±0.04 0.4143
MedCPT 0.5347±0.04 0.4549±0.03 0.4026±0.02 0.3100±0.05 0.5565±0.04 0.4517
RRF-2 0.5396±0.03 0.4196±0.03 0.4241±0.02 0.2800±0.04 0.5403±0.04 0.4407
RRF-4 0.5495±0.04 0.4392±0.03 0.4397±0.02 0.2600±0.04 0.6129±0.04 0.4603

Table 6: Performance of different retrievers

LLM Method Training Corpora (Avg Acc.)

Textbooks StatPearls PubMed Wikipedia

GLM3
CoT 0.3908 0.3908 0.3908 0.3908

MedRAG 0.4269 0.4343 0.4716 0.4582
MoG 0.4492 0.4465 0.4911 0.4241

GPT-3.5
CoT 0.6571 0.6571 0.6571 0.6571

MedRAG 0.5250 0.5229 0.6322 0.5332
MoG 0.6122 0.5921 0.6795 0.6154

InternLM
CoT 0.5914 0.5914 0.5914 0.5914

MedRAG 0.4223 0.4380 0.5559 0.4506
MoG 0.5800 0.5886 0.6394 0.5810

Llama3
CoT 0.6386 0.6386 0.6386 0.6386

MedRAG 0.5127 0.5133 0.6170 0.5206
MoG 0.6221 0.6415 0.6394 0.6328

Qwen1.5
CoT 0.3845 0.3845 0.3845 0.3845

MedRAG 0.4399 0.4623 0.4499 0.4391
MoG 0.6129 0.4622 0.5145 0.4547

Table 7: Accuracy of Medical Question-Answering task with MoG (trained with different corpora)
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LLM Method MIRAGE Benchmark Dataset (Acc.)

MMLU MedQA MedMCQA PubMedQA BioASQ Avg.

GLM3
CoT 0.4901±0.04 0.3294±0.03 0.3799±0.02 0.3900±0.05 0.5645±0.04 0.4181

MedRAG 0.4901±0.04 0.3294±0.03 0.3799±0.02 0.4400±0.05 0.5323±0.04 0.4343
MoG 0.4851±0.04 0.2902±0.03 0.3799±0.02 0.4400±0.05 0.6371±0.04 0.4465

MoGG 0.4802±0.04 0.3059±0.03 0.3668±0.02 0.4600±0.05 0.5806±0.04 0.4387

GPT-3.5
CoT 0.7624±0.03 0.6706±0.03 0.5866±0.02 0.4200±0.05 0.7339±0.04 0.6347

MedRAG 0.6881±0.03 0.6549±0.03 0.4552±0.02 0.2600±0.04 0.5565±0.04 0.5229
MoG 0.7277±0.03 0.6471±0.03 0.5400±0.02 0.3200±0.05 0.7258±0.04 0.5921

MoGG 0.7624±0.03 0.6314±0.03 0.5460±0.02 0.3700±0.05 0.7177±0.04 0.6055

InternLM
CoT 0.7228±0.03 0.6000±0.03 0.5352±0.02 0.3700±0.05 0.7339±0.04 0.5924

MedRAG 0.6584±0.03 0.5137±0.03 0.3596±0.02 0.1500±0.04 0.5081±0.04 0.4380
MoG 0.6881±0.03 0.5961±0.03 0.5448±0.02 0.3800±0.05 0.7339±0.04 0.5886

MoGG 0.6782±0.03 0.5725±0.03 0.3500±0.02 0.7500±0.05 0.7500±0.04 0.6201

Llama3
CoT 0.7277±0.03 0.6392±0.03 0.5663±0.02 0.5900±0.05 0.7177±0.04 0.6482

MedRAG 0.6089±0.03 0.5882±0.03 0.4170±0.02 0.3800±0.05 0.5242±0.04 0.5133
MoG 0.7376±0.03 0.5961±0.03 0.5317±0.02 0.6000±0.05 0.7419±0.04 0.6415

MoGG 0.7030±0.03 0.6275±0.03 0.5436±0.02 0.5900±0.05 0.7258±0.04 0.6380

Qwen1.5
CoT 0.4604±0.04 0.3255±0.03 0.3883±0.02 0.2000±0.04 0.5484±0.04 0.3845

MedRAG 0.5495±0.04 0.4471±0.03 0.4146±0.02 0.3600±0.05 0.5403±0.04 0.4623
MoG 0.5446±0.04 0.3882±0.03 0.4337±0.02 0.3400±0.05 0.6048±0.04 0.4623

MoGG 0.5446±0.04 0.4157±0.03 0.4253±0.02 0.3500±0.05 0.6290±0.04 0.4729

Table 8: Accuracy of Medical Question-Answering task with MoGG (trained with StatPearls), best results marked
in bold

Method MMLU MedQA MedMCQA PubMedQA BioASQ Avg.

CoT 0.7079 0.6431 0.5663 0.5500 0.7258 0.6386
MedRAG 0.6485 0.5961 0.4146 0.3800 0.5242 0.5127
MoG 0.7228 0.6196 0.5484 0.5100 0.7097 0.6221
MoGG w/o router 0.6683 0.5451 0.4182 0.3800 0.5484 0.5120
MoGG 0.7070 0.5961 0.5460 0.5200 0.7661 0.6262

Table 9: Ablation test with Llama3 as backbone LLM

LLM Method MIRAGE Benchmark Dataset (Acc.)

MMLU MedQA MedMCQA PubMedQA BioASQ Avg.

GLM3
MedRAG 0.4802 0.3569 0.3811 0.3600 0.5565 0.4269

MoG 0.5545 0.2941 0.3548 0.4700 0.5726 0.4492

GPT-3.5
MedRAG 0.7277 0.6745 0.4468 0.2600 0.5161 0.5250

MoG 0.7525 0.6667 0.5603 0.5200 0.7016 0.6122

InternLM
MedRAG 0.6188 0.5569 0.3118 0.1400 0.4839 0.4223

MoG 0.7277 0.5725 0.5281 0.3400 0.7339 0.5804

Llama3
MedRAG 0.6485 0.5961 0.4146 0.3800 0.5242 0.5127

MoG 0.7228 0.6196 0.5484 0.5100 0.7097 0.6221

Qwen1.5
MedRAG 0.5941 0.4000 0.3835 0.3300 0.4919 0.4399

MoG 0.5792 0.3843 0.4110 0.3300 0.6129 0.4635

Table 10: Accuracy of Medical Question-Answering task with MoG (trained with only Textbooks)
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# (Granularity) MMLU MedQA MedMCQA PubMedQA BioASQ Global Avg.

1 w/o router 6.61 9.02 10.01 7.40 7.53 8.12
1 w/ router 10.15 10.76 15.81 15.99 13.09 13.16
2 13.25 12.60 20.53 17.30 14.98 15.73
3 16.30 16.01 19.03 16.73 17.12 17.04
4 13.43 20.65 22.72 18.93 14.05 17.96
5 13.20 20.43 23.00 19.36 13.66 17.93

Table 11: Performance Metrics by Granularity
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