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Abstract

Entity Alignment (EA) is essential for inte-
grating Knowledge Graphs (KGs) by matching
equivalent entities across diverse KGs. With
the rise of multi-modal KGs, which emerged
to better depict real-world KGs by integrat-
ing visual, textual and structured data, Multi-
Modal Entity Alignment (MMEA) has become
crucial in enhancing EA. However, existing
MMEA methods often neglect the inherent se-
mantic category information of entities, lim-
iting alignment precision and robustness. To
address this, we propose Category-enhanced
Entity Alignment (CateEA), which combines
implicit entity category information into multi-
modal representations. By generating pseudo-
category labels from entity embeddings and in-
tegrating them into a multi-task learning frame-
work, CateEA captures latent category seman-
tics, enhancing entity representations. CateEA
allows for adaptive adjustments of similarity
measures, leading to improved alignment pre-
cision and robustness in multi-modal contexts.
Experiments on benchmark datasets, such as
FB15K-DB15K/YAGO15K, demonstrate that
CateEA outperforms state-of-the-art methods
in various settings.1

1 Introduction

Knowledge Graphs (KGs) have become fundamen-
tal infrastructures underpinning a wide array of
artificial intelligence applications, including but
not limited to question-answering systems (Cui
et al., 2019), recommendation engines (Zhang et al.,
2016), and semantic search (Xiong et al., 2017).
Due to the presence of overlapped entities in KGs
from different data sources, integrating knowledge
through these common entities is essential for com-
pleting KGs. Entity Alignment (EA) (Chen et al.,

*Corresponding authors: Tao Ren and Dandan Wang
1The source code is available at https://github.com/

Melkor0007/CateEA.

2016) emerges as a promising technology to iden-
tify and align these entities, facilitating knowledge
integration across diverse KGs.

While traditional entity alignment primarily re-
lies on structured data (Li et al., 2019) and tex-
tual descriptions, recent advances in Multi-Modal
Entity Alignment (MMEA) leverage diverse data
modalities, such as images, text, and structured in-
formation, to capture richer semantic information
and provide a more comprehensive understand-
ing of entities. MMEA has evolved from early
feature fusion techniques, which combined visual,
textual, and structural data (Chen et al., 2020), to
contrastive learning approaches that reduce cross-
modal discrepancies (Lin et al., 2022). Recently,
adaptive integration methods have emerged, intro-
ducing dynamic strategies to handle data incon-
sistencies and ambiguities (Chen et al., 2023a).
However, these methods mostly employ standard
similarity measures, such as cosine or Euclidean
distance, on fused multi-modal features to judge
alignment. This similarity measure could fail to dis-
tinguish appearance-similar but semantic-different
entities based solely on explicit features.

Figure 1: Possible misjudgement of different entities
due to directly comparing embedding similarities.

As illustrated in Figure 1, entities like “Chow
Chow” and “Lion” may be misaligned due to their
visual similarities, despite belonging to distinct cat-
egories. This misalignment primarily results from

https://github.com/Melkor0007/CateEA
https://github.com/Melkor0007/CateEA
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the exclusive focus of existing methods on explicit
multi-modal feature similarities in the fused em-
bedding space, overlooking the implicit category
relationships among entities involved in the con-
textual semantics of multi-modal data.

To address the issue, we propose a novel
Category-enhanced Entity Alignment (CateEA)
framework that integrates implicit category infor-
mation into multi-modal entity alignment through
multi-task learning. Specifically, CateEA clusters
entity embeddings to generate pseudo-category la-
bels, which guide the training process by incorpo-
rating category-aware classification into the align-
ment task. This process enables entity embed-
dings to capture category-specific information, re-
fining alignment through enhanced semantic rep-
resentation. During testing, entities are classi-
fied into categories, and similarity scores are ad-
justed based on category proximity, further im-
proving alignment accuracy. Comprehensive ex-
periments on widely used benchmark datasets
(FB15K-DB15K/YAGO15K, DBP15K ZH/JA/FR-
EN) highlight the advantages of CateEA compared
to state-of-the-art methods. The main contributions
are summarized as follows:

• We introduce a novel entity alignment frame-
work that exploits implicit entity category in-
formation within multi-modal data to enhance
the semantic discriminating ability of entity
alignments.

• We design a multi-task learning strategy that
incorporates pseudo-category labels obtained
from embedding clusters into both alignment
and auxiliary classification tasks to capture la-
tent semantic structures of entities, producing
category-enhanced entity representations.

• We conduct extensive experiments on popular
benchmark datasets to demonstrate the superi-
ority of CateEA over state-of-the-art methods,
along with various ablation studies to validate
the efficacy of CateEA.

2 Related Work

We categorize related work into KG representation
learning and multi-modal entity alignment, high-
lighting the progression from traditional embed-
ding methods to advanced multi-modal integration
strategies.

2.1 KG Representation Learning

Representation learning-based methods, including
translation models and GCN-based approaches,
have proven effective in capturing semantic infor-
mation of KGs. TransE (Bordes et al., 2013) and
its variants, such as TransH (Wang et al., 2014),
TransEdge (Sun et al., 2019) and TransR (Lin
et al., 2015), as well as GCN-based models like
MuGNN(Cao et al., 2019) JAPE (Sun et al., 2017),
GCN-Align (Wang et al., 2018) and ClusterEA
(Gao et al., 2022) focus primarily on leveraging
the structural information of knowledge graphs
with GCN (Kipf and Welling, 2016) to enhance en-
tity embeddings, providing simplicity, scalability,
and improved alignment accuracy. However, these
approaches often overlook the rich multi-modal
and semantic information embedded within enti-
ties, which limits their ability to fully capture the
complex relationships and diverse contexts in real-
world data. To address these limitations, our pro-
posed CateEA framework integrates implicit entity
category information into the alignment process,
combining multi-modal data with latent semantic
structures.

2.2 Multi-Modal Entity Alignment

Recent advancements in MMEA mainly lie in three
aspects: multi-modal feature fusion, inter-modal
contrastive learning, and adaptive modality inte-
gration. Feature fusion methods, such as PoE
(Liu et al., 2019), MMEA (Chen et al., 2020) and
HMEA (Guo et al., 2021), embed visual, textual,
and structural data into a unified representation
to enhance alignment accuracies. To improve dis-
crimination ability of feature fusion methods, inter-
modal contrastive learning, e.g., MSNEA (Chen
et al., 2022) and MCLEA (Lin et al., 2022), dis-
tinguishes positive and negative samples across
modalities to reduce cross-modal gaps and en-
hance the interaction between visual, relational,
and attribute features, but could face challenges
with incomplete or ambiguous modality informa-
tion. Thus, adaptive modality integration is pro-
posed, i.e., MeaFormer (Chen et al., 2023a) em-
ploys a dynamic meta-modality hybrid strategy
with transformer-based architectures to adaptively
fuse features and enhance robustness against noisy
and missing data, and UMAEA (Chen et al., 2023b)
introduces an uncertainty-aware alignment mech-
anism that manages modality inconsistencies and
visual ambiguities to maintain alignment accuracy.
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Figure 2: Overview of the CateEA framework consisting of Multi-Modal Encoder that extracts and fuses multi-
modal features, Contrastive Representation Learning that improves multi-modal representation via contrastive
learning, and Category Information Enhancement that enhances entity alignment via implicit category supervision.

ACK-MMEA (Li et al., 2023) addresses modality
inconsistencies in multi-modal entity alignment by
creating attribute-consistent representations.

Despite the significant progress, existing meth-
ods still focus on judging entity similarity primarily
through explicit features, which could fail to dis-
tinguish appearance-similar but semantic-different
entities. Facing this, CateEA enhances alignment
accuracy by leveraging intrinsic semantic category.

3 Method

CateEA mainly consists of three key modules:
Multi-Modal Encoder (MME), Contrastive Rep-
resentation Learning (CRL), and Category Infor-
mation Enhancement (CIE) which include Cate-
gory Embedding Enhancement (CEE) and Cate-
gory Alignment Enhancement (CAE).

The MME effectively integrates various modal-
ities into a joint embedding, CRL refines the em-
beddings by distinguishing positive and negative
pairs, and CIE further optimizes the embeddings
by incorporating implicit category supervision.

The overall framework of CateEA is shown in
Figure 2.

3.1 Problem Definition
A knowledge graph G = (E,R, T ) is a directed
graph that includes an entity set E, a relation set
R, and a set of triples T ⊆ E × R × E. Given a
source knowledge graph G1 = (E1, R1, T1) and a
target knowledge graph G2 = (E2, R2, T2), along
with a potential entity pair seed set S = {(u, v) |
u ∈ G1, v ∈ G2, u = v}, where u and v represent
equivalent entities referring to the same real-world
object or concept, the goal of entity alignment is to

discover equivalent entity pairs between the source
and target KGs, which can be seen as an extension
of the seed set S.

Based on the expansion of relationships be-
tween the source and target knowledge graphs,
multi-modal knowledge is integrated with tex-
tual knowledge. Similar to traditional knowledge
graphs, a multi-modal knowledge graph can be
formally defined as MKG = (E,R,A, V, T ),
where A represents the set of entity attributes,
and V represents the set of entity images. The
task of entity alignment in multi-modal knowledge
graphs can be further seen as an extension of tra-
ditional entity alignment (Zhu et al., 2022), specif-
ically identifying equivalent entity pairs between
MKG1 = (E1, R1, A1, V1, T1) and MKG2 =
(E2, R2, A2, V2, T2).

3.2 Multi-Modal Encoder

For different modalities of information (text, struc-
ture, image, etc.) in KG, the MME adopts differ-
ent encoders to extract embedding features, after
which an attention mechanism is employed to as-
sign weights and integrate these embeddings, yield-
ing the joint embedding of the entity.

3.2.1 Structure Embedding
Graph attention network (GAT) (Veličković et al.,
2017) is a typical neural network that is good at
extracting features from structured data. Therefore,
we use GAT to model the structural information of
the knowledge graph, as shown in the "Structure
Encoder" in Figure 2. Specifically, the hidden state
hi ∈ Rd of an entity ei (where d is the size of
the hidden layer) is formalized by aggregating the
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one-hop neighbors Ni (including self-loops) of the
entity ei as:

hi = σ

( ∑
j∈Ni

αijhj

)
, (1)

where σ(·) denotes the ReLU nonlinearity, and αij

is the importance of ei to ej , computed by self-
attention. Multi-head attention is performed and by
concatenating these features, we obtain the struc-
tural embedding of entity ei:

hgi =

K⊕
k=1

σ

( ∑
j∈Ni

αk
ijhj

)
, (2)

where αk
ij is the normalized attention coefficient

obtained from the k-th attention mechanism. In
practice, we apply a two-layer GAT model to ag-
gregate information, and the output of the last GAT
layer is taken as structural embedding.

3.2.2 Relation and Attribute Embedding
We follow (Yang et al., 2019) and represent the
relation r, attribute a, and name n of entity ei as
bag-of-words features and input them into a linear
transformation to obtain the embedding as follows,

hli = Wlu
l
i + bl, l ∈ {r, a, n}. (3)

Specifically, the name feature is obtained by av-
eraging the pre-trained GloVe (Pennington et al.,
2014) vectors of name strings.

3.2.3 Visual Embedding
To be consistent with previous work, we adopt a
pre-trained visual model, ResNet-152 (He et al.,
2016), to learn visual embedding. We input the
images of entities ei into the pre-trained visual
model (PVM) and use the logits from the last fully
connected layer before the softmax as the visual
features. These features are passed through a linear
transformation to obtain the visual embedding:

hvi = Wv · PVM(vi) + bv. (4)

3.2.4 Joint Embedding
The embeddings from different modalities are con-
catenated with attention weights to obtain the joint
embedding of the entity:

ĥi =
⊕
m∈M

[
exp(wm)∑
j∈M exp(wj)

hmi

]
, (5)

where M = {g, r, a, n, v}, and wm is the trainable
attention weight for modality m.

3.3 Contrastive Representation Learning

After obtaining the joint embedding of the entity
and the embedding of each modality, we design
CRL to encourage the embeddings of the same
entity to be closer while pushing the embeddings
of different entities further apart.

The contrastive learning is conducted in two di-
mensions (Lin et al., 2022): using Intra-Modal
Contrastive Loss (ICL) and Inter-Modal Alignment
Loss (IAL) to construct the interaction between
intra-modality and inter-modality embeddings. The
CRL helps to refine both joint and individual modal-
ity embeddings, ensuring that embeddings of simi-
lar entities maintain minimal distance.

For each entity pair (e1i , e
2
i ) in seed set S, its

negative entity set is defined as N neg
i = {e1j |

∀e1j ∈ E1, j ̸= i} ∪ {e2j | ∀e2j ∈ E2, j ̸= i}. The
alignment probability is defined as:

qm(e1i , e
2
i ) =

δm(e1i , e
2
i )

δm(e1i , e
2
i ) +

∑
ej∈Nneg

i

(
δm(ej , e1i ) + δm(e2i , ej)

) ,
(6)

where δm(u, v) = exp
(
fm(u)T fm(v)

τ1

)
, fm(·) is

the encoder of the modality m, and τ1 is a temper-
ature parameter.

IAL aligns the joint and individual modality em-
beddings using the Kullback–Leibler divergence,
with the goal of making the output distributions
of different modalities as consistent as possible,
thereby facilitating cross-modal interactions:

LIAL
m = Ei∈B

1

2
[KL(q′o(e

i
1, e

i
2) ∥ q′m(ei1, e

i
2))

+KL(q′o(e
i
2, e

i
1) ∥ q′m(ei2, e

i
1))],

(7)

where q′o(e
i
1, e

i
2), q′o(e

i
2, e

i
1), q′m(ei1, e

i
2), and

q′m(ei2, e
i
1) denote the output predictions for both

directions of the joint embedding and the uni-modal
embedding of modality m, respectively, similar to
Eq. 6 but with another temperature parameter τ2.

ICL selects aligned entities as positive samples
and other entities as negative samples, facilitat-
ing the proximity of semantically similar entities
within the same knowledge graph, thereby forming
a more compact and distinct representation suitable
for cross-modal matching. ICL can be formulated
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as:

LICL
m = −Ei∈B log

[
1

2

(
qm(e1i , e

2
i ) + qm(e2i , e

1
i )
)]

.

(8)

3.4 Category Information Enhancement
3.4.1 Category Embedding Enhancement
Similar to the idea of DeepCluster (Caron et al.,
2018), the CEE component utilizes K-Medoids
(Rdusseeun and Kaufman, 1987) to cluster the joint
embeddings generated by multi-modal encoders,
which selects actual data points as cluster centers
and enhances robustness to noises and outliers, as
it captures complex, nonspherical category struc-
tures often found in multi-modal data, providing
more representative category labels. These labels
are crucial for the auxiliary classification task, im-
proving the model’s ability to reflect true semantic
differences and enhancing alignment accuracy.

Once the clustering results are obtained, they
are used as pseudo-labels for the entity’s category.
The joint embedding of the entity is then fed into a
classifier which predicts the category to which the
entity belongs. The classification loss is added to
the alignment loss and propagated back to the multi-
modal encoder module during training, thus allow-
ing the model to perform the tasks simultaneously.
Specifically, the classification task is optimized us-
ing a two-layer feedforward neural network, aiming
at minimizing the cross-entropy loss:

Lcls = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c), (9)

where C is the number of categories, N represents
the total number of samples in the batch, yi,c is the
true label of sample i in category c. If the sample
i belongs to category c, then yi,c = 1, otherwise
yi,c = 0.

Unlike traditional methods that depend on la-
beled supervision, CateEA does not simply rely
on annotated entity information. Instead, it uses
the clustering results as pseudo-labels for learning,
thereby alleviating the reliance on manual annota-
tion and improving the model’s robustness.

3.4.2 Category Alignment Enhancement
Mainstream MMEA methods compute similarities
between joint embeddings of entities, producing a
N ×N similarity matrix that treats all entities uni-
formly, ignoring their semantic and category differ-
ences. They often result in suboptimal alignment,

especially with complex or ambiguous multi-modal
data. To address these limitations, the CAE compo-
nent adjusts similarity scores using category labels
generated during training, allowing the model to
better capture semantic distances and dynamically
refine entity relationships, thus enhancing align-
ment accuracy and robustness.

For each category Ci, compute its embedding
centroid µi, which is defined as the mean of the
embeddings of all entities within that category:

µi =
1

|Ci|
∑
x∈Ci

ĥx, (10)

where ĥx represents the joint embedding of entity
x and |Ci| is the number of entities in category Ci.

To determine the semantic proximity between
different categories, we begin by calculating the
Euclidean distance between the centroids of the
categories. Let dij denote the distance between the
centroids of categories Ci and Cj :

dij = ∥µi − µj∥, (11)

where µi and µj represent the centroids of cate-
gories Ci and Cj , respectively.

Given these distances, we transform them into
similarity measures, with smaller distances indicat-
ing higher similarity. An inverse distance function
is then applied:

sij =
1

1 + dij
, (12)

which ensures that closer centroids result in higher
similarity scores, aligning with the intuition that
semantically similar categories are more likely to
align with each other.

To further refine similarity scores into weights
that reflect category proximity, we adopt a normal-
ization approach. The final category weight wij ,
which indicates the relative closeness of category
Cj to category Ci, is computed as:

wij =
exp(sij)∑
k exp(sik)

. (13)

This normalization step ensures that the weights
sum up to one, providing a probabilistic interpreta-
tion of the relative influence of each category.

During alignment, these weights are used to ad-
just the similarity between entities of different cate-
gories. Specifically, for a pair of entities xi and yj ,



5980

Table 1: Non-Iterative results on three bilingual datasets.

Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

w/o SF

EVA .680 .910 .762 .673 .908 .757 .683 .923 .767
MSNEA .601 .830 .684 .535 .775 .617 .543 .801 .630
MCLEA .715 .923 .788 .715 .909 .785 .711 .909 .782
MEAformer .771 .951 .835 .764 .959 .837 .770 .961 .841
CateEA (Ours) .776 .955 .839 .772 .963 .840 .786 .972 .855

w/ SF

EVA .929 .986 .951 .946 .997 .976 .962 .996 .978
MSNEA .887 .961 .913 .938 .983 .955 .933 .983 .953
MCLEA .926 .983 .946 .961 .994 .973 .987 .999 .992
MEAformer .948 .993 .965 .977 .999 .986 .991 1.00 .995
CateEA (Ours) .945 .993 .964 .972 .998 .987 .991 1.00 .995

Table 2: Iterative results on three bilingual datasets.

Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

w/o SF

EVA .746 .910 .807 .741 .918 .805 .767 .939 .831
MSNEA .643 .865 .719 .572 .853 .660 .584 .841 .671
MCLEA .811 .954 .865 .806 .953 .861 .811 .954 .865
MEAformer .847 .970 .892 .842 .974 .892 .845 .976 .894
CateEA (Ours) .839 .971 .887 .851 .978 .899 .862 .985 .908

w/ SF

EVA .956 .993 .969 .979 .995 .987 .995 .999 .997
MSNEA .896 .969 .922 .942 .971 .958 .971 .998 .982
MCLEA .964 .996 .977 .995 1.00 .992 .995 1.00 .997
MEAformer .973 .998 .983 .991 1.00 .995 .996 1.00 .998
CateEA (Ours) .974 .998 .984 .992 .999 .993 .997 1.00 .998

where xi belongs to category Ci and yj belongs to
category Cj , their final similarity is defined as:

Similarity(xi, yj) = wij · BaseSimilarity(xi, yj),
(14)

where BaseSimilarity(xi, yj) is the original simi-
larity of embeddings, such as cosine similarity. The
pseudo-algorithm is shown in Appendix A.3.

4 Experiments

4.1 Experiment Settings
We present below the datasets, model configura-
tions, baseline methods, iterative training strategy,
and evaluation metrics used in our experiments.

4.1.1 Datasets
Our experiments are conducted on five popular
MMEA datasets, including two monolingual cross-
graph multi-modal entity datasets, i.e., FB15K-
DB15K/YAGO15K (Liu et al., 2019), and three
bilingual datasets, i.e., ZH-EN/JA-EN/FR-EN ver-
sions of DBP15K (Liu et al., 2021). These datasets

combine KGs from different sources and leverage
multi-modal information to assist the entity align-
ment task. Dataset details are shown in Appendix
A.1.

It is worth noting that not all entities have cor-
responding images. For entities without images,
random vectors are assigned as visual features. Fol-
lowing previous work, we use 20%, 50%, and 80%
aligned entity pairs as the seed set for FB15K-
DB15K/YAGO15K, and 30% for DBP15K.

4.1.2 Baselines
We compare CateEA with five multi-modal entity
alignment methods: MMEA(Chen et al., 2020),
MSNEA(Chen et al., 2022), EVA(Liu et al., 2021),
MCLEA(Lin et al., 2022), Meaformer(Chen et al.,
2023a). Previous studies have demonstrated that
surface forms (SF, entity names) significantly im-
pact the performance of entity alignment. To en-
sure consistency with previous methods, on bilin-
gual datasets, we use both with and without sur-
face forms, while on monolingual datasets, surface
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forms are excluded.

4.1.3 Model Configuration
The hidden layer size of each GAT layer is 300,
while the embedding size of other modules is 400.
We use the AdamW optimizer with a learning rate
of 5 × 10−4 to update the parameters. The total
number of training epochs is 1000, with early stop-
ping applied, and the batch size is 512. Number
of categories is set to 10. The hyperparameters
τ1 and τ2 are set to 0.1 and 0.4, respectively. For
visual embeddings, we use the preprocessed im-
age features provided by (Liu et al., 2021), with
ResNet-152 as the pre-trained backbone network.

4.1.4 Iterative Training
To mitigate the shortage of training data, we em-
ploy a bidirectional iterative strategy (Liu et al.,
2021). Specifically, every Ke epochs (Ke = 5),
cross-KG entity pairs that are mutual nearest neigh-
bors in the vector space are identified and added to
a candidate list N cd. An entity pair from N cd is
incorporated into the training set if it remains mu-
tual nearest neighbors for Ks consecutive rounds
(Ks = 10). This approach progressively enhances
the training set by introducing new aligned pairs
during each iteration.

4.1.5 Evaluation Metrics
The experimental results are evaluated using two
metrics: MRR (Mean Reciprocal Rank) and
Hits@N. Both metrics assess the ranking perfor-
mance of the model. A higher value for these met-
rics indicates better performance. Details of these
metrics are shown in the Appendix A.2.

4.2 Main Results
The results on bilingual datasets are displayed in
Table 1 (non-iterative) and Table 2 (iterative), while
the results on monolingual datasets are presented
in Table 3 (non-iterative) and Table 4 (iterative).

CateEA is compared with various entity align-
ment methods, using different proportions of seed
sets. Particularly, CateEA outperforms the base-
lines with notable improvements across various
settings. Specifically, on FB15K-DB15K, we
achieve an H@1 increase ranging from 3.4% to
7.6%, and on FB15K-YAGO15K, H@1 improves
by up to 7.5% over the baselines. Moreover, con-
sistent gains are observed in H@10 and MRR,
with improvements ranging from 1.0% to 8.0%
across different settings. CateEA shows signifi-
cant performance improvements especially in the

20% seed set scenario, where the gains are most
pronounced. By leveraging implicit category infor-
mation, CateEA excels in situations with limited
labeled data, demonstrating its effectiveness in en-
hancing alignment accuracy, particularly in low
resource environments where traditional methods
struggle.

In summary, CateEA demonstrates excellent per-
formance across different settings, showing strong
robustness and generalization ability, especially in
low seed set scenarios. The experimental results
fully validate the effectiveness and superiority of
CateEA, demonstrating the value of incorporating
the implicit entity category strategy.

Table 3: Non-iterative results on two monolingual
datasets, where Seed% is the seed set proportion.

Seed Models FB15K-DB15K FB15K-YAGO15K
% H@1 H@10 MRR H@1 H@10 MRR

20%

MMEA .265 .541 .357 .234 .480 .317
EVA .199 .448 .283 .153 .361 .224
MSNEA .114 .296 .175 .103 .249 .153
MCLEA .295 .582 .393 .254 .484 .332
MEAformer .417 .715 .518 .327 .595 .417
CateEA .493 .759 .584 .402 .675 .497
improv. +7.6% +4.4% +6.6% +7.5% +8.0% +8.0%

50%

MMEA .417 .703 .512 .403 .645 .486
EVA .334 .589 .422 .311 .534 .388
MSNEA .288 .590 .388 .320 .589 .413
MCLEA .555 .784 .637 .501 .705 .574
MEAformer .619 .843 .698 .560 .778 .639
CateEA .674 .874 .745 .608 .829 .686
improv. +5.5% +3.1% +4.7% +4.8% +5.1% +4.7%

80%

MMEA .590 .869 .685 .598 .839 .682
EVA .484 .696 .563 .491 .692 .565
MSNEA .518 .779 .613 .531 .778 .620
MCLEA .735 .890 .790 .667 .824 .722
MEAformer .765 .916 .820 .703 .873 .766
CateEA .799 .933 .849 .742 .912 .805
improv. +3.4% +1.7% +2.9% +3.9% +3.9% +3.9%

Table 4: Iterative results on two monolingual datasets.

Seed Models FB15K-DB15K FB15K-YAGO15K
% H@1 H@10 MRR H@1 H@10 MRR

20%

EVA .231 .488 .318 .188 .403 .260
MSNEA .149 .392 .232 .138 .346 .210
MCLEA .395 .656 .487 .322 .546 .400
MEAformer .578 .812 .661 .444 .692 .529
CateEA .599 .822 .675 .518 .745 .594
improv. +2.1% +1.0% +1.4% +7.4% +5.3% +6.5%

50%

EVA .364 .606 .449 .325 .560 .404
MSNEA .358 .656 .459 .376 .646 .472
MCLEA .620 .832 .696 .563 .751 .631
MEAformer .690 .871 .755 .612 .808 .682
CateEA .705 .882 .764 .640 .844 .708
improv. +1.5% +1.1% +0.9% +2.8% +3.6% +2.6%

80%

EVA .491 .711 .573 .493 .695 .572
MSNEA .565 .810 .651 .593 .806 .668
MCLEA .741 .900 .802 .681 .837 .737
MEAformer .784 .921 .834 .724 .880 .783
CateEA .806 .934 .853 .746 .915 .807
improv. +2.2% +1.3% +1.9% +2.2% +3.5% +2.4%
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(b) Modality analysis on DBP15K.

Figure 3: Performance analysis on the components and modalities of CateEA in DBP15K.

1 5 10 20 30
Seed Set Proportion (%)

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

 M
et

ric
s

MRR
Hits@1

(a) Impact of the seed set proportion.

0.75

0.80

0.85

3 5 10 15 20
Number of Categories

0.45

0.50

0.55

Pe
rf

or
m

an
ce

 M
et

ric
s

DBP15K FR-EN FBDB15K Hits@1 MRR

(b) Impact of the number of categories.

Figure 4: Impact of the seed set proportion and the number of categories.

4.3 Ablation Study

4.3.1 Effectiveness of Each Component

To validate the effectiveness of each component
of our model, we conduct an ablation study com-
paring the complete model (CateEA) with versions
missing different modules across three subsets of
the DBP15K dataset (ZH-EN, JA-EN, FR-EN). As
shown in Figure 3a, the complete model consis-
tently achieves the highest H@1 scores across all
subsets, and removing any module results in perfor-
mance degradation, underscoring the contribution
of each module to the overall performance.

4.3.2 Influence of Each Modality

To investigate the impact of different modal infor-
mation on model performance, we conduct ablation
experiments on the DBP15K dataset. As depicted
in Figure 3b, removing any feature causes a perfor-
mance drop, with the removal of image information
having the greatest impact, emphasizing its crucial
role in multi-modal entity alignment. The removal
of relationship and attribute information individu-
ally results in minor performance degradation, but
their simultaneous removal significantly reduces
model performance, highlighting their complemen-
tary and essential roles in the alignment process.
Overall, the complete model performs best across
all sub-datasets, validating the necessity of multi-
feature fusion for enhancing multi-modal entity
alignment effectiveness.

4.4 Parameter Analysis

4.4.1 Seed Set Proportion
To assess the robustness of CateEA under low-
resource conditions, we analyze the impact of
seed set proportions on alignment performance on
DBP15K(ZH-EN). This evaluation aims to deter-
mine how well the model can maintain alignment
accuracy when faced with limited labeled data, a
common challenge in real-world applications. By
varying the seed set proportion, we observe the
model’s ability to adapt and perform reliably with
minimal supervision..

Figure 4a illustrates that CateEA maintains
strong performance with minimal labeled seeds,
achieving reasonable alignment accuracy even with
seed proportions as low as 1%, as indicated by
MRR and Hits@1. This highlights the robustness
and ability of CateEA to effectively leverage lim-
ited seed data, demonstrating its adaptability and
effectiveness in handling multi-modal information
and semantic structures, making it suitable for real-
world applications with sparse labeled data.

4.4.2 Number of Categories
To investigate the effect of the number of categories
on model performance, we conduct experiments on
DBP15K(FR-EN) with various category settings
(C = 3, 5, 10, 15, 20). As shown in Figure 4b,
MRR and Hits@1 slightly decrease as the number
of categories increases. While a finer granular-
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ity of categories allows for a more detailed rep-
resentation of entity category information, it also
introduces noise, reduces the distances between
categories, increases model complexity, and can
cause category imbalance. These combined factors
contribute to making the alignment process less
robust, weakening the classifier’s generalization
ability, and slightly degrading the alignment perfor-
mance. Therefore, selecting an appropriate number
of categories is crucial to balancing the utilization
of fine-grained information and maintaining opti-
mal alignment performance.

5 Conclusion

We propose CateEA, a knowledge graph entity
alignment method leveraging implicit entity cate-
gory information from multi-modal data. By intro-
ducing a classification task as an additional training
objective and using category-driven clustering re-
sults, CateEA captures richer category-level seman-
tics. Experimental results show that CateEA outper-
forms state-of-the-art methods with notable gains:
on FB15K-DB15K, H@1 increases by 3.4%–7.6%,
and on FB15K-YAGO15K, H@1 improves by up
to 7.5%. These results highlight the effectiveness
of CateEA for multi-modal knowledge graph entity
alignment.

6 Limitations

Despite its promising results, CateEA still faces
several limitations. The clustering process, which
is crucial for extracting category information, can
heavily influence alignment quality if not suffi-
ciently optimized. Additionally, the current ap-
proach is restricted to static knowledge graphs,
leaving temporal and event-centric applications un-
explored. Another practical concern is increased
computational overhead due to the additional clas-
sification step, leading to longer running times
compared to baseline methods. This issue can be
further exacerbated by larger graph sizes, where
the increasing number of nodes raises training
time, potentially compromising CateEA’s scalabil-
ity. Future work will focus on refining clustering
method, incorporating temporal aspects, and im-
proving overall efficiency.

7 Ethics Statement

To the best of our knowledge, this work does not
involve any discrimination, social bias, or private

data. All the datasets are constructed from open-
source knowledge graphs such as Wikidata, YAGO,
and DBpedia. Therefore, we believe that our study
complies with the Ethics Policy.
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A Appendix

A.1 Datasets

The detailed statistics of the dataset are presented
in Table 5, which includes the number of entities
(#Ent.), relations (#Rel.), attributes (#Attr.), rela-
tion triples (#Rel tr.), attribute triples (#Attr tr.),
images (#Image), and seed entities (#Seed.). It is
important to note that not all entities have corre-
sponding images or matching counterparts in the
target knowledge graph.

A.2 Metric Detail

Definition of Hits@N metric:

Hits@N =
1

|Q|

|Q|∑
i=1

I(ranki ≤ N)

where |Q| is the total number of test samples. ranki
is the rank of the correct answer for the i-th query
in the list returned by the model. For each query, if
the correct answer’s rank is within the top N , it is
considered a hit; otherwise, it is not. Finally, the
average of all query hits is taken to get the Hits@N.

Definition of MRR metric:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

For each query, the inverse rank of the correct an-
swer is calculated, and the average of all the inverse
ranks is then taken.

A.3 Category Information Enhancement
Algorithm

Algorithm 1 Enhanced Multi-Modal Entity Align-
ment.
Input: Joint embeddings {ĥ1, ĥ2, . . . , ĥN}, and

the number of categories C
Output: Adjusted similarity scores
for i = 1 to N do

Cluster ĥi using K-Medoids to obtain labels
{C1, C2, . . . , CC}

end
for i = 1 to N do

Lcls = − 1
N

∑N
i=1

∑C
c=1 yi,c log(pi,c) ,

L = Lalign + λLcls

end
for i = 1 to C do

µi =
1

|Ci|
∑

x∈Ci
ĥx

end
for i, j = 1 to C do

dij = ∥µi − µj∥ ,
sij =

1
1+dij

,

wij =
exp(sij)∑
k exp(sik)

end
for each pair (xi, yj) do

Sim(xi, yj) = wij · BaseSim(xi, yj)
end

A.4 Performance over Epochs

To thoroughly evaluate the learning effectiveness,
convergence and robustness of CateEA, we ex-
amine the performance changes of CateEA over
training epochs on the FBDB15K dataset. From
Figure 5, it is observed that Hits@1, Hits@10,
and Hits@50 gradually increase and stabilize as
the training progresses, indicating that the over-
all alignment capability of CateEA is consistently

Table 5: Dataset Statistics.

Dataset KG #Ent. #Rel. #Attr. #Rel tr. #Attr tr. #Image #Seed.

DBP15KZH-EN ZH 19,388 1,701 8,111 70,414 248,035 15,912 15,000
EN 19,572 1,323 7,173 95,142 343,218 14,125 15,000

DBP15KJA-EN JA 19,814 1,299 5,882 77,214 248,991 12,739 15,000
EN 19,780 1,153 6,066 93,484 320,616 13,741 15,000

DBP15KFR-EN FR 19,661 903 4,547 105,998 273,825 14,174 15,000
EN 19,993 1,208 6,422 115,722 351,094 13,858 15,000

FB15K-DB15K FB15K 14,951 1,345 116 592,213 29,395 13,444 12,846
DB15K 12,842 279 225 89,197 48,080 12,837 12,846

FB15K-YAGO15K FB15K 14,951 1,345 116 592,213 29,395 13,444 11,199
YAGO15K 15,404 32 7 122,886 23,532 11,194 11,199
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improving. The Mean Rank (MR) shows some
fluctuations, especially an upward trend in the later
training stages, possibly due to poor ranking per-
formance on certain samples. The MRR continues
to rise and stabilize, demonstrating the enhanced
ability of CateEA to find the target entity among
the top few candidates.

The concurrent increase in MR and MRR indi-
cates that, despite occasional errors in some edge
cases, overall performance continues to improve,
demonstrating the robustness of CateEA.
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Figure 5: Performance evaluation over epochs.

A.5 Case Study

To assess the impact of Implicit Category Super-
vision (ICS) during the testing phase, we take a
case study (as shown in Figure 6) on the DBP15K
JA-EN dataset, listing the predicted target entities
of CateEA with and without ICS in Table 6. The
introduction of the ICS substantially improves the

alignment accuracy of source entities. For instance,
in cases like ‘Slovenian PrvaLiga’ and ‘Premier
League of Bosnia and Herzegovina’, although both
entities belong to the football league category, they
are from different countries (Slovenia and Bosnia-
Herzegovina). The ICS provides more refined dis-
crimination, allowing CateEA to capture subtle dif-
ferences between leagues from different nations
and match them correctly. On the other hand,
in scenarios with entities like ‘Hachisuka Nari-
hiro’ (a historical figure) and ‘Masahiro Chono’
(a wrestler), which are from different categories,
the ICS enhances the category information, reduc-
ing cross-category mismatches and improving the
identification and alignment of entities from diverse
categories.

Figure 6: A case of source and target sub-KGs from the
DBP15K JA-EN dataset.

Table 6: Example of predicted entities with and without category information supervision (ICS).

Source Entity ID Target Entity Prediction w. ICS Prediction w/o ICS

176 Slovenian PrvaLiga Slovenian PrvaLiga Premier League of Bosnia and Herzegovina
893 Hachisuka Narihiro Hachisuka Narihiro Masahiro Chono
22753 Sone Arasuke Sone Arasuke Inukai Tsuyoshi
8089 Circuit de Monaco Circuit de Monaco Autodromo Enzo e Dino Ferrari
25225 & (Ayumi Hamasaki EP) & (Ayumi Hamasaki EP) A Complete: All Singles
8853 Hàm Nghi Hàm Nghi T Ðc
529 2010 Winter Olympics 2010 Winter Olympics 2008 Summer Olympics
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