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Abstract

Multilingual knowledge editing (MKE) aims
to simultaneously update factual knowledge
across multiple languages within large lan-
guage models (LLMs). Previous research in-
dicates that the same knowledge across dif-
ferent languages within LLMs exhibits a de-
gree of shareability. However, most exist-
ing MKE methods overlook the connections
of the same knowledge between different lan-
guages, resulting in knowledge conflicts and
limited edit performance. To address this is-
sue, we first investigate how LLMs process
multilingual factual knowledge and discover
that the same factual knowledge in different
languages generally activates a shared set of
neurons, which we call language-agnostic fac-
tual neurons (LAFNs). These neurons repre-
sent the same factual knowledge shared across
languages and imply the semantic connections
among multilingual knowledge. Inspired by
this finding, we propose a new MKE method
by Locating and Updating Language-Agnostic
Factual Neurons (LU-LAFNs) to edit multilin-
gual knowledge simultaneously, which avoids
knowledge conflicts and thus improves edit per-
formance. Experimental results on Bi-ZsRE
and MzsRE benchmarks demonstrate that our
method achieves the best edit performance, in-
dicating the effectiveness and importance of
modeling the semantic connections among mul-
tilingual knowledge.

1 Introduction

Multilingual knowledge editing (MKE) (Wang
et al., 2023b) aims to simultaneously rectify factual
knowledge across multiple languages within large
language models (LLMs). This process poses more
challenges (Wang et al., 2023a) compared to mono-
lingual knowledge editing (KE) since the edited fac-
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nition Center, WeChat AI, Tencent Inc, China.

† Yufeng Chen is the corresponding author.

Edit Languages Monolingual Multilingual
Test Languages en zh en zh

LoRA-FT 48.46 34.33 47.06 (−1.4) 33.17 (−1.16)
M-ROME 65.84 53.66 54.82 (−11.02) 46.27 (−7.40)
M-MEMIT 68.18 62.80 58.63 (−9.55) 57.16 (−5.64)
M-PMET 68.18 60.97 61.98 (−6.19) 57.33 (−3.64)

LU-LAFNs (Ours) 72.85 66.71 73.92 (+1.07) 67.29 (+0.58)

Table 1: The average EM results of Reliability, General-
ity, Locality, and Portability on Bi-ZsRE using Llama-
3.1-8B as the backbone. “Monolingual” means editing
and testing on the same one language, while “Multilin-
gual” means editing on both en and zh, and testing on
each language, respectively. The values in red represent
the performance decline compared to monolingual KE
due to knowledge conflicts across languages. The values
in green indicate that our method avoids such conflicts
and further promotes the edit performance compared to
monolingual KE.

tual knowledge should be updated together across
multiple languages.

Recently, some Locate-then-Edit (Yao et al.,
2023) methods, such as ROME (Meng et al., 2022),
MEMIT (Meng et al., 2023), and PMET (Li et al.,
2024), exhibit strong edit performance in monolin-
gual KE. These methods identify parameters corre-
sponding to specific knowledge and directly modify
them to the target parameters. When adapting them
to MKE, edit performance will probably degrade
due to the conflicts between different languages
(as shown in the red results of Table 1). Similarly,
directly fine-tuning the original model with LoRA
(Hu et al., 2021) also suffers from performance
degradation due to the multilingual knowledge con-
flicts in LoRA modules. These conflicts can be at-
tributed to the ignoring of the potential connections
between multilingual knowledge in LLMs (Chen
et al., 2023). Therefore, it is important to model
the connections between multilingual knowledge
during the editing process to avoid such conflicts.

To address this problem, we first investigate how
LLMs process the same factual knowledge in dif-
ferent languages. We discover that the same mul-
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tilingual factual knowledge generally activates a
shared set of neurons in feed-forward networks
(FFNs), which we call Language-Agnostic Fac-
tual Neurons (LAFNs). These neurons represent
the same factual knowledge shared across multi-
ple languages and imply the semantic connections
among multilingual knowledge. Based on this find-
ing, we propose a new MKE method by Locating
and Updating Language-Agnostic Factual Neurons
(LU-LAFNs) to edit multilingual knowledge simul-
taneously. Specifically, we generate a set of para-
phrases for multilingual knowledge to precisely
locate LAFNs. Then we optimize the update val-
ues for modifying these located neurons to achieve
simultaneous modification of the same multilin-
gual knowledge. Additionally, to avoid the degra-
dation of the edited model’s general abilities due
to directly modifying model parameters (Gu et al.,
2024), we store the update values of the edited
LAFNs in the cache. When the edited subject ap-
pears in the user query, the relative update values
will be retrieved and used for model inference.

To evaluate the effectiveness of our method,
we conduct experiments on two multilingual KE
benchmarks, Bi-ZsRE (Wang et al., 2023a) and
MzsRE (Wang et al., 2023b). Experimental results
demonstrate that our method outperforms existing
MKE methods in terms of Reliability, Generality,
and Locality. Further analysis indicates that our
method avoids conflicts by modeling the semantic
connections between multilingual knowledge and
thus improves the edit performance.

In summary, the major contributions of this pa-
per are as follows1:

• We propose a new method by locating and
updating language-agnostic factual neurons to
achieve MKE. Our method avoids conflicts by
modeling the semantic connections between
multilingual knowledge.

• Experimental results on Bi-ZsRE and MzsRE
benchmarks demonstrate that our method
achieves the best edit performance, which
proves the effectiveness of our method.

• We further analyze the key factors that influ-
ence multilingual edit performance, including
LLMs’ inherent language capabilities, the up-
dated layers, and the number of LAFNs.

1The code is publicly available at https://github.
com/XZhang00/LU-LAFNs.

2 Related Work

Multilingual Knowledge Editing. MKE aims to
update multilingual knowledge simultaneously by
using parallel multilingual data. ReMaKE (Wang
et al., 2023b) retrieves the multilingual aligned
knowledge from a multilingual knowledge base as
context to achieve MKE. Additionally, some meth-
ods, such as LiME (Xu et al., 2023) and MPN (Si
et al., 2024), explore cross-lingual knowledge edit-
ing, which only utilizes monolingual knowledge to
edit the model and then test the edit performance on
other languages. In this work, we mainly focus on
MKE, which is more practical and performs better
in updating multilingual outdated knowledge.
Multilingual Knowledge Analysis. Analyzing
the multilingual capabilities of language models
is always a research hotspot (Pires et al., 2019;
Bhattacharya and Bojar, 2023; Kojima et al., 2024;
Zhao et al., 2024), especially exploring the relation-
ship between model architecture and multilingual
capabilities. Tang et al. (2024) indicate that LLMs’
proficiency in processing a particular language is
predominantly due to a subset of neurons within
FFNs. Similar to our work, Chen et al. (2023)
discover the language-independent knowledge neu-
rons of mBERT and mGPT, which store knowledge
in a form that transcends language, but ignores how
to control neurons to achieve desired outputs. Dif-
ferently, we first investigate the language-agnostic
factual neurons related to specific fact knowledge
in LLMs and then modify them to achieve MKE.

3 Methodology

In this section, we first give the definition of MKE
(§3.1). Then we investigate how LLMs process
multilingual factual knowledge by identifying and
analyzing the associated neurons (§3.2). Subse-
quently, we introduce our method LU-LAFNs for
MKE (§3.3).

3.1 Task Definition

MKE aims to simultaneously update multilingual
knowledge with new information while preserv-
ing previous accurate knowledge within the model.
Formally, we denote the original model as Fθ and
the multilingual group of an edit descriptor (xe, ye)
as G={(xeℓ , yeℓ )|ℓ ∈ L}, where xeℓ is the question
for the knowledge to be edited in language ℓ and
usually contains a subject and a relation, and yeℓ is
the new answer of xeℓ . On this basis, MKE will lead
to a model F ′

θ to correctly answer the edited ques-

https://github.com/XZhang00/LU-LAFNs
https://github.com/XZhang00/LU-LAFNs
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tion xeℓ in each language ℓ and meanwhile maintain
the original prediction on other unedited questions:

∀ℓ ∈ L,F ′
θ(xℓ)=

{
yeℓ , xℓ ∈ I(xeℓ),
Fθ(xℓ), xℓ /∈ I(xeℓ),

(1)

where I(xeℓ) denotes a broad set of inputs with the
same semantics as xeℓ (Wang et al., 2023a).

3.2 Language-Agnostic Factual Neurons
To investigate how LLMs process the same fac-
tual knowledge represented in different languages,
we identify and analyze language-agnostic factual
neurons (LAFNs) within FFNs based on two mul-
tilingual LLMs. Specifically, we first separately
identify the factual neurons associated with mono-
lingual knowledge in each language. Then, we take
the intersection of these neurons across different
languages to obtain the LAFNs.

Identifying LAFNs. The forward process of the
FFN layer in current LLMs can generally be de-
scribed as the following two formulas:

hi = act_fn(h̃iW i
1) ·W i

2, (2)

hi = (act_fn(h̃iW i
1)⊗ h̃iW i

2) ·W i
3, (3)

where i denotes the i-th FFN layer, h̃i/hi are the
output hidden states of the i-th attention/FFN layer,
and act_fn(·) is the activation function. Eq.(2)
represents the FFN structure of older LLMs, e.g.,
BLOOM-series (Muennighoff et al., 2023). Eq.3
shows the FFN structure of the latest LLMs, e.g.,
Qwen2 (Yang et al., 2024) and Llama3 (Dubey
et al., 2024), where W i

1, W i
2, W i

3 correspond to
the gate_proj, up_proj, down_proj ma-
trix, respectively. In this process, knowledge
neurons refer to the output activations by the ac-
tivation function after the first matrix of FFNs,
i.e., act_fn(h̃iW i

1). Then we define that the j-th
neuron of the i-th FFN layer is activated when
act_fn(h̃iW i

1)j > 0 following the previous work
(Tang et al., 2024).

For the factual neurons of language ℓ, we use
the factual corpus Cℓ in language ℓ to track the
activation of neurons in each FFN layer during the
forward propagation. Subsequently, we identify
and select the neurons that are activated most fre-
quently to form the neuron set. For instance, the
set of factual neurons in the i-th FFN layer Di

ℓ can
be obtained using Cℓ as follows:

N i=
{
ni
j |ni

j=
∑
c∈Cℓ

1(act_fn(h̃icW
i
1)j>0)

}
, (4)

Figure 1: The identified neuron numbers in each layer
of Qwen2-7B and Llama-3.1-8B. “xxx-en” and “xxx-
zh” represent the English and Chinese factual neurons
respectively. “xxx-LAFNs” refers to the language-
agnostic factual neurons shared by English and Chinese.

Di
ℓ={j |

ni
j

max(N i)
>β}, (5)

where h̃ic contains h̃i at each token position in sen-
tence c, 1(act_fn(h̃icW

i
1)j > 0) equals to 1 when

act_fn(h̃icW
i
1)j > 0 otherwise 0, ni

j is the total ac-
tivation counts of the j-th neuron of the i-th FFN
layer, N i is the set of activation counts of all neu-
rons in i-th FFN layer when processing Cℓ, and β
is the threshold to control the amount of Di

ℓ. Af-
ter obtaining the sets of factual neurons for each
language in L, we calculate the intersection of all
these sets in the i-th FFN layer to extract the shared
knowledge neurons among all languages:

Di = Di
ℓ1 ∩Di

ℓ2 ∩ · · · ∩Di
ℓL
, (6)

where we call Di as the LAFNs in the i-th layer that
imply the semantic connections of {Cℓ, ℓ ∈ L}.

Experiments. We conduct analysis on
PARAREL (Elazar et al., 2021), which con-
tains factual knowledge with 34 relations in
English. Here, we identify the LAFNs between
English (en) and Chinese (zh). Firstly, we ran-
domly choose 3000 sentences in each relation from
PARAREL to build the factual corpus Cen (around
100k), and then utilize the Google Translate
API to translate Cen to Czh. We select two public
multilingual LLMs: Llama-3.1-8B (Dubey et al.,
2024) and Qwen2-7B (Yang et al., 2024). The
layer numbers of the two LLMs are 32 and 28. The
threshold β in Eq.(5) for two LLMs is set to 0.9
and 0.8. According to Eq.(5) and Eq.(6), we count
the LAFNs in each layer for the two LLMs.

Results. We plot the identified neuron numbers in
each layer of the two LLMs in Figure 1, including
the factual neurons of each language and LAFNs,
i.e., Di

en, Di
zh and Di. It shows that the changes
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Figure 2: The architecture of our LU-LAFNs. Given the multilingual knowledge to be edited (including the aligned
multilingual subject set SG), we first locate the corresponding language-agnostic factual neurons DG. Then the
update values ∆VDG

is optimized for modifying DG, and {SG : ∆VDG
} is stored in cache. When the subject of

the user query is matched in the cache, the relative ∆VDG
is used for model inference.

of the neuron numbers for the two models exhibit
similar trends, with a greater presence of language-
agnostic knowledge neurons in the middle layers
and the last layer (refer to the green and red lines
in Figure 1). The difference is that in the middle
layers, Llama-3.1-8B peaks in quantity at the 12th
layer, while Qwen2-7B reaches its peak at the 18th
layer. These results prove the existence of LAFNs,
which represent the connections between the same
factual knowledge in different languages and are
mainly located in certain layers. Based on this
finding, we design our method LU-LAFNs.

3.3 LU-LAFNs

Figure 2 shows the architecture of our method. We
first locate the LAFNs for each group of multilin-
gual edit descriptors, and then we optimize the up-
date values to modify these neurons and store them
in the cache. During the inference stage, when the
subject of the user query is matched in the cache,
the relative update values are utilized for model
inference.

Locating Stage. Given the multilingual group G
of an edit descriptor (xe, ye) (G = {(xeℓ , yeℓ )|ℓ ∈
L}), we first locate the factual neurons Di

ℓ in i-th
layer for (xeℓ , y

e
ℓ ) in language ℓ according to Eq.(4)

and Eq.(5). Specifically, to more precisely locate
the neurons that are semantically related to xeℓ , we
use an LLM to generate several paraphrases for xeℓ
to build its paraphrase set as the factual corpus Cℓ

in Eq.(4). After obtaining Di
ℓ in each language ℓ,

we follow Eq.(6) to obtain the LAFNs set Di
G of G

in i-th layer.

Editing Stage. Given one multilingual edit de-
scription group G and its LAFNs set DG of located
layers, we aim to modify the values of DG to edit
knowledge in G simultaneously. Following the set-
tings of MEMIT (Meng et al., 2023) and PMET (Li
et al., 2024), we modify the values VDG

of DG at
the last token position of the subject in the question
xeℓ . As for subjects, we obtain the corresponding
aligned multilingual subject set SG from G (refer
to SG in Figure 2). Then we will optimize the up-
date values ∆VDG

for adding to VDG
to achieve

MKE. That is, the model should generate the corre-
sponding new answer yeℓ by adding the ∆VDG

:

F(θ,VDG
+∆VDG

)(x
e
ℓ) = yeℓ . (7)

To this end, we calculate the Ltarget to optimize
∆VDG

:

Ltarget=
1

|L|M
∑
ℓ∈L

M∑
m=1

−logPF ′
θ
(yeℓ | pmℓ +xeℓ),

(8)
where ℓ ∈ L, F ′

θ = F(θ,VDG
+∆VDG

), and pmℓ rep-
resents a randomly generated prefix to improve
generalization (Meng et al., 2023) on I(xeℓ), and
M is the total number of prefixes.

Additionally, to ensure that the knowledge under
the other relations of SG is not affected, we also use
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Lkl to optimize ∆VDG
similar to MEMIT (Meng

et al., 2023) and PMET (Li et al., 2024):

Lkl=
1

|L|
∑
ℓ∈L

KL
[
PFθ

(y | qℓ) ||PF ′
θ
(y | qℓ)

]
,

(9)
where qℓ has the format of “{sℓ} is a” in language ℓ,
sℓ is the subject in xeℓ and sℓ ∈ SG, and KL[· || ·]
is the Kullback-Leibler divergence (Kullback and
Leibler, 1951).

In the end, the overall optimized objective LMKE

consists of the above two loss functions:

LMKE = λ1Ltarget + λ2Lkl, (10)

where λ1 and λ2 are hyperparameters to control the
weight of two loss functions.

After obtaining ∆VDG
, we store {SG : ∆VDG

}
in the cache to avoid directly modifying the model
parameters. When the subject sℓ of the current
query xℓ is matched2 in SG, we retrieve the corre-
sponding ∆VDG

for model inference as follows:

F ′
θ(xℓ)=

{
F(θ,VDG

+∆VDG
)(xℓ), sℓ∈SG.

Fθ(xℓ), sℓ /∈SG.
(11)

4 Experiments

4.1 Experimental Settings
Datasets and Metrics. We conduct our experi-
ments on Bi-ZsRE (Wang et al., 2023a) and MzsRE
(Wang et al., 2023b). Bi-ZsRE covers English
(en) and Chinese (zh) languages, and each lan-
guage contains 10000/3000/1037 samples for the
train/development/test set. MzsRE includes 12 lan-
guages3, and each language consists of 10000/743
examples for the train/test set. Following Wang
et al. (2023a), we calculate the F1/EM value of
Reliability, Generality, Locality, and Portability as
our evaluation metrics. The detailed introduction
of metrics is listed in Appendix A.1.

Backbones. In our experiments, we select three
public multilingual models as backbones to con-
duct MKE4, including Llama-3.1-8B (Dubey et al.,
2024), Qwen2-7B (Yang et al., 2024), and bloomz-
7b1-mt (Muennighoff et al., 2023). Among them,

2Here, we use the exact-match method.
3English (en), Chinese (zh), Czech (cz), German (de),

Dutch (nl), Spanish (es), French (fr), Portuguese (pt), Rus-
sian (ru), Thai (th), Turkish (tr), and Vietnamese (vi).

4In the initial stage, we conduct cross-lingual experiments
on Llama2-7B (Touvron et al., 2023). We list and discuss
these results in Appendix B.

each FFN layer of Llama-3.1-8B and Qwen2-7B
follows Eq.(3), and bloomz-7b1-mt follows Eq.(2).
The detailed supported languages of the three
LLMs are introduced in Appendix A.2.

Implementation Details. When locating LAFNs
in §3.3, we utilize the Qwen2-72B-instruct (Yang
et al., 2024) model to generate 30 paraphrases for
each xeℓ . The detailed instruction is listed in Ap-
pendix A.3. The length of each randomly generated
prefix pmℓ in Eq.(8) is set to 5, and the total amount
M of prefixes for each language is set to 4. Ad-
ditionally, λ1 in Eq.(10) is set to 1, and λ2 is set
to 0.0625 following MEMIT (Meng et al., 2023).
For layers to be modified, we set (11, 12, 13, 31)
for Llama-3.1-8B, (19, 20, 21, 27) for Qwen2-7B,
and (9, 10, 11, 29) for bloomz-7b1-mt respectively.
And the threshold β in Eq.(5) is set to 0.1, 0, and
0.2 for Llama-3.1-8B, Qwen2-7B, and bloomz-7b1-
mt respectively.

4.2 Contrast Methods

Fine-tuning Method. We directly use LoRA (Hu
et al., 2021) to conduct parameter-efficient tuning
for the original LLM, namely LoRA-FT.

MKE Method. ReMaKE (Wang et al., 2023b)
retrieves similar knowledge from a multilingual
knowledge base as the context to instruct the model.
Here, for the multiple languages to be edited, we
retrieve5 top-one question (with the answer) for
each language and concatenate them as the context.

Adaptations of KE methods. We mainly adapt
some Locate-then-Edit methods to MKE. For ex-
ample, ROME (Meng et al., 2022) modifies the
output matrix of one FFN layer located follow-
ing causal tracing analysis. MEMIT (Meng et al.,
2023) updates the output matrices of multiple FFN
layers simultaneously. PMET (Li et al., 2024)
conducts more precise editing based on MEMIT.
We extend ROME, MEMIT, and PMET to M-
ROME, M-MEMIT, and M-PMET to edit multilin-
gual knowledge simultaneously. Specifically, since
the knowledge to be edited of different languages
corresponds to different answers, we train the new
value for updating FFNs separately for each lan-
guage. And we estimate the previously memorized
keys of FFNs for each language.

5We use XLM-RoBERTa-base shared by https://
github.com/weixuan-wang123/ReMaKE.

https://github.com/weixuan-wang123/ReMaKE
https://github.com/weixuan-wang123/ReMaKE
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Test Language: en Test Language: zh
Methods Reliability Generality Locality Portability Reliability Generality Locality Portability avg

Llama-3.1-8B (Edit Languages: en & zh)
LoRA-FT 97.31 / 95.47 77.39 / 62.78 52.52 / 25.75 32.41 / 4.24 86.59 / 74.06 75.56 / 52.07 27.78 / 2.41 30.32 / 4.15 50.05
ReMaKE 43.40 / 16.30 44.84 / 17.74 100.0 / 100.0 34.45 / 0.96 56.66 / 20.25 57.00 / 20.44 100.0 / 100.0 37.26 / 0.87 46.89
M-ROME 85.89 / 75.80 79.09 / 65.67 88.49 / 73.67 34.18 / 4.15 82.52 / 68.18 79.00 / 61.62 78.44 / 51.40 31.79 / 3.86 60.23
M-MEMIT 88.79 / 80.42 77.30 / 61.91 96.27 / 89.10 35.69 / 3.09 85.92 / 75.22 80.22 / 64.80 95.40 / 84.67 33.59 / 3.95 66.02
M-PMET 91.34 / 83.70 81.70 / 69.14 96.73 / 90.94 35.87 / 4.15 85.39 / 73.87 81.48 / 67.02 95.28 / 84.76 33.29 / 3.66 67.40

LU-LAFNs (Ours) 99.34 / 98.94 96.03 / 93.44 100.0 / 100.0 29.84 / 3.28 90.71 / 83.99 88.90 / 81.20 100.0 / 100.0 29.01 / 3.95 74.91
Qwen2-7B (Edit Languages: en & zh)

LoRA-FT 88.82 / 80.81 69.93 / 54.10 49.60 / 20.54 31.72 / 5.79 96.17 / 92.29 83.01 / 67.89 52.31 / 21.60 34.94 / 7.71 53.58
ReMaKE 43.64 / 16.30 44.75 / 17.55 100.0 / 100.0 34.47 / 1.25 62.04 / 28.25 63.22 / 29.80 100.0 / 100.0 39.07 / 3.47 48.99
M-ROME 81.89 / 70.97 74.08 / 59.59 92.74 / 83.41 33.11 / 1.83 88.15 / 77.05 81.52 / 65.86 93.41 / 81.68 33.65 / 4.15 63.94
M-MEMIT 97.17 / 94.99 89.00 / 82.26 94.17 / 86.60 34.18 / 2.89 98.56 / 96.24 93.44 / 87.17 95.62 / 87.95 33.94 / 5.21 73.71
M-PMET 88.13 / 79.27 77.91 / 64.32 93.59 / 85.25 34.10 / 2.22 90.24 / 80.42 82.53 / 67.31 95.25 / 87.17 33.38 / 3.95 66.57

LU-LAFNs (Ours) 99.45 / 99.23 95.61 / 92.29 100.0 / 100.0 30.27 / 2.03 99.80 / 99.71 96.50 / 93.06 100.0 / 100.0 30.78 / 5.11 77.74
bloomz-7b1-mt (Edit Languages: en & zh)

LoRA-FT 83.76 / 75.31 64.11 / 48.60 29.63 / 7.62 23.14 / 3.66 94.49 / 89.39 78.52 / 64.03 18.21 / 3.38 22.55 / 4.15 44.41
ReMaKE 28.78 / 2.03 28.30 / 1.16 100.0 / 100.0 22.29 / 0.00 61.08 / 37.99 60.77 / 38.38 100.0 / 100.0 32.49 / 7.04 45.02
M-ROME 70.27 / 52.75 63.50 / 43.30 77.29 / 59.88 26.67 / 0.58 84.58 / 71.36 78.17 / 62.49 67.99 / 48.41 26.55 / 5.01 52.43
M-MEMIT 99.09 / 98.07 90.07 / 84.57 98.44 / 96.62 28.39 / 2.03 98.34 / 97.01 91.16 / 86.89 97.91 / 95.08 27.89 / 6.27 74.86
M-PMET 96.41 / 93.44 85.96 / 76.86 98.35 / 96.62 27.90 / 1.25 96.74 / 93.92 88.38 / 81.49 97.99 / 95.08 27.99 / 5.69 72.75

LU-LAFNs (Ours) 99.83 / 99.71 96.40 / 94.41 100.0 / 100.0 26.43 / 2.70 99.65 / 99.42 97.78 / 96.43 100.0 / 100.0 26.94 / 6.17 77.87

Table 2: The F1/EM (%) results on Bi-ZsRE using Llama-3.1-8B, Qwen2-7B, and bloomz-7b1-mt as backbones.
Results in bold represent the best results. “avg” denotes the average value of all metrics in both two languages.

4.3 Experimental Results

Results on Bi-ZsRE. Table 2 shows the F1/EM
results on Bi-ZsRE using Llama-3.1-8B, Qwen2-
7B, and bloomz-7b1-mt as backbones. From the
“avg” column, the average results of all metrics
show that our method outperforms other baselines
significantly in all three backbones. Particularly,
our method exceeds other methods by almost >5
points in Reliability and Generality under F1&EM.
The superiority in Reliability indicates that updat-
ing LAFNs can edit the multilingual knowledge
(needs to be edited) more effectively, and in Gener-
ality means excellent generalization on the equiv-
alent questions that have the same semantics as
the edited questions. As for Locality, both our
method and ReMaKE achieve the “100.00” value
since the two methods do not modify the parame-
ters of the original model during the editing pro-
cess, not influencing previously learned knowledge.
However, ReMaKE performs poorly in Reliabil-
ity and Generality because the retrieved examples
can not instruct the model to generate correct an-
swers. LoRA-FT has a good performance in Relia-
bility among baselines (e.g., when Llama-3.1-8B
testing on en, and when Qwen2-7B and bloomz-
7b1-mt testing on zh), but it scores the lowest
Locality since it dramatically modifies the origi-
nal model parameters. Additionally, the adaptions
of Locate-then-Edit methods to MKE (M-ROME,
M-MEMIT, and M-PMET) perform moderately
among all methods. Specifically, M-ROME is less

effective than M-MEMIT and M-PMET because it
only updates a single layer. M-PMET performs the
second best on Llama-3.1-8B, and M-MEMIT per-
forms the second best on Qwen2-7B and bloomz-
7b1-mt, while both are inferior to our method. It
demonstrates that the simple adaptations of these
methods to MKE are less effective due to overlook-
ing the connections of multilingual knowledge.

Portability, as a more difficult metric, measures
whether the edited model can reason based on the
edited knowledge via a portability question (Yao
et al., 2023; Sun et al., 2024), where the relations
and objects are out of the scope of the edited knowl-
edge. The corresponding results show that all meth-
ods underperform on this metric without significant
difference, especially when all EM results are less
than 10, even than 5. We speculate that this reason-
ing ability is difficult to be well-measured without
a reasoning process. We believe there is substantial
room for measuring and improving portability in
the future. Moreover, we observe that Llama-3.1-
8B exhibits notably superior edit performance on
English compared to Chinese since Llama-3.1-8B
is not fine-tuned using Chinese instruction data.
We guess that the inherent language capabilities of
LLMs have a crucial impact on their edit perfor-
mance.

Results on MzsRE. As for more languages, the
average EM results of four metrics on MzsRE are
reported in Figure 3. (Detailed EM results of each
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Figure 3: The average EM (%) results of four metrics (Reliability, Generality, Locality, and Portability) on the
MzsRE dataset using Llama-3.1-8B, Qwen2-7B, and bloomz-7b1-mt as backbones. Values below 40.0 are shown
in the same light color, while higher values have deeper colors indicating better performance. The orange box
highlights the mean results across 12 languages. The detailed results for each metric are listed in Appendix C.

metric for the three LLMs are listed in Table 10,
11, and 12 of Appendix C.) Figure 3 shows that
our method (with the deeper color) performs bet-
ter than other baselines to a large extent on each
language under three backbones. Among baselines,
“M-ROME” performs worst since this method only
updates one single layer, struggling to support si-
multaneous editing of more language knowledge.
Other methods also underperform our method and
exhibit a similar trend with the performance on
Bi-ZsRE. For the edit performance of each lan-
guage, most methods perform better on English
than other languages under all backbones since
these LLMs are primarily proficient in English (due
to the existence of large-scale high-quality English
data). Additionally, we also observe that the edit
performance in the same language family is simi-
lar since these languages have a shared vocabulary,
such as the Indo-European Family (Germanic lan-
guages: en, de, and nl, Slavic languages: cz and
ru, Romance languages: es, fr, and pt). More-
over, Llama-3.1-8B has a worse performance on vi,
zh, and th. Qwen2-7B also performs poorly on vi
and th than other languages, while bloomz-7b1-mt
performs badly on tr, ru, and th. The different
edit performance of different LLMs on various lan-
guages is probably due to the language distribution
of the training dataset and the linguistic character-

istics of different languages. These results further
demonstrate that the inherent language capabili-
ties of LLMs determine the edit performance in
different languages.

5 Analysis

In §5.1, we initially demonstrate the knowledge
conflicts of other baselines. Then we explore the
key factors affecting edit performance in §5.2. Sub-
sequently, we compare different locating strategies
to prove that using paraphrases during the locating
stage can improve the edit performance (§5.3).

5.1 Conflicts of Editing Multilingual
Knowledge

We conduct monolingual editing and multilingual
editing experiments on Bi-ZsRE, and the results are
reported in Table 1 and 3. Referring to the red val-
ues, we can find that most methods (e.g., LoRA-FT,
M-ROME, M-MEMIT, and M-PMET) on the three
LLMs lead to conflicts when conducting MKE, re-
sulting in the degradation of edit performance com-
pared to monolingual KE. Among them, M-ROME
has a dramatic decline due to the limited edit region.
By contrast, our method conducts MKE by locat-
ing and updating LAFNs, which does not cause
conflicts and further improves the edit performance
than monolingual KE. Additionally, although the
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Edit Languages Monolingual Multilingual
Test Languages en zh en zh

Qwen2-7B
LoRA-FT 40.60 48.60 40.31 (−0.29) 47.37 (−1.23)
ReMaKE 33.87 39.03 33.78 (−0.10) 40.38 (+1.35)
M-ROME 67.60 67.24 53.95 (−13.65) 57.19 (−10.05)
M-MEMIT 69.12 71.29 66.69 (−2.43) 69.14 (−2.15)
M-PMET 61.31 61.65 57.77 (−3.54) 59.71 (−1.93)

LU-LAFNs (Ours) 72.35 74.04 73.39 (+1.04) 74.47 (+0.43)

bloomz-7b1-mt
LoRA-FT 33.83 40.65 33.80 (−0.03) 40.24 (−0.41)
ReMaKE 28.40 48.19 25.80 (−2.60) 45.85 (−2.34)
M-ROME 57.47 59.19 39.13 (−18.35) 46.82 (−12.37)
M-MEMIT 71.75 72.93 70.32 (−1.43) 71.31 (−1.61)
M-PMET 69.67 70.47 67.04 (−2.63) 69.05 (−1.43)

LU-LAFNs (Ours) 72.81 75.34 74.21 (+1.40) 75.51 (+0.17)

Table 3: The average EM results of four metrics on
Bi-ZsRE using Qwen2-7B and bloomz-7b1-mt. “Mono-
lingual” means editing and testing on the same one
language. “Multilingual” means editing on both en and
zh, and testing on each language, respectively. The val-
ues in red represent the performance decline compared
with monolingual KE due to knowledge conflicts. The
others in green represent no such conflicts.

A Single Layer avg Multiple Layers avg
0 66.60 11-12 74.37
5 72.86 12-13 74.28
10 72.73 12-31 74.31
12 73.35 11-12-13 74.45
27 71.35 11-12-13-31 74.91
31 33.43 12-13-14-15-31 74.54

Table 4: The average F1/EM results of different layer
settings on Bi-ZsRE using Llama-3.1-8B as the back-
bone (when β = 0.1).

ReMaKE method does not cause conflicts when
Qwen2-7B testing on zh, its edit performance is
much lower than our method. In summary, our
method avoids the conflicts in MKE by locating
and updating LAFNs, which represent the connec-
tions between multilingual knowledge.

5.2 Key Factors to Edit Performance

In this section, we explore the key factors affecting
edit performance based on Llama-3.1-8B.

Updated Layers of LAFNs. Figure 1 in §3.2
has shown that the LAFNs are mostly located in
some middle FFN layers and the last FFN layer.
Thus, we further evaluate our method when up-
dating LAFNs in different layers according to the
distribution of LAFNs, including updating a sin-
gle layer and multiple layers (the threshold β in
Eq.(5) is set to 0.1 for this evaluation). The cor-
responding results reported in Table 4 show that
in the single-layer setting, the edit performance

β Num (Proportion) avg β Num (Proportion) avg
0 14046 (98.0%) 74.85 0.5 1933 (13.5%) 73.26

0.1 9738 (67.9%) 74.91 0.6 1195 (8.3%) 72.08
0.2 6729 (46.9%) 74.79 0.7 720 (5.0%) 70.25
0.3 4613 (32.2%) 74.74 0.8 418 (2.9%) 66.30
0.4 3045 (21.2%) 74.44 0.9 223 (1.6%) 50.56

Table 5: The average F1/EM results of different β on
Bi-ZsRE using Llama-3.1-8B as the backbone when
editing (11, 12, 13, 31) layers. The “Num (Proportion)”
represents the average number and proportion of LAFNs
on each updated layer.

Methods Llama-3.1-8B Qwen2-7B bloomz-7b1-mt
LU-LAFNs (Ours) 74.91 77.74 77.87

No-PGs 74.75 (↓ 0.16) 77.69 (↓ 0.05) 77.70 (↓ 0.17)
All 74.85 (↓ 0.06) 77.71 (↓ 0.03) 77.13 (↓ 0.74)

Random 74.69 (↓ 0.22) 77.61 (↓ 0.13) 77.66 (↓ 0.21)

Table 6: The average F1/EM results of different locating
strategies on Bi-zsRE using Llama-3.1-8B, Qwen2-7B,
and bloomz-7b1-mt as backbones.

achieves the best in the 12-th layer (which has the
most LAFNs in the middle layers) and worst in
the last layer. Although the last layer also has nu-
merous LAFNs, we conjecture that these neurons
are directly related to the final outputs, and thus a
single update vector is difficult to fulfill answers
in all languages. Moreover, we find that simultane-
ously editing multiple layers around the 12-th layer
can further improve edit performance, with the best
performance observed in (11, 12, 13, 31) layers.

Number of LAFNs in Updated Layers. We also
explore the influence of the threshold β in Eq.(5),
which controls the number of LAFNs in each layer,
when editing the (11, 12, 13, 31) layers. The re-
sults in Table 5 show that when 0 ≤ β ≤ 0.4, the
edit performance does not change obviously, and
the best performance is achieved when β = 0.1,
that is, 67.9% of neurons are located and modi-
fied in each layer. Moreover, when β = 0.7 (only
updates 5.0% LAFNs for each layer), the perfor-
mance (70.25) still exceeds the baselines in Table 2
(the best is 67.40 by M-PMET), proving the effec-
tiveness of updating LAFNs. In summary, both the
updated layers and the number of LAFNs affect
the edit performance, with the layers having a
greater impact. The discussions of Qwen2-7B and
bloomz-7b1-mt are listed in Appendix D, which
draw similar conclusions with Llama-3.1-8B.

5.3 Different Locating Strategies

To verify the effectiveness of using paraphrases dur-
ing the locating stage, we compare three different



5783

locating strategies with the original LU-LAFNs:
(1) No-PGs: not using paraphrases to assist in lo-
cating LAFNs, i.e., only using a single sentence in
each language; (2) All: modifying all neurons of
the same layers as LU-LAFNs without locating the
set of LAFNs; (3) Random: randomly selecting
the same number of neurons in the same layers to
modify. The results in Table 6 show that the perfor-
mance of all these three settings declines compared
to the proposed method. These results demonstrate
that using paraphrases during the locating stage can
improve the edit performance since it can locate
the LAFNs that are more semantically relevant to
the multilingual knowledge to be edited.

6 Conclusion

In this work, we first identify language-agnostic
factual neurons (LAFNs) in LLMs that represent
the factual knowledge shared across different lan-
guages and imply semantic connections between
multilingual knowledge. Then, we propose a new
method LU-LAFNs to conduct MKE by locating
and updating LAFNs. The experimental results
demonstrate our method avoids knowledge con-
flicts and achieves the best MKE performance.

Limitations

In our approach, it is necessary to provide the
aligned multilingual knowledge to be edited and
their corresponding multilingual subjects, which
is directly available in both Bi-ZsRE and MzsRE
datasets. However, for other datasets that do not
contain this information, we first need to prepro-
cess the data to support our method. For exam-
ple, if there is no corresponding multilingual data
available, using translation API can translate the
existing knowledge to be edited to other languages.
If the corresponding subjects are not annotated, ex-
isting LLMs can be utilized to identify the aligned
multilingual subjects in the sentences of each lan-
guage. These preprocessing steps can be easily
implemented by calling existing tools. Moreover,
the current method for determining whether a sub-
ject exists in the cache adopts the exact-match ap-
proach, which is too strict. We will optimize it to a
fuzzy matching method in future work to enhance
the performance in practical application scenarios.

Furthermore, our method performs poorly in the
Portability metric, which measures whether the
edited model can reason based on the edited knowl-
edge. Recently, Khandelwal et al. propose the

cross-lingual multi-hop knowledge editing bench-
mark CROLIN-MQUAKE based on MQUAKE
(Zhong et al., 2023) to test the multi-hop reasoning
ability of the edited model. Next, we will test our
method on this benchmark and further improve our
method in reasoning scenarios.
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A Detailed Experimental Settings

A.1 Evaluation Metrics
The details of the four metrics are as follows (Wang
et al., 2023a). Reliability measures the average ac-
curacy on the edit case. When receiving xe as input,
the edited model F ′

θ should output ye. Generality
evaluates the average accuracy on the equivalent
cases as the edit case. For instance, when receiving
a rephrased sentence of xe, the edited model F ′

θ

is also expected to output ye. Locality assesses
the accuracy of the edited model on the irrelevant
samples. When the input x is irrelevant with xe,
F ′
θ(x) should be the same as Fθ(x) ideally. Porta-

bility measures the robust generalization of the
edited model via a portability question that needs
reasoning based on the edited knowledge. When re-
ceiving the portability question as input, the edited
model F ′

θ is expected to output the golden answer
to demonstrate the model indeed learns the knowl-
edge.

A.2 Supported Languages of LLMs
Llama-3.1-8B is fine-tuned with high-quality mul-
tilingual instruction data including English, French,
German, Portuguese, Spanish, and Thai, and also
has a certain degree of generalization ability to the
other 6 languages in MzsRE. Qwen2-7B supports
all 12 languages6 in MzsRE. The bloomz-7b1-mt
model is finetuned on the cross-lingual task mixture
(xP3mt7) across 46 languages and 16 NLP tasks
and has the capability of cross-lingual generaliza-
tion to unseen tasks and languages.

A.3 The Instruction for generating
paraphrases

We call the Qwen2-72B-instruct API (from the
ALIYUN platform) to generate the paraphrase set
Pℓ for more precisely locating neurons. We directly
use the default generation configs. The English
version of the instruction for inputting Qwen2-72B-
instruct is “You are an expert at sentence rewriting.
Below I will give you a subject and a question con-
taining the subject. Please give me 30 questions
including this subject in English. They must have

6https://qwenlm.github.io/zh/blog/
qwen2/

7https://huggingface.co/datasets/
bigscience/xP3mt

Edit on en en zh zh
Test on en zh en zh
ROME 72.96 35.11 41.46 47.61
MEMIT 76.26 36.56 42.64 48.41
PEMT 77.18 36.00 42.69 48.12

LU-LAFNs (Ours) 79.96 37.34 43.74 55.57

Table 7: The average F1 results of four metrics on Bi-
ZsRE using Llama2-7B as the backbone under the cross-
lingual edit setting.

the same semantics as the given question. Subject:
{}. Question containing this Subject: {}”.

B Cross-Lingual Experiments

In the initial stage, we conduct cross-lingual ex-
periments on Llama2-7B (Touvron et al., 2023),
i.e., we only utilize monolingual knowledge to edit
the model and then test the edit performance on
other languages. The results in Table 7 show that
our method has better generalization on unseen
languages than ROME/MEMIT/PEMT. However,
there is still a large gap between the editing perfor-
mance on unedited languages and that on edited
languages. Therefore, we mainly focus on multi-
lingual knowledge editing in this paper, which per-
forms better in updating multilingual knowledge
simultaneously.

C Detailed Results on MzsRE

The detailed EM results of four metrics on MzsRE
for Llama-3.1-8B, Qwen2-7B, and bloomz-7b1-mt
are listed in Table 10, 11, and 12, respectively.

D Different Settings of Qwen2-7B and
bloomz-7b1-mt

We report the edit performance of Qwen2-7B and
bloomz-7b1-mt under different layers (Table 8) and
different values of β (Table 9). The changes in edit
performance under different settings are similar to
Llama-3.1-8B. Qwen2-7B achieves the best result
when editing (19, 20, 21, 27) layers and β = 0,
and bloomz-7b1-mt performs best when editing
(9, 10, 11, 29) layers and β = 0.2. Additionally,
when β = 0.5 on editing Qwen2-7B (only updates
5.1% LAFNs for each layer), the result (75.44) ex-
ceeds all baselines in Table 2 (the best result is
73.71 of M-MEMIT). And when β = 0.5 on edit-
ing bloomz-7b1-mt (only updates 1.9% LAFNs for
each layer), the result (77.41) exceeds all baselines
in Table 2 (the best result is 74.86 of M-MEMIT).

https://arxiv.org/abs/2305.14795
https://arxiv.org/abs/2305.14795
https://qwenlm.github.io/zh/blog/qwen2/
https://qwenlm.github.io/zh/blog/qwen2/
https://huggingface.co/datasets/bigscience/xP3mt
https://huggingface.co/datasets/bigscience/xP3mt
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A Single Layer avg Multiple Layers avg
Qwen2-7B

0 61.16 19-20 77.49
5 34.35 20-21 77.29
10 76.02 19-20-21 77.51
18 76.33 18-19-20-21 77.36
20 76.56 19-20-21-27 77.53
27 33.43 18-19-20-21-27 77.51

bloomz-7b1-mt
0 48.18 10-11 77.80
2 75.31 10-15 77.79
4 71.63 9-10-11 77.83
10 77.54 14-15-16 77.83
15 77.49 9-10-11-29 77.84
29 31.25 14-15-16-29 77.65

Table 8: The results of different layer settings on Bi-
ZsRE using Qwen2-7B and bloomz-7b1-mt as back-
bones (when β = 0.1).

β Num (Proportion) avg β Num (Proportion) avg
Qwen2-7B, layers=19-20-21-27

0 18190 (96.0%) 77.74 0.5 962 (5.1%) 75.44
0.1 8907 (47.0%) 77.53 0.6 603 (3.2%) 71.84
0.2 4421 (23.3%) 77.25 0.7 375 (2.0%) 54.88
0.3 2539 (13.4%) 76.69 0.8 226 (1.2%) 38.04
0.4 1543 (8.1%) 76.29 0.9 125 (0.7%) 34.35

bloomz-7b1-mt, layers=9-10-11-29
0 15220 (92.9%) 77.36 0.5 316 (1.9%) 77.41

0.1 8169 (49.9%) 77.84 0.6 114 (0.7%) 45.50
0.2 4201 (25.6%) 77.87 0.7 43 (0.3%) 33.03
0.3 2009 (12.3%) 77.68 0.8 17 (0.1%) 31.58
0.4 844 (5.2%) 77.21 0.9 0 (0.0%) 0.00

Table 9: The results of different β on Bi-ZsRE using
Qwen2-7B and bloomz-7b1-mt as backbones under the
best layer setting. The “Num (Proportion)” represents
the average number and proportion of LAFNs on each
updated layer.

Furthermore, the appropriate layer setting is more
crucial to edit performance than the threshold β.
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Methods cz vi tr fr es zh en de ru nl pt th avg
Reliability

LoRA-FT 98.65 96.10 98.79 97.17 96.77 81.29 99.19 98.38 98.25 99.19 95.96 96.23 96.33
ReMaKE 15.36 15.23 16.17 15.36 15.36 19.95 16.85 15.50 3.10 15.50 15.09 27.76 15.94
M-ROME 31.36 26.24 29.61 31.90 30.28 25.71 48.18 35.13 15.75 32.97 27.05 13.73 28.99
M-MEMIT 69.85 54.24 66.49 67.43 66.49 63.53 74.43 71.06 84.12 69.58 67.70 82.91 69.82
M-PMET 68.10 60.16 70.52 66.62 65.95 61.64 80.48 73.22 75.24 67.43 68.10 74.83 69.36
LU-LAFNs (Ours) 97.98 96.90 97.17 97.58 95.29 81.83 98.12 96.77 94.08 95.83 94.35 88.29 94.52

Generality
LoRA-FT 88.83 81.83 89.10 89.77 88.69 76.99 94.89 91.52 88.16 91.66 87.21 78.20 87.24
ReMaKE 15.50 15.36 16.17 15.36 15.36 21.56 16.85 15.50 6.33 15.63 14.96 23.72 16.03
M-ROME 29.07 25.17 28.26 30.15 28.26 24.36 48.32 35.53 15.07 31.22 25.98 9.42 27.57
M-MEMIT 59.35 46.03 58.68 57.74 58.14 56.53 63.93 61.10 69.04 58.55 57.60 44.41 57.59
M-PMET 61.91 54.24 66.22 62.31 62.45 57.20 75.24 68.64 64.87 62.31 62.72 45.76 61.99
LU-LAFNs (Ours) 91.12 88.69 92.87 93.41 88.69 77.93 95.96 91.92 84.39 89.77 88.16 66.35 87.44

Locality
LoRA-FT 3.77 2.42 4.31 3.63 2.42 3.36 5.92 3.63 4.17 2.56 2.83 1.08 3.34
ReMaKE 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.73 100.00 100.00 100.00 99.98
M-ROME 7.54 10.50 7.00 10.63 8.61 10.50 17.09 7.40 6.59 9.29 9.83 6.06 9.25
M-MEMIT 71.74 74.70 72.54 76.72 80.75 82.23 85.87 80.48 68.51 73.49 71.87 70.52 75.79
M-PMET 72.95 72.68 72.01 77.25 76.99 76.58 83.98 78.06 66.49 74.02 73.76 70.93 74.64
LU-LAFNs (Ours) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.73 100.00 100.00 100.00 99.98

Portability
LoRA-FT 3.77 2.42 4.31 3.63 2.42 3.36 5.92 3.63 4.17 2.56 2.83 1.08 3.34
ReMaKE 0.54 0.40 0.54 0.67 0.54 0.81 0.81 0.54 0.00 0.40 0.67 0.40 0.53
M-ROME 1.21 1.62 2.29 1.21 1.48 1.75 3.90 1.48 1.75 1.21 1.88 0.13 1.66
M-MEMIT 2.15 2.83 3.90 3.10 2.83 3.36 5.11 3.36 2.69 2.42 3.50 0.13 2.95
M-PMET 2.15 3.36 4.17 3.10 2.83 3.10 4.58 3.50 2.02 2.96 3.50 0.54 2.98
LU-LAFNs (Ours) 1.62 1.62 3.10 1.48 1.88 3.50 2.29 2.02 2.29 1.62 1.88 1.35 2.05

Table 10: The EM results on the MzsRE dataset using Llama-3.1-8B as the backbone.

Methods cz vi tr fr es zh en de ru nl pt th avg
Reliability

LoRA-FT 85.60 78.73 83.04 83.98 85.60 94.08 80.62 83.18 90.04 85.60 88.69 91.66 85.90
ReMaKE 18.03 15.21 16.29 15.21 15.61 23.55 16.82 16.02 9.42 16.15 15.07 60.57 19.83
M-ROME 33.51 32.97 38.49 32.84 31.90 34.32 47.78 38.76 17.23 35.53 30.69 26.51 33.38
M-MEMIT 86.00 74.83 73.62 83.31 84.66 77.25 89.37 88.29 87.21 84.66 82.23 88.16 83.30
M-PMET 68.91 59.08 59.89 70.52 72.14 68.24 77.12 72.81 72.41 68.24 67.43 70.79 68.97
LU-LAFNs (Ours) 97.84 96.76 98.11 98.92 96.49 98.92 99.46 98.52 94.60 97.44 97.44 91.36 97.16

Generality
LoRA-FT 72.41 63.53 70.12 76.31 73.62 84.79 74.02 75.50 73.62 74.56 77.25 65.14 73.41
ReMaKE 18.03 15.48 16.55 15.61 15.88 26.51 16.82 16.15 13.59 16.29 15.34 68.37 21.22
M-ROME 32.44 29.61 34.32 30.28 28.40 30.82 42.93 36.20 14.54 32.03 30.01 15.07 29.72
M-MEMIT 71.47 61.91 67.03 71.47 75.37 69.18 77.66 73.49 74.29 69.58 70.52 51.41 69.45
M-PMET 59.08 47.91 52.36 62.05 64.20 58.14 67.83 61.91 60.57 58.28 55.72 40.65 57.39
LU-LAFNs (Ours) 89.88 85.02 93.66 91.50 90.82 91.77 94.74 91.23 83.54 88.39 88.93 66.80 88.02

Locality
LoRA-FT 3.10 4.71 3.90 4.98 3.77 21.53 3.90 4.44 1.88 3.10 2.29 3.63 5.10
ReMaKE 99.87 99.87 99.87 99.87 99.87 100.00 100.00 99.87 99.73 99.87 99.87 99.73 99.87
M-ROME 37.95 48.45 44.55 51.55 58.14 65.55 66.22 54.51 39.84 46.57 55.32 37.42 50.51
M-MEMIT 65.28 68.78 63.93 70.79 75.91 82.37 76.58 69.72 65.14 69.99 74.29 63.26 70.50
M-PMET 66.49 72.27 67.16 71.60 76.99 83.31 79.14 73.22 66.22 71.74 74.97 65.41 72.38
LU-LAFNs (Ours) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Portability
LoRA-FT 2.56 1.75 2.15 2.69 2.56 7.67 4.98 2.69 2.83 1.88 2.42 1.35 2.96
ReMaKE 0.81 0.40 0.40 0.40 0.27 3.23 0.67 0.54 0.27 0.27 0.40 3.10 0.90
M-ROME 1.21 1.08 1.48 0.81 0.81 2.15 1.88 1.08 0.81 0.94 0.67 0.13 1.09
M-MEMIT 1.75 1.75 3.63 2.29 2.15 4.04 3.36 2.42 2.69 2.02 2.42 0.27 2.40
M-PMET 1.62 1.48 2.29 1.48 2.29 3.10 2.69 1.75 2.02 2.02 2.15 0.40 1.94
LU-LAFNs (Ours) 1.62 1.62 2.70 1.75 2.16 4.99 2.29 2.16 1.89 1.08 2.29 0.94 2.12

Table 11: The EM results on the MzsRE dataset using Qwen2-7B as the backbone.



5788

Methods cz vi tr fr es zh en de ru nl pt th avg
Reliability

LoRA-FT 78.06 74.43 67.97 77.12 71.47 89.64 79.14 79.68 59.62 78.47 73.89 8.88 69.86
ReMaKE 0.83 0.97 2.07 1.10 0.41 39.45 2.48 1.66 0.00 1.79 0.83 0.00 4.30
M-ROME 12.65 21.27 10.23 23.42 21.53 17.23 25.84 14.54 1.62 15.07 20.46 4.44 15.69
M-MEMIT 92.19 75.64 66.49 95.15 94.35 83.71 95.83 93.54 81.43 92.46 94.35 14.67 81.65
M-PMET 78.87 67.29 58.55 83.31 86.81 81.97 85.46 84.79 74.29 75.37 82.50 13.06 72.69
LU-LAFNs (Ours) 95.79 97.69 93.07 98.23 95.65 96.74 98.64 97.69 73.78 96.60 97.28 13.99 87.93

Generality
LoRA-FT 53.57 60.30 49.53 65.14 61.91 73.49 71.60 65.81 32.57 63.66 63.39 4.85 55.49
ReMaKE 0.97 0.97 1.93 1.24 0.55 39.31 2.90 1.38 0.00 1.24 0.69 0.00 4.27
M-ROME 13.32 19.65 10.36 22.75 19.65 15.21 24.50 14.00 1.48 13.73 19.52 3.90 14.84
M-MEMIT 75.50 61.37 55.45 83.71 84.66 72.14 82.50 76.18 68.91 73.62 82.37 9.96 68.86
M-PMET 63.39 55.32 48.18 71.33 75.64 68.64 69.18 65.95 60.30 60.70 68.51 8.75 59.66
LU-LAFNs (Ours) 82.74 83.56 80.57 89.67 90.62 89.40 91.30 85.87 63.04 79.21 89.40 10.05 77.95

Locality
LoRA-FT 6.06 7.54 3.77 11.17 5.38 3.90 8.34 2.29 3.23 5.11 9.29 1.75 5.65
ReMaKE 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.10 99.76
M-ROME 11.17 13.86 9.15 16.02 11.17 10.77 12.79 2.96 4.98 9.69 14.80 3.77 10.09
M-MEMIT 75.37 87.48 75.91 91.12 89.50 91.92 90.98 78.20 58.55 78.33 88.96 25.98 77.69
M-PMET 77.12 86.27 75.24 92.33 90.31 91.39 91.79 78.20 59.22 79.81 89.10 26.65 78.12
LU-LAFNs (Ours) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.15 99.76

Portability
LoRA-FT 0.94 2.02 0.94 1.88 1.48 3.63 2.56 1.08 1.21 0.81 2.42 0.13 1.59
ReMaKE 0.00 0.00 0.00 0.00 0.00 6.48 0.00 0.00 0.00 0.00 0.00 0.00 0.54
M-ROME 0.13 0.13 0.00 0.13 0.13 1.35 0.27 0.00 0.00 0.27 0.27 0.13 0.23
M-MEMIT 0.94 1.08 1.48 0.94 1.08 5.65 1.75 0.94 1.21 1.08 1.48 0.00 1.47
M-PMET 0.81 0.67 0.81 0.67 1.08 5.11 1.21 0.81 1.48 0.81 1.21 0.00 1.22
LU-LAFNs (Ours) 1.77 1.36 2.45 1.49 2.04 4.08 1.49 1.77 1.22 1.22 2.31 0.00 1.77

Table 12: The EM results on the MzsRE dataset using bloomz-7b1-mt as the backbone.
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