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Abstract

We test whether NLP datasets created with
Large Language Models (LLMs) contain an-
notation artifacts and social biases like NLP
datasets elicited from crowd-source workers.
We recreate a portion of the Stanford Nat-
ural Language Inference corpus using GPT-
4, Llama-2 70b for Chat, and Mistral 7b In-
struct. We train hypothesis-only classifiers to
determine whether LLM-elicited NLI datasets
contain annotation artifacts. Next, we use
point-wise mutual information to identify the
words in each dataset that are associated with
gender, race, and age-related terms. On our
LLM-generated NLI datasets, fine-tuned BERT
hypothesis-only classifiers achieve between 86-
96% accuracy. Our analyses further character-
ize the annotation artifacts and stereotypical
biases in LLM-generated datasets.

1 Introduction

Creating NLP datasets with Large Language Mod-
els (LLMs) is an attractive alternative to relying on
crowd-source workers (Ziems et al., 2024). Com-
pared to crowd-source workers, LLMs are inexpen-
sive, fast, and always available. Although LLMs
require validation (Pangakis et al., 2023), they are
an efficient tool to annotate data (Zhao et al., 2022;
Bansal and Sharma, 2023; Gilardi et al., 2023; He
et al., 2024). In addition to relying on LLMs for
data annotation, researchers can elicit text from
LLMs to create NLP datasets. For instance, LLMs
have been used to generate training sets for NLP
classification tasks like sentiment and intent classi-
fication (Ye et al., 2022; Sahu et al., 2022; Chung
et al., 2023; Møller et al., 2024).

Eliciting text from humans can yield NLP
datasets with stereotypical biases (Rudinger et al.,
2017) and annotation artifacts (Cai et al., 2017;
Kaushik and Lipton, 2018). Since researchers use
LLMs to create textual datasets, we study whether
LLM-elicited datasets similarly suffer from stereo-

typical biases and annotation artifacts. To compare
human- and machine-elicited textual data, we cre-
ate LLM-generated versions of the Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) by providing LLMs with the same
instructions given to SNLI crowd-source workers.

We focus on Natural Language Inference (NLI),
the task of determining whether a hypothesis sen-
tence could be likely inferred from a premise (Da-
gan et al., 2005), since popular NLI datasets with
crowd-sourced hypotheses contain biases. We ap-
ply standard approaches to detect annotation arti-
facts in NLI by training hypothesis-only classifiers
and identifying words highly associated with spe-
cific NLI labels. Further, we search for race, age,
and gender-based stereotypical biases by finding
words most associated with these social groups,
and compare them with biases in SNLI.

We find that LLM-elicited NLI contains both
hypothesis-only and social biases. On our LLM-
generated NLI datasets, fine-tuned BERT classi-
fiers achieve 86-96% accuracy when given only
the hypotheses, compared to 72% performance on
SNLI. We also find the LLM-generated datasets
contain similar gender stereotypes as SNLI. Our re-
search suggests that while eliciting text from LLMs
to generate NLP datasets is enticing and promising,
thorough quality control is necessary.

2 Background & Motivation

There is a robust literature focusing on whether
LLMs contain biases (Nozza et al., 2021; Sheng
et al., 2021; Mei et al., 2023; Kolisko and Anderson,
2023; Gallegos et al., 2024; Liu et al., 2024; Shin
et al., 2024; Raj et al., 2024; Hu et al., 2024). We
similarly evaluate biases in LLMs, but our focus is
different: specifically, we ask whether LLMs are
a suitable replacement for crowdsource workers
when creating NLP datasets. Concretely, we in-
vestigate whether NLP datasets with LLM-elicited
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Premise Two women are hiking in the wilderness.

Entailment Contradiction
SNLI There are two women outdoors. There are two women in the living room.
Llama There are people outdoors. A couple is having a picnic in a park.
Mistral There are people in nature. The women are shopping for clothes.
GPT-4 People are outdoors. Two women are swimming in a pool.

Table 1: Entailed and contradicted hypotheses produced by humans (SNLI) and three LLMs (Llama-2 70b for Chat,
Mistral 7b Instruct, and GPT-4) in response to the same premise.

text contain similar annotation artifacts and social
biases as NLP datasets with human-elicited text.

Prompting humans to generate text for large-
scale NLP datasets can lead to biased datasets. Fa-
mously, datasets for the Story Cloze Test and NLI
contain biases introduced by their human elicita-
tion protocols. To create a dataset for the Story
Cloze Test, i.e. the task of determining the correct
ending of a story, Mostafazadeh et al. (2016) asked
crowd-source workers “to write novel five-sentence
stories.” Bowman et al. (2015) created SNLI by
providing crowd-source workers image captions
from the Flickr30k corpus (Young et al., 2014) and
instructing workers to write three alternative cap-
tions: one that is definitely true, one that might be
true, and one that is definitely false. These human-
elicitation protocols are responsible for creating
1) annotation artifacts that enable naive models ig-
noring substantial context to perform surprisingly
well (Schwartz et al., 2017; Tsuchiya, 2018; Guru-
rangan et al., 2018; Poliak et al., 2018; Feng et al.,
2019), and 2) social biases that “amplify . . . stereo-
typical associations” (Rudinger et al., 2017).

In addition to these concerns, creating datasets
by eliciting text from humans can be expensive.
LLMs can efficiently generate, label, and clean
datasets for a wide variety of applications (Ziems
et al., 2024). LLMs have been used to generate
instruction-tuning datasets (Honovich et al., 2023;
Wang et al., 2023; Peng et al., 2023), synthetic
versions of benchmarks like SuperGLUE (Wang
et al., 2019; Gupta et al., 2024), counterfactuals for
dataset augmentation (Wu et al., 2021; Chen et al.,
2023), attributable information seeking (Kamalloo
et al., 2023), and free-text classification explana-
tions (Wiegreffe et al., 2022). LLM-elicitation
is especially attractive for sensitive domains, e.g.
clinical NLP, where datasets must not leak personal
identifying information (Frei and Kramer, 2023;
Xu et al., 2024b). LLMs-elicited text is pervasive
even among crowd-source workers: Veselovsky

et al. (2023) claim that “33–46%" of the crowd-
source workers hired for a summarization task
likely used LLMs to produce summaries.

Some LLM-generated datasets involve no post-
filtering step (Peng et al., 2023; Xu et al.,
2024a,b). However, most resources built with
LLM-elicitation include thorough quality assur-
ance, either through “human-in-the-loop” curation
(Wiegreffe et al., 2022; Liu et al., 2022; Kamalloo
et al., 2023), statistical filtering (Wu et al., 2021;
Ye et al., 2022; Wang et al., 2023) or relying on
neural models to filter LLM-generated data (Wiegr-
effe et al., 2022; Chen et al., 2023; Yehudai et al.,
2024; Gupta et al., 2024). While we advocate for
filtering steps to ensure quality and remove biases
in LLM-elicited text, we focus on analyzing the un-
filtered output of “out-of-the-box” LLMs for NLP
datasets. We ask, specifically in the context of NLI,
whether LLM-elicited text contains biases, and if
so, what are these biases?

3 Creating LLM-Elicited NLI

We use NLI as a case study to explore whether
LLM-generated text contain similar biases as
human-written text since human-elicited NLI
datasets contain annotation artifacts and stereotyp-
ical social biases. We create modified versions of
SNLI by prompting LLMs with the same instruc-
tions that Bowman et al. (2015) gave to crowd-
source workers. Table 1 provides examples from
each dataset. We further verify the quality of the
generated hypotheses and determine how different
they are from those in SNLI.

LLMs under consideration We select a diverse
set of LLMs for dataset generation: GPT-4 (Ope-
nAI, 2023), Llama-2 70b for Chat (Touvron et al.,
2023), Mistral 7b Instruct (Jiang et al., 2023), and
PaLM 2 for Chat (Anil et al., 2023). 1 These mod-

1For GPT-4 we use gpt-4-0613, for Llama Chat 70b
we use llama-2-70b-chat, for Mistral 7b Instruct we
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Data set sizes:
Training pairs 133,629
Evaluation pairs 6,525

Hypothesis mean token count:
SNLI train 8.1
Llama train 9.4
Mistral train 9.1
GPT-4 train 9.2
PaLM 2 train 7.7

Mean Jaccard similarity with SNLI:
Llama train 0.19
Mistral train 0.22
GPT-4 train 0.20
PaLM 2 train 0.25

Table 2: Summary statistics for each dataset.

els vary in parameter count, parent company, and
training technique. We initially included models
with open training sets to test for data contamina-
tion, e.g. AI2’s OLMo-7B-Instruct (Groeneveld
et al., 2024), DataBrick’s dolly-v2-12b (Conover
et al., 2023) or EleutherAI’s gpt-j-6b (Wang and
Komatsuzaki, 2021), but these open-data models
did not create accurate entailed hypotheses in initial
experiments. Given computational constraints, we
were unable to use LLMs, e.g. BLOOM (Workshop
et al., 2022) or Falcon (Almazrouei et al., 2023).

Dataset generation To mirror Bowman et al.
(2015)’s dataset elicitation pipeline, we prompted
LLMs with the same instructions provided to
crowd-source workers for SNLI.2 To balance lex-
ical diversity with reproducibility, we set the tem-
perature and top-p respectively to 0.75 and 0.9 for
all LLMs. Additionally, we use the default top-k
parameter for each LLM. Due to budget constraints,
for each LLM, we create hypotheses for a third of
the premises in the SNLI train set and all premises
in the SNLI evaluation set. Table 2 contains statis-
tics regarding each dataset.

Dataset validation To verify the LLMs correctly
generated hypotheses for each label, we sampled
100 premises and manually verified the labels for
the corresponding 300 NLI sentence pairs for each
model. Table 3 reports our agreement with the

use mistral-7b-instruct-v0.1, and for PaLM 2 for
Chat we use chat-bison.

2We slightly changed the prompt to ensure the LLM’s
output was valid JSON. We provide the full prompt in the
Appendix (Figure 6).

Overall Entail Neutral Contra

SNLI 92.7 87.0 95.0 96.0
Llama 89.7 73.0 98.0 98.0
Mistral 83.7 70.0 91.0 90.0
GPT-4 94.3 84.0 99.0 100.0

PaLM 2 77.0 62.0 90.0 79.0

Table 3: Percentage of examples where we agreed with
the label of 300 NLI example pairs from each dataset.

Figure 1: Frequency (y-axis) of lexical overlap (x-axis)
between LLM and corresponding SNLI hypotheses.

NLI labels for each LLM. Since we agreed with
less than 80% of the examples sampled from the
PaLM2-elicited dataset, we do not consider the
dataset generated by PaLM2 in our later studies.

To ensure the LLM-generated hypotheses are
not simply memorized and copied verbatim from
SNLI, we compute the Jaccard similarity of the
words within pairs of LLM-generated and SNLI
hypotheses corresponding to the same premises
and labels.3 Figure 1 plots the distribution of the
Jaccard similarities between SNLI and correspond-
ing LLM-generated hypotheses. Table 2 reports the
average Jaccard similarity for each individual LLM
dataset. LLM and human-generated hypotheses
have low lexical overlap, demonstrating that these
LLMs do not copy SNLI verbatim.4

4 Study 1: Hypothesis-Only Artifacts

In our first study, we determine whether LLM-
elicited NLI datasets contain annotation artifacts

3Jaccard similarity is a measure of set overlap that ranges
between 0.0 (a disjoint set) and 1.0 (an identical set).

4Reviewers noted the limits of Jaccard similarity since
LLMs might paraphrase hypotheses from SNLI if the LLMs
were pre-trained on SNLI. A manual review of thousands
of examples suggested that these LLM-generated hypotheses
contained semantically different content from that of the hy-
potheses in SNLI, i.e., the LLM-generated hypotheses were
not merely paraphrased from SNLI.
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(a) Naive Bayes (b) BERT-based

Figure 2: Accuracy of each hypothesis-only classifier on each LLM and human-generated evaluation set. Each row
represents the hypothesis-only NLI dataset used for training, and each column represents the evaluation dataset.

that allow hypothesis-only models to outperform
a majority-class baseline. We train two types of
hypothesis-only models: Naive Bayes (NB) using
the case-sensitive implementation from scikit-learn
with unigram features (Pedregosa et al., 2011), and
a fine-tuned BERT classifier (Devlin et al., 2019),
specifically bert-base-uncased models with 3-class
sequence classification heads and default Hugging-
Face hyper-parameters (Wolf et al., 2020),5 which
we train for 1 epoch using AdamW (Loshchilov
and Hutter, 2018), a learning rate of 2e-5, a weight
decay of 0.01, and a batch size of 16.

We train hypothesis-only models on each of our
train sets (3 LLM-generated and the filtered SNLI)
and evaluate them on all evaluation sets. Figure 2
reports the accuracy of the hypothesis-only models.

The highest-performing model on each evalua-
tion set was trained on the corresponding train set -
in each column in Figure 2, the highest accuracy is
along the diagonal. Surprisingly, the SNLI-trained
models perform much better on the GPT-4 gen-
erated evaluation set (0.82 for NB and 0.88 for
BERT) than on the SNLI evaluation set (0.64 for
NB and 0.72 for BERT), indicating that GPT-4
might contain similar annotation artifacts as SNLI.

We also notice that hypothesis-only models
trained on LLM-generated data perform much bet-
ter on other LLM-elicited datasets than on SNLI,
as the accuracies in the first column are much lower
than the other columns in both figures. This might
indicate that the LLMs produce similar biases.

Qualitative analysis of give-away words The
NB models with unigram features significantly out-

5We did not perform hyper-parameter tuning since our goal
is simply to establish whether a hypothesis-only model can
perform well on an LLM-elicited NLI dataset.

perform a majority baseline (Figure 2a), indicat-
ing that the hypotheses contain give-away words—
single words that are highly indicative of a label.

We identify give-away words for each train set
by calculating the conditional probability of each
label l given the presence of a word w in a hy-

pothesis: p(l|w) = count(w, l)

count(w)
. We consider all

give-away words with a conditional probability of
at least 0.8. We follow Poliak et al. (2018) and
sort give-away words by their frequency “since this
statistic is perhaps more indicative of a word w’s
effect on overall performance compared to p(l|w)
alone.” Table 4 reports the top 10 give-away words
for each label in all train sets.

Entailed examples in SNLI often contain generic
words like humans, activity, and interacting. We
find a similar pattern in LLM-generated entailed
hypotheses, e.g. person and activity in GPT-4 and
Llama. Unlike in SNLI, the capitalized word There
is a give-away for LLM-elicited entailed exam-
ples. LLMs often copy features from examples
in prompts (Elhage et al., 2021; Olsson et al., 2022;
Bansal et al., 2023; Zhang et al., 2024), which
might explain why There is a give-away word in
these LLM-elicited datasets. Human-generated
neutral hypotheses often contain modifiers (tall,
sad, professional) and superlatives (first, favorite,
winning). LLMs similarly add embellishing details
about emotions or intentions (enjoying, fun, prac-
ticing, trying) or the relationships between agents
(friends, couple, team) that are not explicit in the
premise. Two of Llama’s neutral give-away words,
Someone and catch, appear in the prompt’s exam-
ple of a neutral hypothesis.

Lastly, both human- and LLM-elicited contra-
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Word p(l|w) Freq

Humans 0.95 128
least 0.92 78

activity 0.83 47
multiple 0.81 37

interacting 0.85 34
SNLI motion 0.97 32

physical 0.83 30
occupied 0.8 15
balances 0.82 11

consuming 0.8 10

person 0.81 22264
People 0.86 7059

standing 0.84 4359
outdoors 0.93 2390
engaging 0.94 1689

Llama Three 0.92 1593
gathered 0.93 1513
activity 0.83 1412
public 0.82 1230
vehicle 0.87 1185

There 0.99 16707
outdoors 0.87 1055

three 0.83 720
four 0.88 335

urban 0.83 318
Mistral consuming 0.94 217

multiple 0.83 211
vertical 0.84 182

acrobatic 0.88 176
many 0.87 153

person 0.85 11764
outdoors 0.97 8182

individual 0.96 4569
individuals 0.89 3878

There 0.86 3794
GPT-4 Individuals 0.97 2159

interacting 0.98 1377
activity 0.97 1250
gathered 0.88 1248
public 0.85 976

(a) entailment

Word p(l|w) Freq

tall 0.85 418
sad 0.81 322
first 0.87 298

owner 0.83 284
birthday 0.83 227
winning 0.88 186
favorite 0.88 180

professional 0.83 149
vacation 0.94 141

win 0.86 140

Someone 1 4092
trying 0.9 3023
going 0.95 1604
break 0.87 1339
fun 0.88 1165

practicing 0.86 1142
ride 0.82 811
or 0.83 795

discussing 0.88 720
catch 0.95 622

be 0.97 5154
trying 0.8 4875
may 0.98 3815

having 0.85 2039
going 0.83 1877

or 0.86 1858
friends 0.95 1499

It 0.9 1486
could 0.98 1311
fun 0.92 1201

to 0.85 7087
for 0.89 5791
his 0.82 5042

friends 0.94 3439
enjoying 0.85 2073
couple 0.81 1878
from 0.82 1823

taking 0.82 1093
practicing 0.87 1092

team 0.88 972

(b) neutral

Word p(l|w) Freq

sleeping 0.84 1747
Nobody 0.93 592
asleep 0.83 523
couch 0.81 477
naked 0.88 248

tv 0.81 207
cats 0.89 199
TV 0.81 177
No 0.93 134

television 0.83 124

celebrity 0.92 2359
actually 0.94 2075

cat 0.9 1973
Everyone 0.93 1913

adult 0.89 1782
fashion 0.85 1766

red 0.84 1537
signing 0.92 1437

autographs 0.93 1398
sleeping 0.82 1371

The 0.81 38491
sitting 0.83 14564
bench 0.87 8545

not 0.94 8068
subject 0.87 3672
couch 0.91 2330
empty 0.89 1433
cards 0.92 1171

no 0.92 955
movie 0.9 938

swimming 0.92 16281
pool 0.91 14638

reading 0.8 3492
book 0.81 3048

sleeping 0.91 2326
cooking 0.84 2126

cat 0.9 1875
dress 0.8 1537
alone 0.94 1293
library 0.91 1274

(c) contradiction

Table 4: The most highly correlated words for each train set for given labels (the columns (c), (d), and (e)),
thresholded to those with p(l|w) >= 0.8 and ranked according to frequency.

dicting hypotheses contain negation words, e.g. no-
body, no, not. As noted by Poliak et al. (2018),
premises “sourced from Flickr naturally deal with
activities.” Therefore, similar to how contradicted
hypotheses in SNLI often mention sleeping, it

is not surprising that LLM-elicited contradictions
mention actions that cannot occur simultaneously
to the action in the premise, e.g. swimming for GPT-
4 and sitting for Mistral. Further, these verbs often
occur in frequently repeated phrases that negate an
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Figure 3: Accuracy of NB models using only the n
"most informative" unigram features for each train set
evaluated on its corresponding evaluation set.

action described in the premise. For example, the
phrases “swimming in a pool” and “sitting on a
bench” respectively occur more than 10,000 times
in the GPT-4 and Mistral-generated train sets.

Few unigrams needed for high NB accuracy.
How many give-away words are necessary to ac-
curately classify LLM-elicited NLI? To study this
question, we train NB models that only receive the
n most informative give-away words as features.
We find the most informative words for each train
set by performing a chi-squared test on all words
with respect to each label. We threshold to the top
n most informative unigrams and use only these
words to train each n-feature NB model.

Figure 3 reports the accuracy of NB hypothesis-
only models using just 1 to 50 features. Compared
to SNLI, the LLM-elicited datasets are far easier
to classify using a sparse selection of unigram fea-
tures. For example, with just 10 unigrams, all LLM-
trained NB models achieve greater than 60% accu-
racy, while the SNLI-trained 10-feature NB model
only narrowly outperforms the majority-class base-
line. This result indicates that LLM-generated hy-
potheses are trivial to classify not only due to the
simplicity of the necessary features (unigrams) but
also because only a negligibly small number of
these simple features are required.

Figure 4 reports the accuracy of 50-unigram–
feature NB models when evaluated on all four eval-
uation sets. NB models trained with sparse unigram
feature sets on the LLM-generated hypotheses out-
perform a random baseline on the evaluation sets
of the other LLM-generated hypotheses. This sug-
gests that highly informative unigram features from

Figure 4: Accuracy of NB models with only the fifty
most informative unigram features from their train set.

one LLM-elicited dataset can be informative on
the other LLM-elicited datasets. Additionally, like
the NB and BERT-based hypothesis-only models
trained on the entire feature set, the 50-feature NB
hypothesis-only model trained on SNLI performs
better on the GPT-4 evaluation than the SNLI eval-
uation set. Overall, these results suggest that the
high accuracy of full-feature NB models across the
evaluation sets might be attributed to a sparse set
of give-away words that are common across the
LLM-elicited datasets.

5 Study 2: Stereotypical Biases

Our second study analyzes whether LLM-elicited
versions of SNLI, like the human-elicited SNLI,
contain stereotypical social biases. Following
Rudinger et al. (2017), we use pointwise mutual
information (PMI) to identify words in each dataset
that are most associated with gendered, racial, or
age-based terms. Given word w1 and w2, the PMI

between w1 and w2 is log(
p(w1, w2)

p(w1)p(w2)
). For each

dataset, we find the top co-occurring words in hy-
potheses by PMI with race, gender, and age-related
query words that co-occur at least 3 times.

Gender-based stereotypes. Table 5 reports the
top PMI terms for man, men, woman and women.
PMI results for all query words can be found in
the Appendix. In both the human-elicited and
LLM-elicited datasets, male query words are as-
sociated with violence, work, and physical activity.
In SNLI these terms include burns, surfs, compete,
wrestling, suits, poker, uniforms, chess, cars. In
the LLM-elicited datasets, terms highly associated
with male terms include suit, mowing, basketball,
golf, cutting, boxing, sparring, and fighting.
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SNLI
woman mascara† knits‡ applies‡ sleds lipstick makeup‡ secret knitting‡ scarf countryside
man burns surfs nose buys container internet orders tractor popcorn dives
women cakes‡ yoga praying volleyball dresses thinking fruit tea talking‡ dance
men burn compete† wrestling suits† poker celebrate passing uniforms chess cars

GPT-4
woman ballgown gala bikini‡ oven‡ dress‡ ballroom‡ cookies‡ baking‡ heels‡ button
man spiderman shaving‡ suit‡ mowing‡ hamburger tuxedo beard‡ tie‡ proposing frowning‡

women dresses‡ mall‡ yoga† tea shopping‡ relaxing† picnic‡ sunbathing‡ baking dancing†

men suits‡ hats laying installing football‡ hard basketball‡ gym‡ rodeo skyscraper‡

Llama
woman lap‡ makeup‡ applying‡ arms‡ nails‡ mirror‡ sink knitting‡ sunbathing‡ flower†

man shaving‡ basketball‡ beard‡ guitar‡ girlfriend three golf‡ stadium‡ walks‡ ironing
women tea† clothing‡ socializing smiling each other routine party standing dancing
men football‡ dark field‡ basketball‡ instruments games‡ video‡ inside room playing‡

Mistral
woman cradling‡ arms sewing baby‡ flower† newborn serving gymnastics herself her‡

man diving† thrown net western tame horse wild his‡ cutting swinging‡

women japanese† traditional† clothes talking groceries posing conversation shopping smiling
relaxing
men boxing‡ suits‡ robes ring sparring† fighting‡ court football basketball‡ match

Table 5: Top-ten words in hypothesis by PMI with gender-related query words in the same hypothesis, filtered to
co-occurrences of at least three. (Hypothesis words that also appear in the premise are not included.) Significance
of a likelihood ratio test for independence denoted by † (α = 0.01) and ‡ (α = 0.001).

In SNLI, the female query words are associ-
ated with physical appearance (mascara, lipstick,
makeup, dresses) and leisure activities (knits, yoga,
cakes, tea, talking, dance). LLM-generated hy-
potheses display similar stereotypes: female query
words are related to domesticity (oven, cookies,
baking, knitting, cradling, baby, sewing, groceries)
and leisure activities (mall, yoga, tea, shopping,
relaxing, picnic, sunbathing, dancing, socializing,
party, talking). In the LLM-elicited datasets, fe-
male query words are also associated with clothing
and physical appearance (bikini, dress, heels, lap,
makeup, arms, nails, clothing).

Label-specific gender biases. To study how
stereotypical biases appear based on NLI labels,
for each NLI label, we now compute the PMI of hy-
pothesis words with query words that appear in the
premise. This allows us to determine if the LLMs
contain stereotypical biases that are specific to dif-
ferent NLI labels. Table 6 reports label-specific

biases for gender-related queries.
Broadly, LLM-generated entailed and neutral

hypotheses display similar biases as the overall
PMI results: male query words are associated with
violence, physicality, and work, e.g. workers, mil-
itary, soldiers, while female query words are as-
sociated with leisurely or domestic activities and
physical appearance, e.g. quilt, party, beauty. A
notable exception is that both Llama and Mistral
associate “woman” with scientist and GPT-4 asso-
ciates “woman” with businesswoman.6 Addition-
ally, Llama and Mistral associate “women” with
sporting and athletes, respectively.7

Both human and LLM-generated contradictions
sometimes flip the gender of the subject between
the premise and hypothesis. In SNLI contradic-
tions, male premise words are associated with
ladies and wife, and LLM-generated contradic-
tions feature bikini and women. Similarly, female

6Respectively entailment and neutral columns in Table 6.
7Entailment column in Table 6.
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Query ENTAILMENT NEUTRAL CONTRADICTION
man SNLI: often gun climbs a‡ seated SNLI: stops bald cowboy cafe

newspaper
SNLI: gas scooter wife sings wears

GPT-4: bathroom firearm casual
embracing machine

GPT-4: latte cigar warehouse guy‡

adventurer
GPT-4: café bikini hat dolphins for-
mal

Llama: entertaining his‡ paper
wood father‡

Llama: article summit fan avoid
seafood

Llama: waters packed negotiating
kidnapping before

Mistral: presentation romantic mo-
ment a‡ scaling

Mistral: conference debris board
summit a‡

Mistral: shirt costume tie a‡

individual‡

men SNLI: workers guys† ball several
they

SNLI: businessmen† crew
workers† charity construction†

SNLI: ladies break party enjoying
lunch

GPT-4: workers construction‡ ma-
chinery project site

GPT-4: guys‡ foundation industrial
soldiers‡ workers‡

GPT-4: individuals‡ playground‡

women‡ people‡ everyone‡

Llama: parade† marching‡ indus-
trial formal construction‡

Llama: cowboys‡ soldiers‡

complex† fishermen workers‡
Llama: awards† ballet celebrities‡

players‡ parade
Mistral: fishermen‡ workers‡ job†

military† personnel
Mistral: workers‡ soldiers‡ cow-
boys long-distance vendors

Mistral: casual admiring dressed‡

they‡ already
woman SNLI: her‡ touching lady a‡

women
SNLI: herself husband† dress won
clothes

SNLI: feeding a‡ phone she noth-
ing

GPT-4: female‡ stand exiting lady‡

toys
GPT-4: quilt‡ businesswoman bag
lady‡ casual

GPT-4: lady‡ suit‡ man‡ a‡ dinner

Llama: scientist mother‡ her cus-
tomer off

Llama: savoring meditating furry
considering hiker

Llama: perched premiere bicycle
singing world

Mistral: exiting scientist her‡

speaking a‡
Mistral: lady else beauty her‡

hands
Mistral: makeup accessories get-
ting her shopping

women SNLI: ladies† woman‡ performing
a‡ group

SNLI: woman‡ party a‡ group tall SNLI: lunch men† they a‡ play

GPT-4: ladies‡ females‡ lady‡ con-
versation walking

GPT-4: ladies‡ fruits vegetables
female‡ restaurant

GPT-4: suits‡ ladies† men‡ meet-
ing business

Llama: costumes gathering sport-
ing dancing socializing

Llama: ladies shopping chore-
ographed store local

Llama: men‡ football celebrities‡

during competing
Mistral: athletes people‡ clothing
street outdoors

Mistral: females‡ female‡ woman‡

singing show
Mistral: people‡ clothing being
any performers

Table 6: Top-five words in hypotheses of a particular label by PMI with gender-related query words in the premise,
filtered to co-occurrences of at least three. (Hypothesis words that also appear in the premise are not included.)
Significance of a likelihood ratio test for independence denoted by † (α = 0.01) and ‡ (α = 0.001).

premise words are often associated with suit, man,
men, football, meeting, competing, business, which
might demonstrate a gender bias.

Race & age biases Unlike gender-related query
terms, race and age-related query terms (e.g.
african, asian, elderly, old) yield unclear stereotypi-
cal associations. For most race or ethnicity premise
words, the words with the highest PMI were un-
informative, e.g. is, the, and a. For age-related
queries, the most associated words in entailed hy-
potheses were synonyms (senior, older), and in
contradictions were antonyms (young, children.)

Gender-related stereotypical associations seem
stronger than racial and ethnic biases in LLM-
generated datasets. One possible explanation is
that LLM-generated hypotheses typically mention
racial and ethnicity-related words much less often
than in SNLI’s hypotheses, as shown in Figure 5.8

8In the figure, “black” refers to the words black and
african, "white" refers to the words white and european. The
people-related words are the person-related query words from

Figure 5: Number of hypotheses in each train set
that contain race-related words followed by one of the
people-related words from Rudinger et al. (2017).

6 Conclusion

We studied whether Natural Language Inference
datasets created by eliciting hypotheses from LLMs
contain biases. We used 3 LLMs to recreate a por-

Rudinger et al. (2017): woman, man, women, men, girl, boy,
girls, boys, female, male, mother, father, sister, brother, daugh-
ter, son, person and people.
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tion of SNLI and applied standard techniques to
determine that like SNLI, LLM-elicited datasets
contain annotation artifacts and stereotypical bi-
ases. On our LLM-generated NLI datasets, fine-
tuned BERT hypothesis-only classifiers achieve
between 86-96% accuracy. Our analyses indicated
that LLMs rely on similar strategies and heuristics
as crowd-source workers when creating entailed,
neutral, and contradicted hypotheses in response
to a premise. Our results provide further empir-
ical evidence that well-attested biases in human-
elicited text persist in LLM-generated text. Our
findings provide a cautionary tale for relying on
unfiltered, out-of-the-box LLM-generated textual
data for NLP datasets.

7 Limitations

Srikanth and Rudinger (2022) showed that while
NLI models can gain high performance while ignor-
ing the premise, in practice models still condition
on the premise context when making predictions.
While our work demonstrated that LLM-elicited
datasets can contain biases, it is unclear to what
extent these biases harm NLI model robustness.

While we aimed to mirror the process used
to generate SNLI, our approach is not perfectly
comparable. First, SNLI was created by a large
pool of crowd-source workers while we focus on
just 3 LLMs. Secondly, crowd-source workers
could ask clarifying questions, but LLMs could
not. Thirdly, the one-shot nature of our prompting
prevented LLMs from incorporating instructions
across premises, such as the FAQ suggestion to not
“[reuse] the same sentence.”

Another limitation of our work is that we relied
on a single prompt to elicit hypotheses from LLMs.
Recent work has demonstrated that seemingly in-
significant changes to prompts can result in widely
varying responses (Mizrahi et al., 2024). We leave
a multi-prompt analysis for future work.
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Query ENTAIL NEUTRAL CONTRA
african SNLI: are is the SNLI: a to are the is SNLI: a are is the

GPT-4: kids a are is person GPT-4: group of performing a are GPT-4: a are playing man swim-
ming

Llama: a are is people person Llama: his at are a to Llama: man group a playing are
Mistral: an people a in are Mistral: an or be may are Mistral: an not and are is

asian SNLI: an† for with near the SNLI: chinese work up an waiting SNLI: american‡ white black tak-
ing from

GPT-4: city cooking having food
woman

GPT-4: sushi lunch tourists busy
exploring

GPT-4: party a‡ men dancing
child

Llama: students shopping city a‡

food
Llama: cultural individual class
restaurant heading

Llama: models† they astronauts
preparing shoot

Mistral: individual‡ women out-
door an‡ area

Mistral: exploring city tourists‡

an‡ collecting
Mistral: an‡ green outside their
cars

asians SNLI: are the SNLI: are the SNLI: are the
GPT-4: people are GPT-4: of GPT-4: park are
Llama: dining‡ people are Llama: of Llama: the are
Mistral: asian‡ are Mistral: asian‡ are Mistral: asian‡ are

caucasian SNLI: white‡ is SNLI: is SNLI: the
GPT-4: is GPT-4: is GPT-4: man is swimming
Llama: is Llama: is Llama: is
Mistral: is Mistral: the is Mistral: not is the

chinese SNLI: is SNLI: is the SNLI: a
GPT-4: are is GPT-4: a in is GPT-4: a is in
Llama: a is Llama: someone are is Llama: a is
Mistral: is there Mistral: a be the Mistral: not is the

indian SNLI: the is SNLI: a to the is SNLI: on is the
GPT-4: people is are GPT-4: is GPT-4: a is pool swimming
Llama: a people is are person Llama: is Llama: group a in is
Mistral: an people is are there Mistral: a the is Mistral: the on are is

Table 7: Race, Ethnicity, and Nationality-Related Queries

Query ENTAIL NEUTRAL CONTRA
elderly SNLI: old‡ an‡ wearing a are SNLI: old he a‡ an is SNLI: old a man at is

GPT-4: old‡ senior‡ citizen lady
instrument

GPT-4: senior‡ old‡ jazz festival
musician

GPT-4: young‡ children a playing
man

Llama: an‡ instrument musical for
a

Llama: seniors‡ older‡ citizen‡

senior‡ an
Llama: young‡ child concert
woman fashion

Mistral: seniors‡ older† an‡ for
the

Mistral: older music an‡ a of Mistral: an‡ a playing is on

old SNLI: elderly‡ not a‡ an person SNLI: hair just home out an SNLI: young‡ has two a people
GPT-4: elderly‡ gentleman‡

citizen‡ senior‡ something
GPT-4: citizens† grandson‡

citizen‡ elderly‡ grandmother‡
GPT-4: young‡ sandbox her a‡

girl
Llama: produce† elderly‡ woman
an† resting

Llama: elderly‡ citizen‡ senior‡

grandfather an‡
Llama: young‡ children child‡ her
toy

Mistral: elderly‡ an‡ woman
walking a

Mistral: older‡ elderly
grandmother† grandson grandfa-
ther

Mistral: elderly‡ young‡ woman
an a‡

teenagers SNLI: are the SNLI: are SNLI: are the
GPT-4: young‡ outside people are GPT-4: high students school game

group†
GPT-4: children‡ library playing
are pool

Llama: activity engaging people
in are

Llama: group of friends are a Llama: are the

Mistral: children young people
are there

Mistral: could it be are Mistral: are not the

young SNLI: off building jumps a‡ he SNLI: alone funny high brothers
beach

SNLI: kite books birds practicing
swims

GPT-4: children‡ activities physi-
cal child‡ a‡

GPT-4: teenagers test cap giant
teenager‡

GPT-4: snowman adults‡

teenagers old rocking
Llama: feature kids‡ sunny ob-
serving creative

Llama: teenagers‡ mom skatepark
weekend games

Llama: nursing† seniors‡ citizens
elderly senior

Mistral: shore studying acrobatics
children‡ sandy

Mistral: females learning skills
siblings school

Mistral: pants kids‡ they toys a‡

Table 8: Age-Related Queries
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Query ENTAIL NEUTRAL CONTRA
boy SNLI: boys† child a‡ his is SNLI: boys a‡ down trying his SNLI: girl‡ up asleep a‡ nobody

GPT-4: active his playground male
trick

GPT-4: hide seek kid‡ teenager
swimming

GPT-4: kid his‡ girl‡ classroom
quietly

Llama: child‡ a‡ urban enjoying
playing

Llama: young‡ summer person a‡

kid
Llama: surfing teenager suit tie
working

Mistral: a‡ young‡ group child†

standing
Mistral: child‡ how young‡ prac-
ticing swimming

Mistral: a‡ man subject‡ reading is

boys SNLI: playing are the SNLI: their and of are a SNLI: girls‡ playing are† the
GPT-4: children‡ sport event activ-
ity participating

GPT-4: kids‡ game their playing
group

GPT-4: are‡ beach a swimming the

Llama: children‡ physical activity†

engaging† outdoors
Llama: sport kids‡ team participat-
ing game

Llama: players competing team
game astronauts

Mistral: children‡ event sport out-
doors playing

Mistral: children‡ sport running
kids‡ fun

Mistral: kids‡ photo inside individ-
uals in

girl SNLI: girls her a‡ child wearing SNLI: girls she a‡ plays her† SNLI: she guy boy a‡ wearing
GPT-4: female‡ a‡ riding musical
instrument

GPT-4: woman‡ young‡ teenager
lady‡ child

GPT-4: boy‡ video a‡ his climbing

Llama: a‡ wearing place public the Llama: instrument expressing
woman‡ young‡ favorite

Llama: ice child‡ professional
mountain toy

Mistral: wearing a‡ young physical
activity

Mistral: woman‡ young‡ subject
little her

Mistral: a‡ any wearing subject
book

girls SNLI: girl some‡ their wearing are SNLI: girl some they at are SNLI: boys‡ their two playing a
GPT-4: females‡ children‡ game
sport participating

GPT-4: match group team a‡ prac-
ticing

GPT-4: boys‡ field studying foot-
ball soccer

Llama: students athletes indoors ac-
tivity physical

Llama: teenagers† teammates
women† friendly sisters

Llama: celebrities‡ premiere cats
movie show

Mistral: sports celebrating people‡

are‡ there†
Mistral: females‡ female children†

athletes could†
Mistral: children individuals‡ a
park are

female SNLI: woman‡ a is the SNLI: woman‡ wearing a in is SNLI: male‡ woman playing a is
GPT-4: woman‡ athlete the playing
performing

GPT-4: woman† practicing lady her
a

GPT-4: skiing basketball mountain
man a

Llama: a playing person is Llama: woman‡ a of is Llama: fashion man playing a is
Mistral: woman‡ performing an
playing is

Mistral: exercise woman a be for Mistral: a subject playing person is

he SNLI: man a† SNLI: a SNLI: man a
GPT-4: man‡ wearing a† in person GPT-4: in his a GPT-4: a pool in swimming
Llama: wearing a in person Llama: in for a the Llama: cooking pool swimming at

a
Mistral: a in person Mistral: someone a for be Mistral: a person not

male SNLI: man a people outside is SNLI: practicing man‡ from his a SNLI: waiting an man his sitting
GPT-4: man‡ at performing a two GPT-4: man† a† park at on GPT-4: skiing a mountain woman

cooking
Llama: their a outdoors on is Llama: man‡ practicing break cou-

ple on
Llama: sunny preparing man an
park

Mistral: man performing space rid-
ing a

Mistral: man‡ a† performing his
couple

Mistral: subject a wearing bench
sitting

Table 9: Additional Gender-Related Queries
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We will show you the caption for a photo. We will not show you the photo. Using only the caption
and what you know about the world:

• Write one alternate caption that is definitely a true description of the photo. Example: For the
caption “Two dogs are running through a field.” you could write “There are animals outdoors."

• Write one alternate caption that might be a true description of the photo. Example: For the
caption “Two dogs are running through a field." you could write “Some puppies are running to
catch a stick."

• Write one alternate caption that is definitely a false description of the photo. Example: For
the caption “Two dogs are running through a field." you could write “The pets are sitting on a
couch." This is different from the maybe correct category because it’s impossible for the dogs to
be both running and sitting.

In response to the original caption, please return the 3 alternate captions in a JSON readable format
and include no other commentary.

Here is an example of the correct format of response to the prompt:
Original caption: "Two dogs are running through a field"
Three JSON-parseable alternate captions, with "definitely true", "might be true", and "definitely
false" descriptions of the photo:
{"true": "There are animals outdoors.",
"maybe": "Some puppies are running to catch a stick.",
"false": "The pets are sitting on a couch." }

Now, please generate the 3 alternate captions following the JSON-parseable format described earlier:
Original Caption: [INSERT SNLI PREMISE]
Three JSON-parseable alternate captions, with "definitely true", "might be true", and "definitely
false" descriptions of the photo:

Figure 6: The prompt provided to all LLMs. The first four paragraphs are identical to those provided to MTurk
workers for the SNLI dataset.
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