@inproceedings{zhang-etal-2025-multilingual,
title = "Multilingual Knowledge Editing with Language-Agnostic Factual Neurons",
author = "Zhang, Xue and
Liang, Yunlong and
Meng, Fandong and
Zhang, Songming and
Chen, Yufeng and
Xu, Jinan and
Zhou, Jie",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.385/",
pages = "5775--5788",
abstract = "Multilingual knowledge editing (MKE) aims to simultaneously update factual knowledge across multiple languages within large language models (LLMs). Previous research indicates that the same knowledge across different languages within LLMs exhibits a degree of shareability. However, most existing MKE methods overlook the connections of the same knowledge between different languages, resulting in knowledge conflicts and limited edit performance. To address this issue, we first investigate how LLMs process multilingual factual knowledge and discover that the same factual knowledge in different languages generally activates a shared set of neurons, which we call language-agnostic factual neurons (LAFNs). These neurons represent the same factual knowledge shared across languages and imply the semantic connections among multilingual knowledge. Inspired by this finding, we propose a new MKE method by Locating and Updating Language-Agnostic Factual Neurons (LU-LAFNs) to edit multilingual knowledge simultaneously, which avoids knowledge conflicts and thus improves edit performance. Experimental results on Bi-ZsRE and MzsRE benchmarks demonstrate that our method achieves the best edit performance, indicating the effectiveness and importance of modeling the semantic connections among multilingual knowledge."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-multilingual">
<titleInfo>
<title>Multilingual Knowledge Editing with Language-Agnostic Factual Neurons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunlong</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fandong</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Songming</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual knowledge editing (MKE) aims to simultaneously update factual knowledge across multiple languages within large language models (LLMs). Previous research indicates that the same knowledge across different languages within LLMs exhibits a degree of shareability. However, most existing MKE methods overlook the connections of the same knowledge between different languages, resulting in knowledge conflicts and limited edit performance. To address this issue, we first investigate how LLMs process multilingual factual knowledge and discover that the same factual knowledge in different languages generally activates a shared set of neurons, which we call language-agnostic factual neurons (LAFNs). These neurons represent the same factual knowledge shared across languages and imply the semantic connections among multilingual knowledge. Inspired by this finding, we propose a new MKE method by Locating and Updating Language-Agnostic Factual Neurons (LU-LAFNs) to edit multilingual knowledge simultaneously, which avoids knowledge conflicts and thus improves edit performance. Experimental results on Bi-ZsRE and MzsRE benchmarks demonstrate that our method achieves the best edit performance, indicating the effectiveness and importance of modeling the semantic connections among multilingual knowledge.</abstract>
<identifier type="citekey">zhang-etal-2025-multilingual</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.385/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>5775</start>
<end>5788</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Knowledge Editing with Language-Agnostic Factual Neurons
%A Zhang, Xue
%A Liang, Yunlong
%A Meng, Fandong
%A Zhang, Songming
%A Chen, Yufeng
%A Xu, Jinan
%A Zhou, Jie
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F zhang-etal-2025-multilingual
%X Multilingual knowledge editing (MKE) aims to simultaneously update factual knowledge across multiple languages within large language models (LLMs). Previous research indicates that the same knowledge across different languages within LLMs exhibits a degree of shareability. However, most existing MKE methods overlook the connections of the same knowledge between different languages, resulting in knowledge conflicts and limited edit performance. To address this issue, we first investigate how LLMs process multilingual factual knowledge and discover that the same factual knowledge in different languages generally activates a shared set of neurons, which we call language-agnostic factual neurons (LAFNs). These neurons represent the same factual knowledge shared across languages and imply the semantic connections among multilingual knowledge. Inspired by this finding, we propose a new MKE method by Locating and Updating Language-Agnostic Factual Neurons (LU-LAFNs) to edit multilingual knowledge simultaneously, which avoids knowledge conflicts and thus improves edit performance. Experimental results on Bi-ZsRE and MzsRE benchmarks demonstrate that our method achieves the best edit performance, indicating the effectiveness and importance of modeling the semantic connections among multilingual knowledge.
%U https://aclanthology.org/2025.coling-main.385/
%P 5775-5788
Markdown (Informal)
[Multilingual Knowledge Editing with Language-Agnostic Factual Neurons](https://aclanthology.org/2025.coling-main.385/) (Zhang et al., COLING 2025)
ACL