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Abstract

Learning template-based information extrac-
tion (IE) from documents is a crucial yet diffi-
cult task. Prior template-based IE approaches
assume foreknowledge of the domain’s tem-
plates. However, many real-world IE scenarios
do not have pre-defined schemas. Despite this,
existing IE systems are either fully supervised,
requiring expensive human annotations, or fully
unsupervised, extracting information that of-
ten do not cater to user’s needs. To address
these issues, we formally introduce the task of
“IE on-the-fly”, and address the problem using
our proposed ADAPTIVE IE framework that
uses human-in-the-loop refinement to adapt to
changing user questions. Through human ex-
periments on three diverse datasets, we show
that ADAPTIVE IE is a domain-agnostic, re-
sponsive, efficient framework for helping users
access customized and tailored information
while quickly reorganizing information in re-
sponse to evolving information needs.

1 Introduction

The goal of IE is to extract structured insights from
unstructured data based on a fixed schema. Existing
tools help analyze patterns (Li et al., 2022; Móra
et al., 2009; Chinchor and Marsh, 1998; Pavlick
et al., 2016), but in a dynamic real-world situation,
information needs often shift and are subjective,
making predefined schemas impractical for use.
In Figure 1, after the 2014 Chile Earthquake, the
Disaster Emergency Response Team might seek
information on safe zones and transportation, while
geological teams might look for “number of people
trapped”, “number of buildings damaged” from the
corpus. In such cases, unsupervised IE is ideal for
extracting relevant information on-the-fly, catering
to evolving user needs.

Recent unsupervised IE systems (Aharoni and
Goldberg, 2020; Yu et al., 2022a) often fail to dis-
cern specific user needs without clear guidance,

potentially overgeneralizing and including non-
essential information. For instance, emergency
teams may receive broad details on slightly dam-
aged areas (Figure 1) instead of critical information
on safe routes for immediate response. While un-
supervised approaches (Chambers, 2013; Cheung
et al., 2013; Bamman and Smith, 2014; Ferraro and
Van Durme, 2016) and template-driven QA meth-
ods (Li et al., 2022; Móra et al., 2009) are prevalent,
their extraction accuracy (by mapping to desired
slots) is quite low. On the other hand, supervised
IE systems which require pre-defined schema tem-
plate annotations to train a model (such as whether
or not we need to extract “safety routes” or “casual-
ties” need to be predefined) (Chinchor and Marsh,
1998; Pavlick et al., 2016), are impractical for real-
world applications. A minimally supervised system
would be preferable in this scenario, which can of-
fer enhanced accuracy over unsupervised methods
and the ability to quickly adapt to varying user
needs (map to user-desired slots like “Casualties”
or “Damaged Properties” in Fig. 1).

To address these gaps, we make the following
contributions: [1] First, we introduce the concept
of “IE-on-the-fly”, a dynamic approach that adapts
to user-specific information needs (Overview in
Figure 1), formally defined in Section 2. [2] Sec-
ond, we define it through on-the-fly schema induc-
tion, which involves generating question-answer
pairs from a corpus, as questions effectively en-
capsulate information needs. These pairs are then
clustered to identify unique information demands.
However, these unsupervised clusters may not fully
meet user needs (Step A in Figure 1). [3] Third,
we propose the idea of understanding user require-
ments through these cluster modifications, hypothe-
sizing the fact that user eventually groups or wants
to group information which they are interested in
(Step B). We introduce an interactive “human-in-
the-loop” system, ADAPTIVE IE, that takes the
initial clusters from Step A (at the first stage else
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C1 (General Information) C2(Safety) C3(Aftermath) C4 (Miscellaneous)

Q1) What are the designated safe 
areas near Mexico?, Q2) How to 
find missing people after 
earthquake?, Q3) What is the 
estimated number of people 
trapped under debris?

Q4) By what means can we 
travel in this situation?, Q5) 
Which roads are blocked? 
Q6) What are the safety 
routes to take in North 
Chile?, Q7) How to commute 
from East to West Chile?

Q8) How many people have died 
after the earthquake?, Q9) How 
to seek help?, Q10) How many 
organizations are damaged? 
Q11) Which buildings are 
damaged? 

Q12) How do 
earthquakes affect 
wildlife?, Q13) What is 
the impact on local 
businesses?, Q14) 
What are the 
evacuation routes for 
major cities? 

2014 Chile Earthquake

Run Unsup IE on D1, D2, D3

D1 D2 D3

Step1 :  Triggers Identifying an Event 
[trapped, commute]

Step2:  Generate QA  pairs related to Triggers  
[Trapped -> Q3, Commute -> Q7]

Step 3: Cluster into 4 groups

A) Zero Shot QA-Guided IE Slot InductionA

     User Provides Feedback as Cluster ModificationB

Disaster Emergency Response Team 
(want to know the evacuation safety 
routes, and options for transport)

US Geological 
Survey (Damaged 
Properties, 
Casualties?)

          User Provides Feedback as 
Cluster Modification

Feedback 1: Merge Cluster 1 and Cluster 2 into C

Feedback 2: Split and Rearrange Questions

C2 C3C1 C4

C C3 C4

C

C3

C4

C1’

C2’
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Q4

Split

Q2, Q3, Q5, Q6

.Explanation 
Generator 
for Modified 
Clusters

Recluster 
Questions in 
modified 
clusters

C1’: Evacuation Routes
C2’: Travel means
C3’: Generic

C1’: Q1, Q6
C2’: Q4 Q7 
C3’: Q2, Q3, Q5, Q6, Q8, Q9, 
Q10, Q11, Q12, Q13, Q14

C AdaptiveIE

D Final Clusters/Slots 
shown to the User

C1’ C2’ C3’

Q1, Q6 Q4, Q7 Q2, Q3, Q5, 
Q6, Q8-Q14

B’

      Feedback : Make three clusters after 
rearrangement of questions

C1’’ C2’’ C3’’

Q10 Q8, Q2 Q1, Q4, Q5, Q7

C1’’

C2’’

C4’’

D’

C’

Damaged

Missing/Dead

Miscellaneous

Q10, 
Q11

Q8, Q2, 
Q3

Q1, Q4-Q7, 
Q9, Q12-Q14

Figure 1: ADAPTIVE IE allows users to refine clusters based on their specific needs, as demonstrated by User A
and User B’s feedback on the initial clusters produced by UnsupervisedIE. Based on user feedback, our system
dynamically updates and reclusters the information, ensuring that it is tailored to each user.

output from previous iteration), and user feedback
from Step B as input, reclusters all other questions
from the corpus, then explains the intuitions behind
each cluster by providing the updated set of clusters
in (Step C). The user can again glean on the next set
of clusters (Step D) and further tweak or modify if
they are not satisfied fully in the next iteration. This
iterative loop (steps B, C, D) continues until the ex-
tracted information meets the user’s expectations,
illustrating a practical application of adaptive infor-
mation extraction in emergency response scenarios.
[4] Finally, we conducted human experiments on
three datasets and demonstrated that ADAPTIVE IE
significantly improved F1 score for extracted infor-
mation compared to unsupervised methods within
30 minutes, highlighting its adaptability. This is
practically usable when there are insufficient hu-
man annotations to train a supervised IE system.
Any user can quickly obtain desired information
with minimal interactions with the system.

2 Task Description and Formulation

The task “IE on-the-fly” involves dynamically ad-
justing information extraction processes based on
real-time user feedback to meet evolving informa-
tion needs. For instance, during the 2014 Chile
Earthquake, this involved reorganizing queries,

such as merging “Damaged Properties” and “Ca-
sualties” for the USGS, or combining “Evacuation
Routes” and “Travel means” for emergency teams
(Figure 1). This approach ensures that informa-
tion is more accurately aligned with the immediate
requirements of users during critical events.

We formulate this task as a slot filling (Louvan
and Magnini, 2020) task that involves extracting
and assigning specific values (slots) from unstruc-
tured input data, where each slot type represents
a unique information need. We explain the key
terminologies that will be frequently referred to in
the paper using Figure 1 as an example:
[1] IE Template Schema: A predefined structure
for extracting information. For example, in the fig-
ure, templates include information that may be of
interest to the Disaster Emergency Response Team
(User A) or the US Geological Survey (User B).
[2] Questions: The goal of asking a question nicely
intersects with the definition of an information need
(Srihari and Li, 2000). For example, in Figure 1,
the goal is to extract as much information as pos-
sible about the 2014 Chile earthquake event, such
as Q1, Q2. So we represent the user needs as ques-
tions / queries.
[3] Clusters/IE Slot Type: Groups of related ques-
tions form a cluster or slot type, e.g., Cluster 1
focuses on General Information (Q1: Safe areas,
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Q2: Missing people), while Cluster 3 covers the Af-
termath (Q8: Death toll, Q10: Damaged buildings).
The answers to the questions fill the values for the
slots. The concept of an IE template aligns closely
with the slot-filling task in information extraction.
In this context, each slot type corresponds to a spe-
cific question, while the values filled in these slots
represent the answers. For example, a slot might be
defined to extract information about “safety routes”,
and the corresponding slot filler would be the ac-
tual route details provided in response to an event.
We treat the slots as questions/queries, and the slot
fillers as answers to those questions (slots).

3 QA-Guided UnsupervisedIE

We propose a QA-guided UnsupervisedIE ap-
proach to dynamically create and populate IE slots,
adapting to evolving informational needs without
relying on pre-labeled training data. This process
is demonstrated in Step A of Figure 1 (2014 Chile
earthquake). The goal of this approach is to effi-
ciently organize large volumes of unstructured data
into coherent clusters, enabling rapid and accu-
rate information retrieval and question answering.
This method uses the QA format for schema and
slot induction, aligning with human cognition to
make complex IE actionable and enhance decision-
making in crises. The steps are:

Event Trigger Identification. From all the doc-
uments, we extract the trigger words that describe
the occurrence of events (Prompt LLMt to extract
the most important triggers T = t1, ...tn) from each
document (Prompt in Appendix B)). In Figure 1,
“trapped”, “commute” are examples of event trig-
gers generated from input documents D1, D2, D3.

Question-Answer (QA) Pair Generation.
Given a document d and set of triggers T =
tr1, ...trn, we generate “WH”-type questions by
prompting LLMQA such that they contain one
of the triggers tri whose answer is a continuous
span in d. Our questions answer about Who,
Whom, What, When, Where, Why, How of an
event (Prompt in Appendix B). For example, Q3,
Q7 are the corresponding questions generated for
the triggers “trapped” and “commute”.1

1Note: To mitigate hallucination concerns, we optimized
prompts using 100 examples for trigger identification and
QA pair generation. After finalizing, 200 additional samples
were tested, confirming the outputs were accurate and free of
hallucinations, ensuring factual consistency.

Clustering with Explanations. The generated
questions and their corresponding answers are
grouped into K clusters, where each cluster repre-
sents a distinct information need. For each cluster,
the questions corresponding to its centroid are se-
lected to prompt LLMCluster to generate an expla-
nation for why the questions in that cluster (names
of clusters viz. “General information”, “Safety”,
“Aftermath”, “Miscellaneous” are generated as ex-
planations) (Prompt in Appendix B). This step
helps the users in assessing the coherence infor-
mation within the generated clusters.

4 ADAPTIVE IE Methodology

QA-Guided UnsupervisedIE often produces gener-
alized outputs that do not address the user’s actual
information needs (Output of Step A in Figure 1).
For this, we introduce an interactive human-in-the-
loop system, ADAPTIVE IE (explained in Algo-
rithm 1), that takes two inputs: 1) initial clusters
from Step A (Section 3)) at the first stage or output
from previous iteration, and 2) user feedback from
Step B (Section 4.1), then adjusts other information
in the schema and finally show the updated set of
clusters (Step C) to users in the next iteration (Sec-
tion 4.2). The user can then glean on these clusters
(Step D) and further modify if they are not satis-
fied fully with their need. This iterative loop (steps
B, C, D) continues until the extracted information
meets the user’s needs.

4.1 User Feedback as input (Step B):

Let Q = {q1, q2, . . . , qn} be the set of questions
to be clustered, C(t) = {C1(t), C2(t), . . . , Ck(t)}
be the set of clusters at iteration t, where each Cj(t)
contains questions grouped by semantic roles (C1-
C4 in Step A are the initial slots generated by the
Zero-Shot QA-Guided approach with the slots be-
ing mapped by answers of questions from Q1-Q14
in Figure 1). We define F(t) as the user feedback
at iteration t. A user, driven by specific information
needs, initially attempts to categorize the available
information by leveraging the predefined clusters
to group questions that are likely to fulfill their
requirements (as depicted in Figure. 1, where the
Disaster Emergency Team adjusts clusters C1, C2,
C3, and C4 in Step B). F(t) can be implemented
in three distinct manners:
A) Merge Clusters ( ): This feedback is used
when two or more clusters are semantically related
and can be combined to form a single, cohesive
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cluster. In Figure 8, the user merges Cluster 1
(General Information) and Cluster 2 (Safety) into
a single cluster C because both the clusters deal
with the broader context of safety and general in-
formation relevant to an emergency situation. If C1

and C2 are two clusters, the merge operation can
be represented as C = C1 ∪ C2.
B) Split Clusters ( ): This feedback is used
when a cluster is too broad and needs to be split
into more focused and fine-grained subtopics. In
Figure 8, Cluster C is split into C1’, C2’ where
each new cluster contains questions more tightly
grouped by subtopic, such as evacuation routes and
travel means. If C is an original cluster, splitting
it into two can be denoted by C → {C1′, C2′},
where each C ′ represents a subset of C such that
C1′ ∪ C2′ = C and C1′ ∩ C2′ = ∅.
C) Rearrange Questions ( ): The questions need
to be reassigned to ensure they fit well into the cor-
rect clusters, maintaining the contextual alignment.
Let Q be a set of all questions, and Qi ⊂ Q a subset
of questions originally in a cluster Ci. If questions
are reallocated such that Qi now belongs to a new
cluster Cj , this can be denoted as Qi → Cj .

4.2 Reclustering in Adaptive IE (Step C):

Once feedback F(t) is provided in Step B, the
system utilizes an update function u to refine
the clusters. The update function is defined as
u : (C(t),F(t)) → C(t + 1), where feedback is
incorporated to update the clusters for the next it-
eration, yielding C(t+ 1). The clustering process
adheres to the following principles:
1) Recluster-Rename (Rec-Ren) In this approach,
questions are initially reorganized based on user
feedback, followed by renaming clusters to re-
flect their updated content. User feedback incor-
porates two specific types of constraints to guide
the reclustering process: a) Must-have constraints
(M ⊆ Q×Q): It specifies pairs of questions that
must be included in the same cluster. b) Cannot-
have constraints (N ⊆ Q × Q): Specifies pairs
of questions that must not be included in the same
cluster. Once the questions are reorganized, we use
LLM to generate meaningful names for each clus-
ter by analyzing the questions closest to the cluster
centroid. This naming step offers users the flexibil-
ity to review, edit, and further refine the clusters.
2) Rename-Recluster (Ren-Rec) We initially use
LLM to generate meaningful names for each cluster
by analyzing the representative questions located
nearest to the cluster centroids. Next, questions

are reassigned to clusters based on the semantic
alignment of their content with the cluster names.
Let Ni represent the name of cluster Ci, and e(Ni)
its embedding. For any question qj ∈ Q, its em-
bedding is denoted as e(qj). The assignment of qj
to a cluster Ci is determined by maximizing the
cosine similarity between e(qj) and e(Ni):

assign(qj) = argmax
i

cos(e(qj), e(Ni))

where cos denotes the cosine similarity.

4.3 Users decide the next steps (Step D)

In this step, the user concludes if the clustering
configuration aligns with his objectives. For exam-
ple, as illustrated in Figure 6, after each iteration,
humans evaluate whether the question-answer pairs
correctly segregate concepts like “Increased Effect”
from “Decrease” based on semantic content. Oth-
erwise, he proceeds to next iteration with t = t+ 1
and the steps B, C and D get repeated.

Evaluation. In evaluating slot mapping perfor-
mance, each iteration assesses the alignment of
slots with user-defined needs. We define the user
need using a subset of slots from the gold stan-
dard dataset, serving as a proxy for the specific
information the user seeks.

In Figure 6, the user need is represented by two
slots: downregulation and upregulation. At each
iteration, we assume that fulfilling these two slots
from the gold standard will meet the user’s require-
ments. Initially, the clusters generated by Unsuper-
visedIE do not coherently reflect the user’s desired
information. A fuzzy mapping is first applied to
map clusters to the required slots (upregulation
and downregulation), but none could be correctly
mapped in the initial iteration. After receiving
feedback from the user, the system splits and re-
groups questions, allowing ADAPTIVE IE to better
organize the information. Now, Cluster 1 repre-
sents upregulation (e.g., cholesterol upregulating
SREBP-1c), while Cluster 3 represents downregu-
lation (e.g., ATM decreasing the effect of caffeine).
At each iteration, the goal is to match the informa-
tion in the gold standard (user’s requirement) with
the corresponding answers in the predicted slots.
For instance, “Cholesterol [Upregulates] SREBP-
1c” can be accurately mapped to Q7 and its an-
swer, confirming that the user’s needs are being
met through the iterative feedback process.
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5 Datasets and Baselines

Datasets. We conduct experiments on the three
following datasets from diverse domains to test the
generalizabilty of our approach:
(1) GENEVA (Parekh et al., 2023) is a generic-
domain Event Extraction dataset comprising of 179
event types and 362 argument roles.
(2) Biomedical Slot Filling (Papanikolaou et al.,
2022) comprises of different relation types betwee
the biomedical entities, out of which we evaluate on
1000 passages containing the most-occuring rela-
tions (interacts with, downregulation, upregulation,
cause and regulation) between biomedical entities.
(3) CrisisNLP (Imran et al., 2016) is a classifi-
cation dataset comprising of crisis-related tweets
between 2013 and 2015. We repurpose this dataset
to create a slot filling dataset for emergency domain.
Using GPT-4, we initially identified precise infor-
mation from each tweet, ensuring it matched prede-
termined categories. For instance, in “Emergency
Aids” category, we focused on extracting specific
details like locations of emergency and availability
of emergency supplies, organizing this information
into slot-value pairs. Manual examination was con-
ducted to guarantee the accuracy of slots, which
involved removing entries that were not relevant,
finally creating a dataset comprising 3,000 tweets
from Chile Earthquake, Ebola Outbreak, Typhoon
and 6,940 slot-value pairs (Appendix D).

Baselines. We compare UnsupervisedIE with
the following baselines:
(1) BERTQA by Du and Cardie (2020): Based on
BERT, it enhances label semantics through a QA
objective. It scales to a broad range of argument
roles by posing questions in the format “What is
arg-name?” for each specific role,
(2) TE (Transfer Entailment) by Lyu et al. (2021):
A zero-shot transfer model that leverages a pre-
trained entailment model to autonomously extract
events. Similar to BERTQA, it crafts hypothesis
questions like “What is arg-name?” for every role,
facilitating direct comparison.
(3) OpenIE by Angeli et al. (2015): A triple-
extraction baseline that extracts open-domain rela-
tion triples, representing a subject, a relation, and
object of the relation,
(4) PromptORE by Genest et al. (2022): It extracts
trigger words surrounding the context, followed by
clustering and slot mapping. However, our meth-
ods do not rely on heuristics to find trigger words
between two or more entities in sentences, instead

consider the overall context to ask questions condi-
tioned on the tagged entities.
(5) Span-Extraction Method by Yu et al. (2022a):
It comprises of bottomup span extraction method
regularized by unsupervised probabilistic context-
free grammar (PCFG), followed by clustering.
Furthermore, we experiment IE-on-the-fly using
zero-shot and few-shot prompting of GPT-3 (text-
davinci-003), ChatGPT (gpt-3.5-turbo), GPT-4 to
extract information in an unsupervised way. Our
implementation and hyperparameter details are in
Appendix A and prompts are in Appendix B.

6 Human Experimental Setup

Our primary objective is to evaluate whether our
proposed system, ADAPTIVE IE, can effectively
assist the users in extracting essential information
from large datasets during emergency situations.
So we explore three main research questions:

• RQ1) How does ADAPTIVE IE compare to
both manual methods and automatic unsuper-
vised approaches in effectiveness in extracting
the desired information? (Section 6.1)

• RQ2) How easily can multiple individuals
with different information needs engage with
ADAPTIVE IE to extract desired information?
(Section 6.2)

• RQ3) How quickly can an individual engage
with ADAPTIVE IE to extract desired informa-
tion as their information needs change over
time? (Section 6.3)

6.1 RQ1: Testing the Effectiveness

We aim to assess how well ADAPTIVE IE assists
users in identifying and refining relevant question
clusters to suit their specific needs (Appendix E).

We recruited ten participants via Upwork to eval-
uate the effectiveness of our ADAPTIVE IE system
(Figure 9). All the participants were not previously
exposed to this task and interface. To help them
become familiar, they were first asked to read 50
questions, answers and mapped slots (Appendix C).
Initially, the participants were first tasked with ex-
amining initial clusters of questions generated from
400 documents of biomedical dataset. Next, they
interacted with the ADAPTIVE IE interface to orga-
nize information regarding potential side effects of
biomedical entities, which were categorized under
the “Cause-Effect”,“upregulation” and “downregu-
lation” slot types. In the second part of the study,
participants used 1000 documents from CrisisNLP
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Dataset to identify ‘affected areas”, “casualties”
and “recovery rates” from documents concerning
the Ebola outbreak, and “Damaged Properties” and
statistics on “missing or dead people” from the
2014 Chile Earthquake corpus. We initially calcu-
lated the F1-scores for these slots before any user
interaction (only with unpervised approach). The
study then measured how user feedback improved
F1-scores within a 30-minute window. We com-
pare different experimental configurations in time
taken to improve slot mapping, as measured by
F1-score progression. The experimental mecha-
nism includes the following approaches: (1) the
Control Group, which involves manual grouping
of information into predefined clusters based on
a set of questions generated from documents; (2)
an Experimental Group consisting of three sub-
configurations that start from unsupervised clus-
tering methods, specifically, the approaches pro-
posed by Yu et al. (2022a) and Genest et al. (2022),
both of which uses Rec-Ren approach. Finally,
additional configurations apply Rec-Ren or Ren-
Rec strategy using K-Means and HDBScan clus-
tering techniques. Genest et al. (2022) and Yu
et al. (2022a)’s approach use Rec-Ren process for
clustering and updating slot names to enhance in-
formation grouping, while K-Means and HDBScan
variants use both Rec-Ren and Ren-Rec methods
to optimize slot mappings iteratively.

6.2 RQ2: Adaptability for Multiple
Individuals

Three students participated in a role-playing exer-
cise, each focusing on distinct information needs:
one concentrated on medical supplies and aid, an-
other on affected individuals and regions, and the
third on Ebola symptoms and preventive measures.
These roles were designed to align with the gold-
standard slot-value pairs annotated in the dataset.
We compared the performance (F1-score in slot
mapping), time taken, API cost, compute power of
the model of four zero-shot LLMs in extracting the
user-specified information dynamically compared
to that of ADAPTIVE IE. We wanted to compute the
trade-off of all the models in catering to adapting
to dynamic information needs.

6.3 RQ3: Adaptability over time

Our goal of this experiment was to assess the time-
efficiency of ADAPTIVE IE in responding to evolv-
ing information needs, and to compare this with the
best-performing LLM (GPT-4 in this case, since it

Biomed Crisis GENEVA

F1 F1 F1

Random 0.09 0.07 0.05
Angeli et al. (2015) 0.15 0.14 0.11
Genest et al. (2022) 0.23 0.24 0.13
Du and Cardie (2020) 0.13 0.17 0.08
Lyu et al. (2021) 0.18 0.22 0.13
Yu et al. (2022a) 0.23 0.26 0.13
UnsupIE (Ours) 0.20 0.24 0.15

Table 1: Compares Macro-F1 of unsupervised baselines
on Biomedical Slot Filling, CrisisNLP (Crisis), and
GENEVA. Note that, our goal is not to use the best-
performing model, but to use a system that can serve as
a good foundation model for user experience.

provides the best F1 in Table 2). Therefore, we sim-
ulated dynamic shifts in information needs using
the Ebola Outbreak from the CrisisNLP Dataset as
a real-world case study. We segmented the Ebola
Outbreak timeline into three distinct phases: T1
focused on transmission and symptoms, T2 on af-
fected areas and casualties, T3 when information
needs are related to vaccines and treatments. Two
graduate students participated in a role-playing ex-
ercise starting at T1, where they gathered informa-
tion about the transmission and symptoms of the
disease. In T2, they shifted their focus to the areas
affected by the outbreak, and by T3, their inquiries
centered around vaccines and treatments. After
completing each phase, the participants preserved
their findings and continued searching while main-
taining the same state of clusters. We measured
the average time taken by the participants to find
answers to their evolving slot mapping requirement.
The performance was evaluated using a sample of
300 tweets, with time efficiency being a key metric.

7 Main Results and Discussion

Before comparing the performance of ADAPTIVE

IE, we explored how well does the “QA-guided
UnsupervisedIE” perform compared to the existing
unsupervised baselines.

Table 1 compares the performance of various
unsupervised information extraction models across
three datasets—Biomedical Slot Filling (Biomed),
CrisisNLP (Crisis), and GENEVA—using the
Macro-F1 metric. UnsupervisedIE, while not nec-
essarily the best in every domain, provides a strong
foundation for user-oriented tasks. Notably, it ob-
tains the highest F1 score on the GENEVA dataset
(0.15), outperforming other models that struggled
to generalize in this domain. In the Crisis dataset,
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Figure 2: Average Macro F1-scores obtained by ten users at an interval of 10 minutes on the GENEVA (left),
Biomedical (middle) and CrisisNLP Datasets (right). At time 0, UnsupervisedIE clusters are shown initially and
participants kept interacting with ADAPTIVE IE for 30 minutes. Across all datasets, ADAPTIVE IE gets a consistent
and significant improvement in Macro F1-scores over time, outperforming unsupervised baselines as participants
interact with the system, highlighting its adaptability and effectiveness.

UnsupervisedIE is competitive with existing mod-
els, achieving F1 score of 0.24, slightly behind
the leading model by Yu et al. (2022b). In the
Biomed dataset, although UnsupIE does not sur-
pass the best performing models, it remains in a
competitive range with F1 score of 0.20. Overall,
the results highlight UnsupIE’s versatility across
diverse datasets making it a promising baseline
model for user experience despite not being the
highest performer in every category.2

Next, through a series of human experiments
described in Section 6, we answer the research
questions as follows:

Answer to RQ1): ADAPTIVE IE observes the
best trend in helping the users obtain higher F1-
gain compared to other baselines. Figure 2 re-
ports the average Macro F1-scores achieved by ten
users at an interval of 10 minutes on the GENEVA,
Biomedical and CrisisNLP Datasets. The control
group consistently shows the lowest F1-score im-
provements across all intervals. In the GENEVA
dataset, the highest performing method, HDBScan-
Ren-Rec, shows an improvement from about 0.2 to
0.6 over 30 minutes. In the Biomedical dataset, a
similar trend is observed, with the leading approach
(K-Means-Ren-Rec) jumping from approximately
0.15 to 0.35. For the CrisisNLP dataset, the lead-
ing method is HDBScan-Ren-Rec, which escalates
from 0.2 to 0.55.

2Note on QA Coverage: The question-answer pairs cov-
ered 92%, 89.23%, and 94.56% of the event-related informa-
tion from the Geneva, Biomedical, and CrisisNLP corpora.
Coverage was assessed by fuzzy matching, comparing the re-
call of generated slots against gold-standard slots. This process
measured the proportion of information slots produced by the
UnsupervisedIE pipeline, with the final evaluation focusing on
the recall of extracted information to ensure comprehensive
coverage.

F1 (↑) Time (↓) Comp (↓) API (↓)

GPT-3 0.82 90 m Low High
ChatGPT 0.84 88 m Low High
GPT-4 0.84 92 m Low High
LLama-13b 0.77 67 m High Low
Adaptive IE 0.75 50 m Low Low

Table 2: Shows the trade-off between models compared
to our approach (300 emergency tweets), where we show
our model’s efficacy in emergency situations. Notably,
ADAPTIVE IE obtains competitive runtime (Time) and
compute efficiency (Comp) with comparatively low API
costs, making it a practical solution in emergency sce-
narios despite a slight trade-off in F1 performance.

In comparing the KMeans and HDBScan meth-
ods to other baseline methods like Genest et al.
(2022) and Yu et al. (2022b)’s approach, dis-
tinct trends emerge. For the GENEVA dataset,
HDBScan-Ren-Rec outperforms all others, achiev-
ing F1-score increase from 0.2 to 0.6 over 30 min-
utes, whereas KMeans-Ren-Rec also performs ro-
bustly, though slightly lower. Yu’s method and
PromptORE are consistently outperformed by these
clustering techniques across all datasets. In the
Biomedical and CrisisNLP datasets, both KMeans
and HDBScan show superior improvement rates,
with KMeans-Ren-Rec reaching F1 of 0.35 in
Biomedical from a lower baseline, and HDBScan-
Ren-Rec escalating to 0.55 in CrisisNLP, both
showing more substantial gains than the baselines.

Answer to RQ2): ADAPTIVE IE is the winner
in cost-performance trade-off. Table 2 presents
a comparative analysis of zero-shot LLM prompt-
ing effectiveness during IE tasks from a corpus of
300 documents related to the Ebola Outbreak in
the CrisisNLP dataset. ADAPTIVE IE emerged as
the most efficient, taking the least overall time (50
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Stage ADAPTIVE IE (↓) GPT4 (↓)

T1 72.23 91.0
T2 20.22 78.00
T3 28.23 84.00

Table 3: Comparison of Average Time Taken by ADAP-
TIVE IE and LLM During Different Phases (T1: Trans-
mission & Symptoms, T2: Affected Areas & Casualties,
T3: Vaccines & Treatments) of the Ebola Outbreak Cri-
sis Scenario. ADAPTIVE IE takes significantly lower
average time across all phases, making it a more time-
efficient solution for crisis response tasks.

minutes) to obtain a reasonable Macro F1-score
(0.75) across all tasks. In contrast, GPT-based mod-
els, despite higher F1-scores (up to 0.84), required
longer runtime and were less cost-effective due to
higher API usage. LLAMA-13b, while showing
good performance, demanded high computational
resources. ADAPTIVE IE’s efficiency is attributed
to its one-time use of LLMs for question generation,
after which users could refine information clusters
without additional LLM overhead, making it faster
and more economical (Details in Appendix F).

Answer to RQ3): ADAPTIVE IE adapts quickly
over time. Table 3 reveals that ADAPTIVE IE
consistently outperforms the best performing LLM
GPT-4 in time efficiency across all three stages of
the Ebola outbreak crisis scenario, taking signifi-
cantly less time to extract user tailored information.
Specifically, ADAPTIVE IE took 72.23, 20.22, and
28.23 minutes for stages T1, T2, and T3, com-
pared to GPT-4’s 91.0, 78.0, and 84.0 minutes. Ini-
tially, ADAPTIVE IE takes longer due to one-time
overhead of question generation by LLMs in the
zero-shot UnsupervisedIE pipeline. Nevertheless,
our system shows higher performance, ensuring
quicker response time to information that aligns
with dynamic requirements during Ebola Outbreak.

8 Further Analysis

In this section, we aim to answer two questions:
a) Which user feedback results in increased F1-
score compared to the previous iterations? We
measure this using hit rate of each type of user feed-
back (defined as the proportion of instances where
the application of a specific feedback type leads
to an increase in the Macro F1-score between con-
secutive iterations). Let F1i denote the Macro F1-
score at iteration i, and let ∆F1i = F1i+1 − F1i
represent the change in F1-score following the
user feedback from iteration i to i + 1. The user

feedback at iteration i is represented by Ui, with
specific actions categorized into splitting (U split

i ),
merging (Umerge

i ), and rearranging (U rearrange
i ). The

hit rate for each feedback type k is calculated as
Hit Ratek = hitsk

nk
, where hitsk is the count of in-

stances
∑

i 1(U
k
i and ∆F1i > 0), and nk is the

total number of times feedback type k was applied.
Here, 1(condition) is an indicator function that re-
turns 1 if the condition is true and 0 otherwise.
(Experimental phase of RQ1).
b) To what extent do the cluster-specific content
explanations help users obtain an improved F1-
score? We tested the success of the cluster content
explanations on users’ ability to make improve-
ments to the slot mapping performance by creating
two configurations. In a study with 6 participants,
3 users were provided with cluster content expla-
nations before reclustering (Example in 10), while
the other 3 using ADAPTIVE IE system saw no
explanations. We compared mean F1 after 20 min-
utes of their interactions to evaluate how much the
explanations contributed to improved slot mapping.

Rearrangement of questions and splitting of
clusters are the most prominent feedback for
improved F1. Figure 3 illustrates the compara-
tive effect of user feedback operations on the per-
formance improvement on all the datasets. In the
Biomedical dataset, splitting clusters shows the
highest hit rate at 75%, indicating its strong ef-
fectiveness in improving data organization and re-
trieval compared to rearranging questions (65%)
and merging clusters (50%). The Disaster dataset
reveals even stronger performance enhancements
with rearranging questions leading at an 80% hit
rate, followed by splitting clusters at 70% and merg-
ing clusters at 55%. The GENEVA dataset demon-
strates a more balanced effect with rearranging
questions and splitting clusters yielding hit rates of
60% and 68%, while merging clusters shows the
least impact at 48%.

Explanations after Reclustering improve the F1
scores most of the times. Figure 4 illustrates
the usefulness of providing explanations on slot
mapping performance across three datasets. In
all cases, participants with explanations achieved
higher mean F1 scores compared to those without,
with the highest difference observed in CrisisNLP
dataset where the group with explanations reached
F1 score of 0.75, while the group without expla-
nations achieved only about 0.35. It was because
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Figure 4: Effect of Explanations indicating that partici-
pants who were provided with explanations consistently
achieved higher mean F1 scores in slot mapping perfor-
mance across all datasets.

users could infer the pattern of why a certain cluster
was formed before providing any further feedback.

9 Background and Related Work

Early work (Chambers and Jurafsky, 2008, 2009)
automatically learned a schema from newswire
text based on coreference and statistical probabil-
ity models. Later, Peng et al. (2016) generated an
event schema based RNN (Schmidt, 2019). Other
studies by Zhang et al. (2022) had focused on mod-
eling event-type semantics by aligning the defini-
tion of events with the sentences in a zero-shot
manner. However, these methods considered prior
annotations of templates or event definitions to ex-
tract information from documents. Unsupervised
IE by Yates et al. (2007) aimed to extract intents
without having access to a labeled dataset during
training. Roy et al. (2019) proposed an ensemble
method to aggregate results of multiple OpenRE
models but relies on surface forms which makes

it difficult to group instances with same relations
expressed us ing different syntax. Li et al. (2020b)
and Li et al. (2021) used transformers to handle
schema generation and viewed a schema as a graph
instead of a linear sequence. However, they could
not make it domain-agnostic.

Recently, various methods have been developed
to treat Event Extraction (EE) as a form of QA for
academic research. This methodology, treating EE
as a QA problem, has been explored in works by Du
and Cardie (2020), Li et al. (2020a), and Lyu et al.
(2021). This process involves generating questions
for each argument role, created using pre-defined
templates. Pre-defined question templates are effec-
tive but lack flexibility and context-specific details
(Du and Cardie, 2020). Recent works emphasize
Human-in-the-Loop (HITL) approaches to enhance
machine learning. Mosqueira-Rey et al. (2024)
addressed data bottlenecks with GAN-based aug-
mentation and active learning for iterative expert
feedback in medical diagnostics. Similarly, Bobes-
Bascarán et al. (2024) integrated HITL to align ma-
chine learning outputs with domain-specific stan-
dards, enhancing model explainability and reliabil-
ity. Zeng et al. (2024) leveraged LLMs for sum-
marization and hidden state extraction, enabling
scalable, user-guided data analysis across domains.
Recently, Dror et al. (2023) took GPT-3 generated
documents to build a schema but it suffered from
the instability of GPT-3 outputs. Another area re-
lated to our work is human-in-the-loop schema
generation as done by Ciosici et al. (2021). How-
ever, they relied a lot on human input as com-
pared to Zhang et al. (2023)’s work using GPT3
generated candidate steps for schema generation.
Due to over-reliance on GPT-3 generations, these
models suffered from hallucination in complex do-
mains (Pu and Demberg, 2023; Dror et al., 2023).
However, our generated questions are grounded on
source documents, ensuring faithfulness. Besides,
our method has been benchmarked on multiple do-
mains unlike other works.

10 Conclusion

With the acknowledgements that depending on hu-
man annotation is expensive and inefficient, while
fully automated generations can be unreliable, we
introduce a “human-in-the-loop IE” approach pow-
ered by the capabilities of LLMs as the backbone.
Our system can be pivotal in analyzing critical in-
formation from various sources during emergency.
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• User Pool Size: The experiments were con-
ducted with a relatively small number of users,
which might limit the generalizability of the
findings. Future work should involve scaling
the study to a larger and more diverse partici-
pant base.

• Domain Specificity: The current study is
limited to two domain-specific datasets (e.g.,
biomedical and crisis datasets). Expanding
to additional domains, including low-resource
and non-English datasets, would provide a
more comprehensive evaluation of the ap-
proach.

• Interface Features: Some participants ex-
pressed interest in interactive visualizations,
such as TSNE plots, to better understand the
clustering process. The absence of such fea-
tures in the current system may limit its us-
ability for complex analysis tasks. As a next
version of the interface, we hope to include
both extrinsic and intrinsic evaluation to pro-
vide better guidance to the users.

• Iterative Refinement Dependency: While
the system demonstrates adaptability, its per-
formance heavily depends on iterative user

feedback. This may lead to slower informa-
tion extraction in scenarios where immediate
responses are required.

• Language Limitations: The system’s evalua-
tion is primarily conducted in English. Test-
ing on non-English datasets, especially low-
resource languages, could highlight potential
language-specific challenges.

• Computational Constraints: The reliance
on LLMs for question generation introduces
computational overhead, particularly for ini-
tial processing stages. Optimizing this step
could improve time and resource efficiency.
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A Appendix: Implementation Details

We use sentenceBERT (Reimers and Gurevych,
2019) to encode the passages and the queries be-
fore doing the clustering. We use both Kmeans
(Sinaga and Yang, 2020) and HDBSCan (Malzer
and Baum, 2020) clustering of the questions for
grouping the questions based on semantic similari-
ties. For question-generation methods, we use pre-
trained T5 (Raffel et al., 2019) and BART (Lewis
et al., 2020) to generate questions pivoted on event
triggers and different entities. Besides, we have
experimented with three different LLMs such as
GPT-3 (text-davinci-003), ChatGPT (gpt-3.5-turbo)
and GPT-4 (gpt-4-turbo) from OpenAI. All experi-
ments are carried out with temperature 0 to have a
reproducible setup and top-p nucleus sampling set
to 0.9. For generating the initial number of clus-
ters by UnsupervisedIE, K was chosen to be any
number greater the number of desired slots in the
experiment and (For instance, in Figure 8, K=4
where the number of desired slots is 2, only “Dam-
aged Properties” and “Causalties”). The idea is to
have atleast the number of slots that the user would
like to see. Now, we use the following prompts for
event trigger identification, question-answering us-
ing the prompts in B using all the LLMs specified

Algorithm 1 Adaptive IE Methodology
Require: Q: Set of all questions from documents
(D1, D2, D3, . . . ), F(t): User feedback
Ensure: C(t+ 1): Refined clusters of questions

1. Step A: Initialize with C(t)
• Extract initial triggers and generate QA pairs from
D

• Cluster QA pairs into initial groups based on se-
mantic similarity

2. While User not satisfied do
2.1. Step B and C: Handle User Feedback F(t) and

update the clusters
• Apply user feedback to adjust clusters:

– Merge related clusters
– Split broad clusters
– Rearrange questions into correct clusters

3. Step D: Present Clusters to User
• Display updated clusters to the user for feedback

Output: Final refined clusters C(t+ 1)

The Battle of Sudoměř was fought 

on 25 March 1420, between 

Catholic and Hussite forces. 

The Hussites were led by Břeněk of 

Švihov - who was killed in battle.

This was the second major battle 

of the Hussite Wars; the first 

battle, the Battle of Nekmíř, was 

more of a Hussite retreat than a 

true fight. 

Trigger word: was
Question: What are the battles fought by the 
Hussites?
Answer: Battle of Sudoměř and Battle of Nekmíř

Trigger word: fought
Question: Who fought the Battle of Sudomer?
Answer: between Catholic and Hussite forces

Question: When was the Battle of Sudomer 
fought?
Answer: 25 March 1420

User1

User2

Event:  Battle

Argument Roles: 
Battle Name: The Battle of Sudoměř
Parties: Catholic and Hussite forces
Time: 25 March 1420
Sequence of Battles: Battle of Nekmíř and Battle of Sudoměř

Figure 5: An example shows the motivation of using
a QA-driven approach of extracting information on-
the-fly depending on user requirements. Supervised
template-driven approaches require pre-annotated tem-
plates, whereas QA-driven interactive pipeline using
trigger words fought generates all possible question-
answer pairs corresponding to an event, and it satisfies
user’s information needs on-the-fly.

above. Our interface is developed using streamlit
(Screenshot in Figure 10).

Examples of UnsupervisedIE Output. Figure 5
illustrates how a QA-driven UnsupervisedIE ap-
proach, using trigger words, can dynamically gener-
ate question-answer pairs from a text corpus, in this
case using data from the GENEVA dataset. Trigger
words such as “was” and “fought” are employed to
extract specific details about events, allowing for
the generation of relevant questions and answers
in real-time based on user requirements. For exam-
ple, when the trigger word “was” is detected, the
system identifies questions that ask for factual in-
formation about past events, such as “What battles
were fought by the Hussites?” and retrieves the
answer, “Battle of Sudoměř and Battle of Nekmíř”.
Similarly, the trigger word “fought” generates ques-
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tions like “Who fought the Battle of Sudoměř?"
and “When was the Battle of Sudoměř fought?”
with corresponding answers drawn directly from
the text. This approach eliminates the need for pre-
annotated templates by leveraging trigger words
to create a dynamic and interactive pipeline. It
efficiently addresses users’ specific queries by gen-
erating all possible question-answer pairs related to
the event, adapting to different information needs
on-the-fly.

Figure 8 illustrates a zero-shot QA-guided in-
formation extraction (IE) slot induction process,
where the system automatically generates question-
answer pairs by identifying triggers related to
an event—in this case, the 2014 Chile Earth-
quake—and organizes them into meaningful clus-
ters. The first step involves unsupervised informa-
tion extraction (IE) on documents D1, D2, and D3,
which are associated with the event. Triggers such
as “trapped” and “commute” are detected to iden-
tify specific sub-events or concerns related to the
earthquake. Once the triggers are identified, the
system generates relevant QA pairs linked to those
triggers. For example, for the trigger “trapped”,
the system generates questions such as “What is
the estimated number of people trapped under de-
bris?” or “What are the designated safe areas near
Mexico?” Similarly, for the trigger “commute”,
questions like “How to commute from East to West
Chile?” and “By what means can we travel in
this situation?” are produced. After the QA pairs
are generated, the system clusters the questions
into four categories: C1 (General Information), C2
(Safety), C3 (Aftermath), and C4 (Miscellaneous).
The questions are grouped based on the type of
information they address. For instance, questions
related to safety measures, such as blocked roads
and evacuation routes, are categorized under C2,
while questions related to the aftermath of the earth-
quake, such as the number of people who have died
or the number of damaged buildings, are placed
under C3. This process allows for efficient organi-
zation of information in a way that satisfies various
user needs and queries about the event.

B Appendix: Prompts

Question-Answer Generation Prompt

Instruction: You are an assistant that reads through
a passage and provides all possible question and an-
swer pairs to the trigger word ti, and the questions
will help ascertain facts about the event triggered by
ti,. The questions should roughly follow templates
like:wh* verb subject trigger object1 preposition ob-
ject2 Wh* is a question word that starts with wh (i.e.
who, what, when, where). Answers MUST be direct
quotes from the passage. Do not ask any inference
questions. From this question set, remove semanti-
cally redundant or duplicate question-answer pairs
and produce a set of question-answers that are quite
different from each other in terms of information
need. Questions: Q
Passage: P

Cluster Explanation Generation Prompt

Instruction: The collection of questions within this
cluster can be presented as follows. Generate an
explanation regarding how they cater to similar infor-
mational needs.
Questions: Q

Event Trigger Extraction Prompt

Instruction: List all potential event triggers from the
passage. Format your output as a list of triggers.
Passage: P

Zero-Shot Prompt for IE-on-the-Fly

Instruction: You are an assistant that reads through
a passage and extracts all possible information per-
taining to the goal of the user. Format your answer
as a list of JSON Objects where keys are the infoma-
tion type and values are the extracted spans from the
passage.
Passage: P
Goal of the user: G

Few-Shot Prompt for IE-on-the-Fly

Instruction: Instruction: You are an assistant that
reads through a passage and extracts all possible in-
formation pertaining to the goal of the user. Format
your answer as a list of JSON Objects where keys
are the infomation type and values are the extracted
spans from the passage.
Passage: P
Goal of the user: G
Some Examples:
Example 1
Example 2
Example 3
Example 4
Example 5
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Document Context Cluster1 (Effect of 
Medications)

Cluster2 (Miscellaneous) Cluster3 (Increase and 
Decrease)

Inhibition of ATM provides a molecular explanation 
of the attenuation of DNA-damage checkpoint 
responses and for the increased radiosensitivity of 
caffeine-treated cells

Q1. What happens to the cells 
treated with caffeine?: 
increase radiosensitivity

Q2. What is the relationship between ATM inhibition 
and caffeine-treated cells?: damage, 
Q3. What is the molecular explanation for the 
increased radiosensitivity of caffeine-treated cells?: 
Inhibition of ATM

Q4. What does ATM have effect?: 
Decrease caffeine

Further, cholesterol metabolites, predominantly the 
oxysterols, the natural ligands for liver X receptor 
(LXR), induced these genes via upregulation of 
sterol regulatory element binding protein-1c 
(SREBP-1c) that bound to the regulatory regions 
of genes. 

Q5. What does oxysterol 
increase the effect of? : 
SREBP-1c

Q6.What are the natural ligands for liver X receptor 
(LXR)?: The oxysterols.

Q7, How did cholesterol 
metabolites induce these genes?: 
upregulation of (SREBP-1c)

Downregulator
1) Caffeine, ATM

Upregulation: 
1) oxysterols, 
SREBP-1c
2) Cholesterol, 
SREBP-1c

Zero-shot 
UnsupervisedIE

Feedback

AdaptiveIE

Let's open document 2 and Place Q7 in one 
cluster separately in C1

Let's open document 1 and Place Q4 in one 
cluster separately in C3

Document Context Cluster1 (Increased Effect) Cluster2 (Relation and Effects) Cluster3 (Decrease)

Inhibition of ATM provides a molecular 
explanation of the attenuation of 
DNA-damage checkpoint responses 
and for the increased radiosensitivity 
of caffeine-treated cells

Q2. What is the relationship between ATM 
inhibition and caffeine-treated cells?: 
damage, 
Q3. What is the molecular explanation for 
the increased radiosensitivity of 
caffeine-treated cells?: Inhibition of ATM,
Q1. What happens to the cells treated with 
caffeine?: increase radiosensitivity

Q4. What does ATM 
have effect?: Decrease 
caffeine

Further, cholesterol metabolites, 
predominantly the oxysterols, the 
natural ligands for liver X receptor 
(LXR), induced these genes via 
upregulation of sterol regulatory 
element binding protein-1c 
(SREBP-1c) that bound to the 
regulatory regions of genes. 

Q5. What does oxysterol increase 
the effect of? : SREBP-1c
Q7, How did cholesterol metabolites 
induce these genes?: upregulation 
of (SREBP-1c)

Q6.What are the natural ligands for liver X 
receptor (LXR)?: The oxysterols.

Downregulator
1) Caffeine, ATM

Upregulation: 
1) oxysterols, 
SREBP-1c
2) Cholesterol, 
SREBP-1c

Fuzzy map: None
Precision: 0, Recall : 0

Fuzzy map: 
Cluster 1 
Precision: 0, 
Recall : 100

Fuzzy map: Decrease
Precision: 100, Recall : 100

Fuzzy map: Increased Effect
Precision: 100, Recall : 100

Figure 6: This figure illustrates a feedback-driven ADAPTIVE IE workflow, starting with Zero-Shot Unsupervised IE
to generate initial clusters of questions based on the context of documents. Clusters such as “Effect of Medication”,
“Miscellaneous” and “Increase and Decrease” are formed but lack semantic refinement. User feedback is then
applied, where specific questions (e.g., Q4 and Q7) are manually reassigned to better-defined clusters. The updated
clusters (e.g., “Increased Effect”, “Relation and Effects”, “Decrease”) achieve greater semantic coherence, enabling
ADAPTIVE IE to improve the precision and recall of information extraction through a “fuzzy map” refinement
process. The figure demonstrates the effectiveness of incorporating user feedback to enhance the semantic alignment
of clusters, improving the precision and recall of extracted information. It showcases how ADAPTIVE IE dynamically
adapts clusters and aligns them with user intent, highlighting the value of human-in-the-loop processes in achieving
more accurate and meaningful information extraction results.

C Appendix: Human Study Recruitment

Our user study was not limited to the individu-
als who are well-versed in the concepts of Ma-
chine Learning or Natural Language Processing,
we wanted to verify if the participants can under-
stand what does a semantically coherent cluster
look like. For this, we recruited those participants
with their native language as English. Out of ten,
only four of the participants had prior experience
on NLP. In order to familiarize them with the clus-
tering task, we asked them to solve a simple as-
signment as described in figure 7. We have re-
cruited those participants who could successfully
complete the task without any difficulty. Prior to
the study, we collected consent forms for the work-
ers to agree that their answers would be used for
academic purposes. All the involved participants
gave their consent to disclose their interactions with
the interface. Moreover, they were fairly compen-
sated based on the amount they had proposed for
this particular task. During the actual study, we

provided some examples of passages and gold slots
to make them understand the context. We ensured
that the documents we have used for uploading in
the interface were different from the ones shown to
them for making themselves familiar with the task
and setup.

D Appendix: CrisisNLP Slot Filling
Dataset Statistics

We repurpose CrisisNLP to create a slot filling
dataset for emergency domain. Using GPT-4, we
initially identified precise information from each
tweet, ensuring it matched predetermined cate-
gories. For instance, in “Emergency Aids” cate-
gory, we focused on extracting specific details like
locations of emergency and availability of emer-
gency supplies, organizing this information into
slot-value pairs. Manual examination was con-
ducted to guarantee the accuracy of the dataset,
which involved removing entries that were not rel-
evant, finally creating a dataset comprising 3,000
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Figure 7: This figure presents a clustering assignment where users are instructed to rearrange statements within given
clusters to create uniform groups that can be easily named. Users are encouraged to organize the statements based on
shared themes or topics, such as “Locations offering diversity” or “Healthy habits”, and assign an appropriate cluster
name. The exercise demonstrates the importance of semantic coherence in clustering and naming, highlighting
the role of user understanding in refining and improving clusters. The task emphasizes how human intuition and
semantic reasoning can enhance the interpretability and uniformity of clusters, showcasing the importance of
meaningful grouping in organizing information.

tweets from Chile Earthquake, Ebola Outbreak, Ty-
phoon and 6,940 slot-value pairs. Chile Earthquake
(1,000 tweets) had the following pairs:

• Emergency and Supplies: 200 slot-value pairs
(e.g., availability of water, food, shelter)

• Affected Areas and Evacuation: 200 slot-
value pairs (e.g., specific locations hit, evacu-
ation centers)

• Casualties and Damage: 300 slot-value pairs
(e.g., death toll, infrastructure damage)

• Emotional Support and Prayers: 300 slot-
value pairs (e.g., messages of hope, calls for
assistance)

For the Ebola Outbreak, the slot-value pair focus
on medical supplies, affected individuals, regions
with outbreaks, and awareness efforts.

• Medical Supplies and Aid: 250 slot-value
pairs (e.g., availability of medicines, medical
teams)

• Affected Individuals: 250 slot-value pairs
(e.g., number of cases, recovery rates)

• Regions with Outbreaks: 250 slot-value pairs
(e.g., specific towns or districts affected)

• Awareness and Education: 250 slot-value

pairs (e.g., preventive measures, symptoms)
For the Typhoon, the focus was meteorological

data, evacuation information, relief efforts, and
infrastructure damage.

• Meteorological Data: 200 slot-value pairs
(e.g., wind speed, rainfall levels)

• Evacuation Information: 300 slot-value pairs
(e.g., safe zones, transportation options)

• Relief Efforts: 250 slot-value pairs (e.g., aid
distribution, volunteer groups)

• Infrastructure Damage: 250 slot-value pairs
(e.g., roads blocked, power outages)

E Appendix: User Study Details

In this section, we aim to detail the various slot
categories utilized during our user study (RQ1).
Here, we explain the experimental configurations
for three datasets:

A. Biomedical Dataset. Initially, participants re-
viewed initial question clusters derived from a cor-
pus of 1,000 biomedical documents. Following
this review, they engaged with the ADAPTIVE IE
interface to systematically categorize information
pertaining to potential side effects of biomedical
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entities. These were classified into specific slots:
“Cause-Effect”, “Upregulation”, and “Downregula-
tion”. These slots served as proxies for the users’
information needs, allowing us to assess how an
unsupervised system adapts to fulfill specific infor-
mational requirements. For instance, we observed
the system’s ability to dynamically populate slots
concerning “Cause-Effect” relationships, such as
identifying the consequences of drug interactions,
or “Upregulation” and “Downregulation”, which
involve changes in gene expression levels due to
various stimuli or interventions (Examples of slots
and the questions that are mapped to the slot in
Table). This approach tested the effectiveness of
ADAPTIVE IE system to align with user-specific
queries without prior supervision. The participants
interacted with the interface for 30 minutes, and
we record the slot mapping performance due to
interactions (Using Precision, Recall, F1-score for
each slot) at an interval of 10 minutes. Besides, we
also provide examples of some good edits of the
user in Figure 6.

B. CrisisNLP Dataset. In this study, the partici-
pants focused on analyzing 2,000 documents from
the CrisisNLP Dataset, which comprised two dis-
aster events: the Chile Earthquake and the Ebola
Outbreak, with 1,000 documents dedicated to each
event. This part of the study was designed to gauge
how effectively participants could extract informa-
tion corresponding to predefined slots that cater to
specific needs during disaster responses. For the
Ebola Outbreak, the primary slots were “affected
areas”, “casualties”, and “recovery rates”. Partici-
pants were tasked with identifying and organizing
data from the documents that detailed the regions
impacted by the outbreak, the number of casualties,
and the rates at which affected individuals were
recovering. This exercise aimed to simulate the
process of gathering critical health and location-
specific information during a health crisis, which is
vital for directing medical response and resources.
Similarly, for the Chile Earthquake, the designated
slots were “Damaged Properties” and statistics on
“missing or dead people”. Here, the task involved
extracting information about the extent of property
damage and the human toll in terms of missing or
deceased individuals. This kind of information is
crucial for initiating recovery efforts, understand-
ing the severity of the impact, and mobilizing res-
cue and rehabilitation operations. These activities
within the user study not only tested the system’s

ability to assist in the rapid categorization of vital
information during crises but also provided insights
into the practical challenges and effectiveness of
using an unsupervised learning approach to man-
age real-world disaster data. The study aimed to
demonstrate how such a system could potentially
enhance decision-making processes by providing
timely and organized information to responders
and planners. Besides, we also provide examples
of some good edits of the user in Figure 8.

C. GENEVA Dataset. In the study, we asked
participants to role-play scenarios involving Action
Type events, such as “medical procedures” and
“crimes”. Specifically, they were tasked with identi-
fying key details like the place, time, and reason for
the event’s occurrence, as well as the instruments
used. Additionally, for ‘attack’ events, participants
were asked to extract information about the occur-
rence time and the motive behind the attack. This
approach helped participants engage more deeply
with the event structure, focusing on these critical
aspects to fill the corresponding slots in the infor-
mation extraction system.

F Appendix: Cost-Performance Tradeoff
of ADAPTIVE IE

LLM calls with LLAMA-13b incur no API cost,
as shown in Table 2; however, its performance, as
measured by F1 score, is lower compared to GPT-
based models. For the UnsupervisedIE pipeline, we
began by extracting trigger words and generating
QA pairs for each document, averaging six LLM
calls per tweet. When LLama-13b is used, there
is no API cost associated with UnsupervisedIE. In
cases where the user modifies clusters within a
document, each cluster is reorganized, and LLMs
are used to refine the cluster names based on the
representative questions within each cluster (Rec-
Ren approach). After the initial clusters from the
UnsupervisedIE pipeline are displayed, the user
provides feedback, which may require renaming
up to K clusters, depending on the changes made
in the ADAPTIVE IE reclustering process. Thus,
an additional K LLM calls are needed to rename
clusters based on representative questions. Overall,
we make approximately 6 * 300 + K LLM calls.
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Disaster 
Emergency 
Response Team 

Slot Name Before Feedback

Damaged 
Properties

Precision: 0, Recall: 0

Casualties Precision: 0, Recall: 0

Slot Name After Feedback

Damaged 
Properties

Precision:100, Recall: 80

Casualties Precision: 80, Recall: 50

C1’’

C2’’

C4’’

Damaged

Missing/Dead

Miscellaneous

Q10, 
Q11

Q8, Q2, 
Q3

Q1, Q4-Q7, 
Q9, Q12-Q14

          User Provides Feedback as 
Cluster Modification

      Feedback : Make three clusters after 
rearrangement of questions

C3’’

Q1, Q4, Q5, Q7

C1’’ C2’’

Q10 Q8, Q2

B

Adaptive IE

C1 (General Information) C2(Safety) C3(Aftermath) C4 (Miscellaneous)

Q1) What are the designated safe 
areas near Mexico?, Q2) How to 
find missing people after 
earthquake?, Q3) What is the 
estimated number of people 
trapped under debris?

Q4) By what means can we 
travel in this situation?, Q5) 
Which roads are blocked? 
Q6) What are the safety 
routes to take in North 
Chile?, Q7) How to commute 
from East to West Chile?

Q8) How many people have died 
after the earthquake?, Q9) How 
to seek help?, Q10) How many 
organizations are damaged? 
Q11) Which buildings are 
damaged? 

Q12) How do 
earthquakes affect 
wildlife?, Q13) What is 
the impact on local 
businesses?, Q14) 
What are the 
evacuation routes for 
major cities? 

2014 Chile Earthquake

Run Unsup IE on D1, D2, D3

D1 D2 D3

Step1 :  Triggers Identifying an Event 
[trapped, commute]

Step2:  Generate QA  pairs related to Triggers  
[Trapped -> Q3, Commute -> Q7]

Step 3: Cluster into 4 groups

A) Zero Shot QA-Guided IE Slot InductionA

       C Reclusters and Renames 
newly created Slots

D

Figure 8: This figure illustrates the workflow of a Zero-Shot QA-Guided Information Extraction (IE) system,
focusing on slot induction for emergency scenarios, such as the 2014 Chile Earthquake. The process begins with
unsupervised IE applied to datasets (D1, D2, D3), generating question-answer (QA) pairs clustered into groups
based on semantic similarity. Users provide feedback to refine clusters, leading to reclustering and renaming of
slots, improving precision and recall metrics significantly through the ADAPTIVE IE framework. The figure
demonstrates how user feedback can effectively guide the refinement of clusters and improve slot-based information
extraction, showcasing the adaptability of the system in aligning semantic relationships to achieve higher precision
and recall in real-world crisis scenarios. This highlights the value of combining human-in-the-loop processes with
adaptive systems for improving information extraction workflows.
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Figure 9: This figure presents an Upwork job post inviting participants to contribute to a research study focused
on semantic clustering. Participants are tasked with organizing snippets of information into semantically coherent
clusters, such as grouping data based on relationships between people, companies, diseases, or drugs, to enhance
a system’s ability to answer complex questions. The post outlines the task details, compensation, and assurances
regarding data security and privacy. The job post highlights the importance of human input in improving semantic
coherence in clustering tasks, demonstrating how user guidance can refine automated systems and enhance their
performance in question-answering scenarios.
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Figure 10: This figure shows a screenshot of our interface which shows the document-level cluster editing page.
The participants can view, edit, and refine clusters of questions based on their semantic grouping. The left panel
displays the passage text for reference, while the right panel shows the clusters, their names, explanations, and
associated questions. Users can refine clusters, lock changes, and infer new explanations after edits, ensuring the
clusters accurately align with the intended semantics of the passage.
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