
Proceedings of the 31st International Conference on Computational Linguistics, pages 5987–5996
January 19–24, 2025. ©2025 Association for Computational Linguistics

5987

Egalitarian Language Representation in Language Models:
It All Begins with Tokenizers

Menan Velayuthan and Kengatharaiyer Sarveswaran
Department of Computer Science, University of Jaffna, Sri Lanka.

vmenan95@gmail.com, sarves@univ.jfn.ac.lk

Abstract

Tokenizers act as a bridge between human
language and the latent space of language
models, influencing how language is repre-
sented in these models. Despite the domi-
nance of English-Centric (EC) Large Language
Models (LLMs), tokenization methods often
fail to fairly represent complex scripts like
Tamil, Sinhala, and Hindi, primarily due to
pre-tokenization choices. This study demon-
strates that pre-tokenization has a more sig-
nificant impact than tokenization algorithms
on achieving egalitarian representation. To
address this, we introduce an improvement
to the Byte Pair Encoding (BPE) algorithm
by incorporating graphemes, which we term
Grapheme Pair Encoding (GPE). Our experi-
ments show that grapheme-based character ex-
traction outperforms byte-level tokenizers for
complex scripts. We validate this approach
through experiments on Tamil, Sinhala, and
Hindi. The codebase and resources used in this
work are publicly available at GitHub Reposi-
tory.

1 Introduction

Large Language Models (LLMs) have gained sig-
nificant attention from the research community and
the general public, especially following the public
release of OpenAI’s ChatGPT in 2022 (OpenAI,
2022). LLMs have been heralded for their eco-
nomic impact (Teubner et al., 2023; Eloundou et al.,
2023) and have applications in areas such as cod-
ing assistants (Rozière et al., 2024; Li et al., 2023),
chat systems (Meyer et al., 2023; Dortheimer et al.,
2024), and machine translation (Brants et al., 2007;
Dabre et al., 2020).

Mainstream LLMs are pre-trained on English-
dominant corpora(Zhao et al., 2024), which makes
them English-centric (EC) models. Among these,
Llama 3 (Dubey et al., 2024), Mistral (Jiang et al.,
2023), and Phi-3 (Abdin et al., 2024) are popular in
the research community due to their open weights

and strong performance on tasks like the Mas-
sive Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021). This popularity has led to
the use of EC LLMs as base models for developing
non-English language models, such as Tamil Llama
(Balachandran, 2023) and Llama 3 8B CPT SEA-
LIONv2 (Lowphansirikul et al., 2021; Singapore,
2024). However, their widespread adoption often
overshadows limitations in representing complex-
script languages.

Petrov et al. (2024) demonstrates that the un-
equal treatment of languages begins at the tokenizer
level. They argue that commercial LLM services
charge based on token count, implying that lan-
guages requiring more tokens may disadvantage
users interacting in those languages. They also dis-
cuss how tokenization differences impact latency
and context window requirements, as a higher to-
ken count necessitates more computational time
and larger context windows.

Our observations reveal that pre-tokenization is a
key factor contributing to the unfair representation
of languages with complex scripts such as Tamil,
Sinhala, and Hindi. We argue that pre-tokenization
limits the number of tokens a tokenizer can learn.
By analyzing pre-tokenization, we can simulate the
effect of a tokenizer trained with sufficient data on
these languages. This helps assess whether using
such a tokenizer for adapting to new complex script
languages is equitable. Additionally, we show that
pre-tokenization plays a more significant role than
the choice of the tokenization algorithm itself (refer
to Figure 1).

Byte Pair Encoding (BPE) (Sennrich et al., 2016)
is a popular choice for tokenizers in EC LLMs.
However, applying BPE directly to languages with
complex scripts may not be optimal. To address
this, we modified the BPE algorithm by using
graphemes (refer to Section 3.2) as the atomic units,
which we call Grapheme Pair Encoding (GPE).
This adaptation enables BPE to recognize char-

https://github.com/vmenan/tokenizers-coling2025
https://github.com/vmenan/tokenizers-coling2025
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acters in complex scripts similar to how humans
would realize them, resulting in improved perfor-
mance compared to standard BPE.

Efforts have been made to develop tokenizer-
free language models (Deiseroth et al., 2024; Yu
et al., 2023), which operate at the byte-level. How-
ever, this approach may not be ideal for lan-
guages with complex scripts such as Tamil, Sin-
hala, and Hindi. Processing these languages us-
ing graphemes proves to be more beneficial. We
compare byte-level tokenizers, such as ByT5 (Xue
et al., 2022) and CANINE (Clark et al., 2022), with
grapheme-based character extractors and demon-
strate that the latter performs better on our evalua-
tion metrics.

2 Related Works

Evaluating Tokenizers. Goldman et al. (2024)
examine the correlation between tokenizers’ text
compression and language models’ performance on
downstream tasks, showing a significant relation-
ship. They conclude that compression is a reliable
intrinsic indicator of tokenization quality. Rust
et al. (2021) propose two metrics: 1) Normalized
Sequence Length (NSL), which compares a tok-
enizer’s compression against a baseline like Llama,
and 2) Bytes per Token, calculated by dividing
UTF-8 bytes by the tokens produced. While NSL
is relative, we use a variant of Bytes per Token
as an absolute measure. Petrov et al. (2024) intro-
duce Tokenization Parity (TP ), a metric assessing
the tokenization of one language relative to an-
other. We use TP to evaluate how complex scripts
are underrepresented compared to English. Rust
et al. (2021) also propose “subword fertility" and
“proportion of continued words" as additional mea-
sures. Given their correlation with the previously
discussed metrics, we choose “Compression Ratio"
and “Tokenization Parity" for our evaluation.

Tokenization Algorithms. Sennrich et al. (2016)
introduce Byte Pair Encoding (BPE) as a subword
segmentation strategy to manage open-vocabulary
challenges in neural machine translation. This
method, which improves translation accuracy by
breaking down rare and unknown words into se-
quences of subword units, is derived from a data
compression algorithm. It segments words into the
most frequent pairs of bytes, facilitating a compact
representation of open vocabularies using a fixed-
size vocabulary of subword units. BPE-based tok-
enizers are a popular choice for EC Large Language

Models (LLMs). However, they may perform sub-
optimally with complex scripted languages that
require combinations of more than two Unicode
codepoints to create characters, especially when
trained with limited data and a fixed vocabulary
size. Other commonly used subword tokenization
techniques include WordPiece (Wu et al., 2016)
and the Unigram algorithm (Kudo, 2018).

3 Background

This section introduces pre-tokenization and
graphemes to support understanding of our re-
search approach.

3.1 Pre-tokenization

Although tokenizers can be trained on large strings
of textual data using Byte Pair Encoding (BPE),
training them naively may lead to suboptimal per-
formance on certain downstream tasks as these
tokenizers may lead to tokens forming around
common phrases or sentence (Dagan et al., 2024).
To address this, it is beneficial to include a pre-
tokenization step, a pre-processing step before the
actual tokenization, that breaks the input text into
smaller, manageable chunks. We will refer to these
as pre-tokens throughout the paper. Since it’s incep-
tion, numerous pre-tokenization methods have been
proposed, such as splitting on punctuation marks or
spaces, using linguistic rule-based approaches, and
regular expression-based methods (Dagan et al.,
2024). HuggingFace (HF) supports various pre-
tokenization techniques, and further details can
be found on the pre-tokenization page1. Ta-
ble 1 illustrates the pre-tokenization outputs for the
translation of the text “hello!” in English, Tamil,
Sinhala, and Hindi. It is evident that models like
GPT-2 (Radford et al., 2019), GPT-4 (OpenAI et al.,
2023), and Llama 3 (Dubey et al., 2024) unneces-
sarily break the text for Tamil, Sinhala, and Hindi,
resulting in the need for a larger context window.

Pre-tokenizers based on regular expressions.
GPT-2 popularized the use of large regular expres-
sions to segment text into smaller chunks before
applying BPE. Since then, many LLMs, includ-
ing closed-source models like GPT-4 and open-
weight models like Llama 3, have adopted pre-
tokenization to segment text before training the
tokenizer. This is especially common with BPE-
based tokenizers.

1https://huggingface.co/docs/tokenizers/en/
api/pretokenizers

https://huggingface.co/docs/tokenizers/en/api/pretokenizers
https://huggingface.co/docs/tokenizers/en/api/pretokenizers
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Tokenizer en ta si hi
GPT-2 hello, ! வணக , ◌் , கம , ◌்! ආය , ◌ු , බ , ෙ◌ා් , වන , '්! नमस , '◌् , त , '◌े!
GPT-4 hello, ! வணக , ◌்கம , ◌்! ආය , ◌ුබ , ෙ◌ා්වන , '්! नमस , '◌्त , '◌े!
Llama 3 hello, ! வணக , ◌்கம , ◌்! ආය , ◌ුබ , ෙ◌ා්වන , '්! नमस , '◌्त , '◌े!
BERT hello, ! வணக்கம் , ! ආයුෙබා්වන් , ! नमस्ते , !
mBERT hello, ! வணக்கம் , ! ආයුෙබා්වන් , ! नमस्ते , !
T5 hello! வணக்கம்! ආයුෙබා්වන්! नमस्ते!
mT5 hello! வணக்கம்! ආයුෙබා්වන්! नमस्ते!
mBART hello! வணக்கம்! ආයුෙබා්වන්! नमस्ते!
NLLBm hello! வணக்கம்! ආයුෙබා්වන්! नमस्ते!

Table 1: This table displays the outputs of the pre-tokenizer from various language models for the same word in
English, Tamil, Sinhala, and Hindi.

Pre-tokenization as tokenization bounds. The
tokenization algorithm is applied to smaller pre-
tokens rather than the entire text during the to-
kenizer training phase. As a result, the pre-
tokenization step governs the maximum possible
token length that can be learned from these pre-
tokens. For example, consider the text “Hello
World” and assume we use pre-tokenization by
splitting on whitespaces. The pre-tokens will be
“Hello” and “World”. If we apply the BPE al-
gorithm to these pre-tokens, the longest possi-
ble token learned from the first pre-token will be
“Hello”. However, due to data limitations, smaller
tokens may be learned from within “Hello”, such
as “He”, “l”, and “lo” but the sequence cannot
exceed “Hello”. Thus, the pre-tokenizer effec-
tively bounds the maximum token length that can
be formed for a given pre-token. Consequently,
the Compression Ratio (CR), as calculated using
Equation 1, becomes the Maximum Compression
Ratio (CRmax).

3.2 Graphemes

Writing systems around the world vary in how
they represent language, and they can be clas-
sified into six main types, namely logosyl-
labary/morphosyllabary, syllabary, abjad, alphabet,
and abugida, based on the relationship between
symbols and the spoken components of language
(Daniels et al., 2003). Understanding the complex-
ities involved in how these characters are repre-
sented in Unicode encoding is essential to process-
ing these languages. For instance, in the abugida
writing system, most of the characters are encoded
using several Unicode points placed in a particu-
lar order, and when processing them, we need to
treat those Unicode points together as a single unit,
not separately. This sequence forms a character in

the respective language, hereafter referred to as a
grapheme. For instance, “ ”, a Grantha grapheme
encoded in Tamil Unicode, is represented using
four Unicode points corresponding to the follow-
ing glyphs: ‘ ’, ‘ ’, ‘ ’, and ‘ ’.2 Similarly,
the character ‘ ’ in the Sinhala language, which
is also based on the abugida writing system, is a
sequence of five Unicode points represented by the
glyphs ‘ ’, ‘ ’, ‘x200D’, ‘ ’, and ‘ ’, although
it is considered a single character or grapheme in
the language, where ‘x200D’ is called Zero-Width
Joiner. In these examples, glyphs like ‘ ’, ‘ ’, and
‘ ’ are called vowel modifiers, which cannot stand
alone and must always be processed along with
the consonant to which they are attached. These
are not diacritics but vowels, represented by vowel
modifiers3. These modifiers take different shapes
when joined with different consonants. The pulli
– ‘ ’ in Tamil – is not a standalone symbol but
part of a pure consonant. For instance, ‘ ’ is the
pure consonant ‘k’ in Tamil, and when a vowel
(or vowel modifier), such as ‘a’, is added, the pulli
will disappear. This understanding is important
for Natural Language Processing (NLP) develop-
ment, including tokenizers, because if an NLP tool
breaks apart a vowel modifier, the result will not
make much sense. Table 2 illustrates another exam-
ple where how graphemes are formed in Abugida
writing system based scripts.

4 Software and Other Specifications.

Software Specifications. All code for the ex-
periments was written in Python. We utilized to-
kenizers from the tokenizers4 library, which is
part of the HuggingFace (HF) Transformers frame-

2https://www.unicode.org/charts/PDF/U0B80.pdf
3https://www.unicode.org/charts/PDF/U0B80.pdf
4https://github.com/huggingface/tokenizers

https://www.unicode.org/charts/PDF/U0B80.pdf
https://www.unicode.org/charts/PDF/U0B80.pdf
https://github.com/huggingface/tokenizers
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ta si hi
Unicode codepoint ந ,ன , ◌் , ற, ◌ி ස , ් , ත , ූ, ත, ි, ය, ි ध , न , ◌् , य, व, ◌ा, द

Grapheme Clusters ந ,ன் , றி ස්, තූ , ති , යි ध , न् , य , वा

Table 2: The table demonstrates how characters are perceived when separated at the Unicode codepoint and the
grapheme cluster level. This comparison is performed on the phrase “Thank you” translated into Tamil, Sinhala,
and Hindi.

work (Wolf et al., 2020). For obtaining grapheme
clusters, we used the grapheme5 Python library.
We utilized the BPE implementation6 from Karpa-
thy (2024) to develop our code base for GPE.

Tokenizers Used. For our experiments, we use
pre-trained tokenizers from both EC and Multi-
Lingual (ML) models. EC models include GPT-
2 (Radford et al., 2019), GPT-4 (OpenAI et al.,
2023), Llama 3 (Dubey et al., 2024), FLAN-
T5 (Chung et al., 2022), and Gemma 2 (Team
et al., 2024). ML models include Aya (Üstün et al.,
2024), multi-lingual BERT (Devlin et al., 2019)
(referred to as mBERT), mT5 (Xue et al., 2021),
mBART (Liu et al., 2020), and NLLBm (Team
et al., 2022). Note that while mBERT, mT5, and
mBART have EC counterparts (BERT, T5, and
BART, respectively), these EC models are excluded
from our analysis as they yielded identical re-
sults to their multi-lingual versions. We also uti-
lize Byte-level tokenizers, specifically ByT5 (Xue
et al., 2022) and CANINE (Clark et al., 2022). All
models are available on Hugging Face (HF), ex-
cept for GPT-4. We obtained the pre-tokenization
regular expression for GPT-4 from (Dagan et al.,
2024). We specifically use tokenizers that in-
clude a pre-tokenizer, confirmed by checking
tokenizer.backend_tokenizer.pre_tokenizer is not
None in our implementation.

Languages for Evaluation. We primarily focus
on three South Asian languages which are based
on the Abugida writing system : Hindi (hi), Tamil
(ta), and Sinhala (si).

Training and Testing Data. For training, we
randomly sample 150k Tamil sentences from the
Samanantar Dataset (Ramesh et al., 2021). For
testing, we use the FLORES+ (Team et al., 2022)
development testsets for Tamil (ta), Hindi (hi), and
Sinhala (si). We fix the vocabulary size to 5k.

5https://github.com/alvinlindstam/grapheme
6https://github.com/karpathy/minbpe

5 Methodology

In this section, we have described two separate
methodologies for 1) analyzing pre-tokenization
and Byte-level tokenizers, and 2) our proposed
Grapheme Pair Encoding (GPE) tokenization.

5.1 Methodology for Analyzing
Pre-tokenization and Byte-Level
Tokenizers

For this analysis, we rely on the metrics Compres-
sion Ratio (CR) and Tokenization Parity (TP).
We define the Compression Ratio (CR) as:

CR =
Original Sequence Length

Tokenized Sequence Length
(1)

For TP , we adopt the definition by Petrov et al.
(2024). The parity of sentence A (sA) relative to
sentence B (sB) by tokenizer t is defined as:

TP =
|t(sA)|
|t(sB)|

(2)

where t(sA) represents the tokenization of sen-
tence sA, and |t(sA)| denotes it’s length. It could
be stated that tokenizer t achieves parity for A with
respect to B when the TP is close to 1 (Petrov
et al., 2024).

Since we consider the pre-tokenization outputs
for these calculations, as explained in Section 3.1,
the calculated CR represents the maximum CR
(CRmax), as pre-tokenization determines the max-
imum number of tokens present.

Analyzing Pre-tokenization. We evaluate
English-Centric and Multi-Lingual language
models based on their pre-tokenization outputs
rather than the final output of the tokenizers.
Tokenizer training practices, including the choice
of datasets and hyperparameters, vary across
development teams. Consequently, comparisons
of tokenizers based solely on their final outputs
can be misleading. Instead, we focus on the
pre-tokenization step, as detailed in Section 3.1.
The longest sequence a tokenizer can learn

https://github.com/alvinlindstam/grapheme
https://github.com/karpathy/minbpe
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in the pre-tokenization is the pre-token itself.
Although smaller sub-words might be learned with
insufficient training data, in an ideal case where
ample data is provided, the learned tokens will
match the pre-tokens. By analyzing the outputs of
pre-tokenizers rather than those of the tokenizers
themselves, we gain a clearer understanding of the
ideal tokenization a tokenizer can achieve. This
insight is crucial when assessing which tokenizers
are best suited for complex script languages,
particularly under the assumption that ample data
will be provided when integrating a complex
script language with the tokenizer. As shown in
Figure 1, the impact of pre-tokenization is far more
significant than that of the tokenization algorithm
itself. Results of the pre-tokenization analysis are
presented in Tables 3, 4, and 1.

Analyzing Byte-level Tokenizers. Since Byte-
level tokenizers operate directly on the fundamental
representation of text in digital form (bytes), an-
alyzing them at the pre-tokenization level is not
applicable. Therefore, we evaluate these tokenizers
based on their final output. Results for Byte-level
tokenizers are presented in Tables 5 and 6.

5.2 Grapheme Pair Encoding (GPE)

Instead of considering bytes as the smallest units,
as done in BPE, we consider graphemes as the
smallest units (refer Section 3.2). This is achieved
by introducing a pre-processing step that breaks
the given text into graphemes and updates the ini-
tial vocabulary with the unique graphemes present
in the tokenizer training data. Once the initial vo-
cabulary is updated, the remainder of the method
adheres to the standard BPE algorithm, but oper-
ates on graphemes. Our proposed methodology is
detailed in Algorithm 1. We compare the GPE ap-
proach against vanilla implementations of BPE, Un-
igram, and WordPiece algorithms. All tokenizers
are trained on a randomly sampled 150k sentences
from the Samanantar Tamil dataset (Ramesh et al.,
2021) and tested on the FLORES+ Tamil develop-
ment testset (Team et al., 2022). For a fair compar-
ison, we use a whitespace-based pre-tokenizer for
all algorithms.

6 Results and Discussion

In this section, we present and discuss the results
of our experiments on pre-tokenization and the pro-
posed GPE algorithm.

Algorithm 1: Grapheme Pair Encoding
(GPE)

Input: Dataset D of lines N , Vocabulary
size |V |, Pre-tokenization regular
expression RE

Output: Vocabulary V , Merges M
// init Vocabulary and Merges
V ← {}
M ← {}
// init storing unique graphemes
ghs← {}
for i← 1 to N do

// extract pre-tokens based on
RE

pre− tokens← Extract(D[i], RE)
for each pti ∈ pre− tokens do

// get graphemes gsi for each
pti

gsi ← GetGraphemes(pti) // get
unique graphemes from gsi
compared to ghs

gsunique ← GetUnique(gsi, ghs)
// update ghs with the new
graphemes

ghs← Update(gsunique, ghs)
end

end
// update vocabulary with ghs
V ← Update(ghs, V )
// follow standard BPE merges
V,M ← BPE(D,V,M )

6.1 English-Centric (EC) and Multi-Lingual
(ML) Models

Tables 3 and 4 present the Maximum Compres-
sion Ratio (CRmax) and TP , respectively (see Sec-
tion 3.1 for details). For this sub-section, it is im-
portant to note that CRmax and TP are calculated
based on the pre-tokenization outputs rather than
the tokenizer outputs. We believe this approach
provides a fair comparison across all tokenizers
and establishes an upper bound for CR. The obser-
vations from both tables are discussed jointly, as
they complement each other.

As expected, both EC and ML models demon-
strate a strong compression ratio of 5× for the
English language. This can be attributed to the
simplicity of the English script; being part of the
ASCII system, English characters fit into a single
byte in UTF-8 representation.
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Tokenizer en ta si hi
GPT-2 EC 5.26 1.36 1.55 1.56
GPT-4 EC 5.23 2.13 2.16 2.04
Llama 3 EC 5.23 2.13 2.16 2.04
FLAN-T5 EC 6.06 9.21 6.34 5.13
Gemma 2 EC 6.06 9.21 6.34 5.13
Aya ML 6.06 9.21 6.34 5.13
mBERT ML 5.22 7.77 5.63 4.59
mT5 ML 6.06 9.21 6.34 5.13
mBART ML 6.06 9.21 6.34 5.13
NLLBm ML 6.06 9.21 6.34 5.13

Table 3: The table shows the maximum compression
ratio achievable for the four languages based on the
pre-tokenization functions for both English Centric
and Multi-Lingual models.

Tokenizer ta si hi
GPT-2 EC 4.54 3.41 3.38
GPT-4 EC 2.89 2.42 2.56
Llama 3 EC 2.89 2.42 2.56
FLAN-T5 EC 0.78 0.96 1.18
Gemma 2 EC 0.78 0.96 1.18
Aya ML 0.78 0.96 1.18
mBERT ML 0.80 0.93 1.13
mT5 ML 0.78 0.96 1.18
mBART ML 0.78 0.96 1.18
NLLBm ML 0.78 0.96 1.18

Table 4: The table shows the tokenization parity
relative to English for the three languages in both
English Centric and Multi-Lingual models. This
can also be interpreted as the context window size
relative to English.

The GPT-2 pre-tokenizer exhibits the lowest per-
formance, with a CRmax score of only 1.6× across
Tamil, Sinhala, and Hindi — all non-English lan-
guages. This indicates that the maximum compres-
sion ratio achievable by a GPT-2 tokenizer, even
with sufficient training data for these languages,
will not exceed 1.6×. Similarly, GPT-2 demon-
strates the highest TP across all compared non-
English languages, with Tamil having a TP of 4.54.
This result suggests that, on average, at least 4.54
Tamil tokens are required for every English token.
The TP can also be interpreted as a proxy for the
relative context window size, implying that GPT-2
requires a context window 4.54 times longer for
Tamil compared to English. Consequently, from a
tokenization perspective, GPT-2 appears unsuitable
for adapting to languages like Tamil, Sinhala, and
Hindi.

Both GPT-4 and Llama 3 show better perfor-
mance than GPT-2, achieving a CRmax greater than
2× and a TP well below 3.0. However, despite
these improvements, GPT-4 and Llama 3 still un-
derperform when compared to the ML models, as
well as the EC models FLAN-T5 and Gemma 2.
We hope this observation serves as a cautionary
note for researchers utilizing or adapting GPT-4
and Llama 3 for non-English languages.

As expected, ML models perform well on
both the CRmax and TP metrics. Interestingly,
FLAN-T5 and Gemma 2 perform on par with the
best-performing ML models for non-English lan-
guages. This observation suggests that FLAN-T5
and Gemma 2 could be promising models for adapt-
ing to new languages. We leave the exploration
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Vanilla Tokenization Algorithms
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Figure 1: The figure illustrates the compression ratio of
vanilla tokenizers trained on a randomly sampled 150k
sentences of the Samanantar Tamil dataset using GPT-2
and whitespace-based pre-tokenization, and tested on
the FLORES+ Tamil development testset.

of the impact of selecting non-English language-
friendly pre-tokenization on language modeling for
future work.

The analysis underscores pre-tokenization’s piv-
otal role in shaping language representation within
models. To substantiate this claim, we trained
vanilla tokenization algorithms — BPE, Unigram,
and WordPiece—on a sufficiently large Tamil
dataset (a randomly sampled 150k tamil sentences
of the Samanantar dataset) with a vocabulary
size of 5k. For this study, we utilized two pre-
tokenization methods: (1) GPT-2 pre-tokenization,
and (2) Whitespace pre-tokenization. Figure 1 il-
lustrates the compression ratio of tokenizers trained
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Tokenizer en ta si hi
CANINE 0.98 0.99 0.98 0.98
ByT5 0.99 0.37 0.38 0.39
Grapheme based 1.0 1.55 1.41 1.45

Table 5: Compression ratios for four languages us-
ing Byte-Level Tokenizers and our grapheme-based
character extractor.

Tokenizer ta si hi
CANINE 1.17 1.0 1.0
ByT5 3.2 2.62 2.55
Grapheme based 0.76 0.71 0.69

Table 6: Tokenization Parity relative to English for
three languages using Byte-Level tokenizers and our
grapheme-based character extractor.

under these conditions, tested using the FLORES+
development testset.

The results of the tokenizers trained with GPT-
2 pre-tokenization show nearly equal and consis-
tently poor performance. Specifically, the BPE
algorithm trained with GPT-2 pre-tokenization val-
idates the predicted CRmax score in Table 3 for
GPT-2; even with a sufficiently large dataset, the
compression ratio did not exceed 1.36. In contrast,
tokenizers trained using simple whitespace pre-
tokenization outperform those trained with GPT-2
pre-tokenization by a significant margin. More-
over, all tokenizers trained with whitespace pre-
tokenization exhibit similar performance levels.

Given that the tokenizers trained with GPT-2 and
whitespace pre-tokenization methods show compa-
rable performance within their respective groups,
this finding demonstrates that the compression ra-
tio is primarily determined by the pre-tokenization
methodology employed, rather than the specific
tokenization algorithm used.

6.2 Evaluating Byte-Level Tokenization
Tables 5 and 6 present a comparison of Byte-level
tokenizers and Grapheme-based character extractor
based on CR and TP . We utilize two byte-level
tokenizers: ByT5, which employs UTF-8 encoding
to break text into bytes, and CANINE, which uses
UTF-32 encoding based on Unicode codepoints.
This approach allows us to handle all Unicode char-
acters, including rare symbols and emojis, without
relying on extensive vocabularies or complex pre-
processing. Comparing these byte-level methods
with grapheme cluster-based character-level tok-
enization is fair and informative, as both tokenize
text at a fundamental level. Our comparison high-
lights the advantages of aligning tokenization with
graphemes, particularly for languages with com-
plex scripts.

In Table 5, we observe that the CR for CA-
NINE is close to 1 for all languages, attributed
to it’s UTF-32 representation of each character.
In contrast, ByT5, which uses UTF-8 encoding,

performs poorly on non-English languages such
as Tamil, Sinhala, and Hindi, as these scripts re-
quire multiple bytes per character in UTF-8 encod-
ing scheme. Grapheme-based tokenization, how-
ever, shows a significant performance improve-
ment, with CR exceeding 1.4×. This improvement
is due to graphemes effectively capturing charac-
ters by combining multiple codepoints into a single
unit. Table 2 illustrates this with a comparison of
how the phrase “Thank you" is represented at the
Unicode codepoint and grapheme levels in Tamil,
Sinhala, and Hindi.

Table 6 displays the TP for the Byte-level
and Grapheme cluster-based tokenizers. CANINE
achieves near-parity with English for Tamil, Sin-
hala, and Hindi, indicating it requires a similar
context window size for these languages. ByT5 per-
forms the worst among the tokenizers, with Tamil
having the lowest TP of 3.2, meaning Tamil text
requires three times the context window size of
English. Sinhala and Hindi require at least 2.5×
the context window size compared to English. In
contrast, grapheme-based tokenization achieves the
best performance, requiring less than 0.76 times the
context window size of English for Tamil, Sinhala,
and Hindi.

The findings establish grapheme-based tokeniza-
tion as a superior approach for handling complex-
script languages, particularly in character-based
tokenization tasks. It enhances character represen-
tation by aligning more closely with human per-
ceived characters. The impact of this choice on
language modeling is a topic for future research
and is beyond the scope of this paper.

6.3 Evaluating Grapheme Pair Encoding
We evaluate our proposed Grapheme Pair Encod-
ing (GPE) alongside traditional tokenization algo-
rithms such as BPE, Unigram, and WordPiece. To
ensure a fair comparison, we utilize the Whites-
pace pre-tokenizer from HuggingFace. Details of
the training process are outlined in Section 5.2.

Table 7 contains CR for Tamil from the afore-
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BPE Unigram WordPiece GPE
4.32 4.31 4.12 4.36

Table 7: Compression ratios of vanilla tokenization al-
gorithms and Grapheme Pair Encoding, trained on a
150k Tamil sentences from the Samanantar dataset and
tested on the FLORES+ Tamil development testset.

mentioned experiment. Our proposed method,
GPE, better than all other tokenization algorithms,
though the improvement is not significant. While
GPE, being a derivative of the BPE algorithm,
achieves a better CR, the difference of 0.04 is rel-
atively minor. The WordPiece algorithm shows
the poorest performance among them, but all algo-
rithms achieve a CR greater than 4. This supports
the conclusion from Figure 1 that the pre-tokenizer
has a more significant impact on Compression Ra-
tio and Tokenizer Parity (and indirectly, context
window size) than the choice of tokenization algo-
rithm.

We developed GPE by incorporating graphemes
into the BPE algorithm, chosen for its straightfor-
ward implementation. In future work, we aim to
integrate graphemes into other algorithms, such
as Unigram and WordPiece, to further expand the
scope of GPE.

7 Conclusion

In this work, we demonstrate the crucial role of
pre-tokenization in achieving an egalitarian repre-
sentation of languages in language models. To the
best of our knowledge, this is the first study to focus
specifically on pre-tokenizers. Our findings reveal
that popular English-Centric language models inad-
equately represent complex scripted languages like
Tamil, Sinhala, and Hindi. This underscores the
need for caution when using English-Centric mod-
els as the base for developing language-specific
LLMs. We advocate for the exploration of tok-
enization choices used by Multi-Lingual models,
as they are progressing towards more egalitarian
language representation.

Our analysis shows that pre-tokenization sig-
nificantly affects tokenization, often more than
the choice of algorithm. We propose improving
BPE by incorporating graphemes, creating our
Grapheme Pair Encoding (GPE) method. How-
ever, our focus is on the tokenizer, leaving broader
implications for language model performance to
future research. We aim for this work to inspire

further research, advancing egalitarian language
representation in NLP.

Limitations

Our work, like any other, has its limitations. We
focused on the intrinsic evaluation of tokenizers
rather than their impact on downstream tasks. Addi-
tionally, our study primarily explored the Abugida
script, with limited attention to the Abjad writing
system. Moreover, the accuracy of our results relies
on the precision of the open-source grapheme li-
brary employed. These limitations represent mean-
ingful research directions, and we hope they inspire
further exploration by the research community.
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