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Abstract

Previous benchmarks for evaluating large lan-
guage models (LLMs) have primarily empha-
sized quantitative metrics, such as data volume.
However, this focus may neglect key qualita-
tive data attributes that can significantly impact
the final rankings of LLMs, resulting in unreli-
able leaderboards. In this paper, we investigate
whether current LLM benchmarks adequately
consider these data attributes. We specifically
examine three attributes: diversity, redundancy,
and difficulty. To explore these attributes, we
propose a framework with three separate mod-
ules, each designed to assess one of the at-
tributes. Using a method that progressively
incorporates these attributes, we analyze their
influence on the benchmark. Our experimental
results reveal a meaningful correlation between
LLM rankings on the revised benchmark and
the original benchmark when these attributes
are accounted for. These findings indicate that
existing benchmarks often fail to meet all three
criteria, highlighting a lack of consideration for
multifaceted data attributes in current evalua-
tion datasets.

1 Introduction

Large Language Models (LLMs) such as Llama
(Touvron et al., 2023b; Dubey et al., 2024) and
GPT-4 (OpenAI, 2023) have redefined the bound-
aries of natural language processing, delivering
remarkable capabilities in understanding and ap-
plying knowledge ranging from social science to
nature science. The evaluation of these mod-
els primarily relies on broadly constructed eval-
uation benchmarks (Guo et al., 2023), which
are developed through methods including man-
ual (Hendrycks et al., 2021), automated (Li et al.,
2024), and semi-automated (Huang and Xiong,
2024) methods that involve either human-authored,
machine-generated, or both inputs. The tasks cov-
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ered in these benchmarks span discipline knowl-
edge (Hendrycks et al., 2021; Liu et al., 2023;
Huang et al., 2023), instruction following (Zhou
et al., 2023) and alignment (Liu et al., 2024b; Sun
et al., 2023; Zhang et al., 2023d), where each bench-
mark is used to rank the strength of various LLMs.

However, these publicly available benchmarks
(Gu et al., 2024) often highlight their data scale
but seldom mention other data attributes such as
diversity, redundancy, and difficulty. Diversity indi-
cates whether the dataset comprehensively covers
varied knowledge points, redundancy refers to the
presence of similar or duplicate questions that may
lead to a waste of computational resource, and dif-
ficulty signifies whether the collected questions
possess sufficient discriminative power. Thus these
attributes are equally reflective of the benchmark’s
quality as data volume, if not more so.

To mitigate this gap, in this paper, we aim to
investigate whether the current evaluation bench-
marks for LLMs possess these data attributes. This
also means we must answer two critical questions.
First, how do we extract these three attributes from
the benchmarks? Second, how do we measure
whether these attributes are sufficiently considered
within the benchmarks?

For the first question, we address it by proposing
a novel framework to individually explore these
data attributes within the benchmarks. This frame-
work comprises three distinct modules: (1) a diver-
sity module that employs DBSCAN (Ester et al.,
1996) for analyzing topic variety and distribution,
(2) a difficulty module that categorizes questions
into various difficulty levels based on performance
across 20 LLMs, drawing inspiration from stan-
dards used in human examinations, and (3) a re-
dundancy module that utilizes text entailment tasks
(Bowman et al., 2015) to assess conceptual over-
laps in each question. Then, we assign a label to
each question in the benchmark based on these
attributes.
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For the second question, based on the data at-
tributes we have already labeled, we adopt a step-
by-step pipeline to measure the presence of these
attributes in the original datasets. Specifically, we
start by listing the performance rankings of 40
LLMs on the original datasets as a reference. Then,
we examine the changes in the correlation coeffi-
cients (Spearman, 1904; Kendall, 1938) between
model rankings after progressively considering the
attributes of diversity, redundancy, and difficulty,
as labeled in our framework. We posit that if a
dataset satisfies all three attributes, the inclusion
of these considerations should correlate positively
with the original rankings. Conversely, a decrease
in correlation upon considering a specific attribute
suggests a lack of consideration for that attribute in
the original dataset.

Since our study is language-agnostic, we se-
lect three LLM benchmarks of the same type for
our experiments, including two Chinese bench-
marks, M3KE (Liu et al., 2023) and CMMLU (Li
et al., 2023a) and one English benchmark, MMLU
(Hendrycks et al., 2021). We further categorize
these benchmarks into three categories: Humani-
ties, Social, and STEM, because all three bench-
marks are oriented towards subject knowledge,
making these categories comparable.1

Overall, the majority of benchmarks lack consid-
eration for redundancy, as evidenced by a notable
decrease in the correlation of rankings when this
attribute is considered, with the exception of the
STEM subject in M3KE (Liu et al., 2023). Con-
versely, the level of difficulty is well-balanced in
more than half of the benchmarks. However, be-
cause redundancy only has two labels—redundant
and non-redundant—while the granularity of dif-
ficulty classification is more varied, we further
divide difficulty into three levels: easy, normal,
and hard, and conduct a deeper analysis. Experi-
ment results reveal that M3KE (Liu et al., 2023)
and CMMLU (Li et al., 2023a) predominantly fea-
ture normal and easy levels of difficulty, whereas
MMLU (Hendrycks et al., 2021) maintains a better
balance across all three categories. However, the
actual difference in difficulty levels is much smaller
in the STEM tasks than in the humanities and social
categories. This suggests that current benchmarks
do not adequately consider these attributes, and it
is recommended that future benchmark construc-

1Other categories which often involve culturally specific
questions are not included.

tion should fully consider these factors rather than
merely increasing scale.

Our main contributions are summarized as fol-
lows.

• We propose an automated analysis frame-
work aimed at detecting the attributes of LLM
benchmarks, including diversity, redundancy,
and difficulty.

• we also design a pipeline to measure the qual-
ity of LLM evaluation benchmarks by in-
crementally adding attributes and observing
changes in the correlation coefficients with
the original dataset rankings.

• Extensive experiments show that current
benchmarks do not adequately balance con-
sideration of each attribute.

2 Related Work

Currently, evaluation benchmarks for LLMs have
expanded across multiple dimensions (Shevlane
et al., 2023; Guo et al., 2023), including capabil-
ity, value alignment, and safety. Among these,
capability-oriented benchmarks are the most di-
verse in terms of quantity and type. They cover a
wide range of abilities such as general knowledge
(Zhang et al., 2023c; Yu et al., 2024a; Zhang et al.,
2023b; Yu et al., 2024c; Liu et al., 2024a), instruc-
tion following (Jing et al., 2023), commonsense
reasoning (He et al., 2021; Shi et al., 2024), math-
ematical reasoning (Wei et al., 2023; Liu et al.,
2024d), tool usage (Zhuang et al., 2023), agent
evaluation (Li et al., 2023b; Guo et al., 2024; Zhou
et al., 2024; Liu et al., 2024c) and machine pro-
gramming (Fu et al., 2023; Peng et al., 2024). Value
alignment evaluation focuses on testing LLMs’ per-
formance in areas like bias (Zhang et al., 2023a;
Zhou et al., 2022; Huang and Xiong, 2024), offen-
siveness (Yang and Lin, 2020; Jiang et al., 2022;
Deng et al., 2022), and social morality (Yu et al.,
2024b). Lastly, safety evaluations (Perez et al.,
2022; Shi and Xiong, 2024) are conducted to mon-
itor whether LLMs may cause catastrophic behav-
ioral risks (Hendrycks et al., 2023).

In terms of language, both English and Chinese
have become the primary languages for current
LLM evaluation benchmarks, with corresponding
datasets in each language available for assessment
across various dimensions. However, apart from
benchmarks based on language-specific cultural
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Figure 1: Diagrams of the proposed framework (upper part) and pipeline (lower part). Orange, blue, and green
represent diversity, redundancy, and difficulty, respectively.

contexts, the motivation and content of most bench-
marks are generally universal. Unfortunately, when
these datasets are released, most authors only em-
phasize the differences in language and the scale
of the dataset, with little introduction to other data
attributes in the benchmarks, such as diversity, re-
dundancy, and difficulty. As other data-centric stud-
ies (Jha et al., 2023; Xia et al., 2024; Xie et al.,
2023) have already revealed the importance of data
perspective for training LLMs, the core purpose
of this paper is to explore whether current LLM
benchmarks overlook the consideration of these
data attributes and to demonstrate the potential im-
pact different data attributes can have on evaluation
leaderboards.

At the same time, researchers have begun to
reflect on issues present in previous benchmarks
(Singh et al., 2024). Gema et al. (2024) revisit
MMLU (Hendrycks et al., 2021) and identify de-
fects in data quality through manual comparison.
Perlitz et al. (2024) investigate ways to reduce the
computational costs of evaluating language models
without compromising the reliability of the results.
Mazumder et al. (2023) emphasizes fostering inno-
vation in data-centric AI by enhancing competition,
comparability, and reproducibility. AutoBencher
(Li et al., 2024) addresses the challenge of balanc-
ing three key criteria in dataset creation: salience,
novelty, and difficulty.

This paper differs from these works in three sig-
nificant ways. First, we focus on three attributes,
data diversity, redundancy, and difficulty, to ex-
plore current benchmarks. Second, we design an
automated framework to uncover these attributes
within benchmarks. Finally, we employ a method
that incrementally introduces these attributes to ob-
serve fluctuations in correlation with the original
benchmark rankings, thereby reflecting whether
these attributes were adequately considered in the
original benchmarks.

3 Methodology

Figure 1 displays the proposed attribute mining
framework analysis pipeline.

3.1 Framework
As demonstrated in Figure 1 (upper part), the
framework is composed of three modules de-
signed to evaluate diversity, difficulty, and redun-
dancy. Specifically, the diversity module employs a
density-based clustering algorithm to detect bench-
marks containing a greater variety of topics and
consistent question distribution. The difficulty
module measures question complexity through ac-
curacy distribution across different models. Lastly,
the redundancy module focuses on identifying and
filtering out similar or duplicate questions within
the benchmarks.
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3.1.1 Module for Diversity
The diversity module is based on DBSCAN (Ester
et al., 1996), a density-based clustering algorithm
tailored to detect benchmarks with a broad and
consistent distribution of topics. Initially, bench-
marks within the same dimension, such as MMLU,
CMMLU, and M3KE in the discipline dimension,
are grouped for assessment. It is essential that
benchmarks in the same group contain comparable
categories to ensure a consistent evaluation.

We employed Sentence-BERT (Reimers and
Gurevych, 2019) as our text encoding model to con-
vert textual content into embeddings suitable for
clustering. After clustering, we compared bench-
marks across each dimension by analyzing the num-
ber of questions and topics, as well as their variance
and standard deviation.

3.1.2 Module for Difficulty
Inspired by standards used in human examina-
tions, this module assesses the difficulty of each
benchmark, with the premise that a high-quality
benchmark should balance the distribution of ques-
tion difficulty. We used twenty LLMs, both open-
source and proprietary, exhibiting varied perfor-
mance across benchmarks. These LLMs evaluate
the selected benchmarks, and questions are classi-
fied into six difficulty levels based on the number
of correct responses: a question is tagged with a
difficulty level of 0 if more than 15 LLMs answer it
correctly. For every three fewer models that answer
correctly, the difficulty level decreases by one.

A benchmark should ideally contain questions of
varying difficulty levels instead of focusing solely
on one. We will compare the impact of each dif-
ficulty attribute of the benchmarks across these
levels in Section 5.

3.1.3 Module for Redundancy
In the redundancy module, we define the detec-
tion of redundant questions as a text entailment
task. This method leverages the natural language
understanding capabilities of models to determine
whether two questions within the same cluster are
conceptually similar enough to be considered re-
dundant.

To implement this, each question pair from the
same cluster is formatted into a structured query
that resembles a natural language understanding
task:

Prompt: I have two multiple-choice questions and I need

a simple answer to determine if they test the same concepts.

Here are the questions: question 1 and question 2. Do these

two questions test the same concepts? Please answer with

“Yes” or “No”.

Using this format, we employ GPT-4 (OpenAI,
2023) to assess whether the two questions are con-
ceptually similar because the advanced LLM en-
sures that we are accurately identifying redundan-
cies based on conceptual similarity rather than su-
perficial textual characteristics. The model’s re-
sponses (“Yes” or “No”) indicate the presence of
redundancy. Questions that are determined to be
testing the same concepts by receiving a “Yes” re-
sponse are flagged as redundant.

The effectiveness of this module is evaluated
by measuring the impact of removing identified
redundancies on the overall performance metrics
of LLMs on the benchmark. A lower variance in
performance before and after redundancy removal
indicates a more distinct and essential set of ques-
tions, thereby validating the quality of the bench-
mark.

3.2 Pipeline
Once the data is assessed through our framework,
questions within the same topic are clustered into
groups, and questions within each cluster are la-
beled by the redundancy module. In addition, we
determine the varying difficulty levels of these
questions through the application of our dedicated
difficulty module, which evaluates and categorizes
them based on their complexity. Furthermore, we
also establish a baseline ranking that encompasses
a total of 40 LLMs, which is grounded in the per-
formance metrics derived from the analysis of the
original dataset.

Then, we begin to gradually explore the signifi-
cance of each attribute in the dataset, as illustrated
in the Figure 1 (lower part). Specifically, we first
consider diversity for our initial correlation esti-
mation, selecting data from each cluster to derive
new model rankings and calculate the correlation
coefficient with the original rankings as the initial
coefficient. Next, we filter out questions marked
as redundant, i.e., those with a “Yes” label, and
derive the model rankings after eliminating those
questions. If the updated ranking’s correlation coef-
ficient is higher than the initial coefficient, it can be
inferred that the original dataset may include this
attribute, and vice versa. Finally, considering the
difficulty attribute means we eliminate questions
with duplicate difficulty labels to balance the dis-
tribution of difficulty levels in the data, with trends
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Benchmark Subject Attribute Spearman ↑ Kendall ↑ Rank Change ↓ Standard Deviation ↓

M3KE

Humanity
Diversity 0.992 0.941 50 0.786

DR 0.989 0.933 60 0.943
DDR 0.986 0.915 72 1.131

Social
Diversity 0.996 0.964 32 0.503

DR 0.996 0.964 34 0.534
DDR 0.995 0.958 36 0.566

STEM
Diversity 0.991 0.939 54 0.849

DR 0.992 0.943 50 0.786
DDR 0.990 0.937 54 0.849

CMMLU

Humanity
Diversity 0.996 0.956 38 0.597

DR 0.996 0.958 36 0.566
DDR 0.990 0.927 64 1.006

Social
Diversity 0.994 0.952 44 0.691

DR 0.993 0.947 44 0.691
DDR 0.992 0.943 48 0.754

STEM
Diversity 0.987 0.923 66 1.037

DR 0.985 0.917 72 1.131
DDR 0.987 0.915 70 1.100

MMLU

Humanity
Diversity 0.997 0.972 26 0.409

DR 0.995 0.959 38 0.597
DDR 0.992 0.941 50 0.786

Social
Diversity 0.991 0.935 58 0.911

DR 0.989 0.921 66 1.037
DDR 0.976 0.883 98 1.540

STEM
Diversity 0.996 0.958 36 0.566

DR 0.992 0.943 46 0.723
DDR 0.991 0.933 52 0.817

Table 1: Overall results. ↑ represents that the higher is better, while ↓ denotes that the lower is better. Diversity
& Redundancy (DR): assessing the inclusion of the redundancy attribute. Diversity & Difficulty & Redundancy
(DDR): assessing the inclusion of the difficulty attribute. Correlation.C: Correlation Coefficients.

in the correlation coefficient changes following the
same logic as above.

Ultimately, by incrementally controlling at-
tributes through this pipeline, we can investigate
the impact of different data attributes on the orig-
inal rankings to explore possible data attributes
insufficiency in the benchmark.

4 Experiment

In this section, we first introduce the datasets, mod-
els, and correlation metrics used in our experiments.
We then present the main experimental results, de-
tailing the performance of our analytical framework
and how each attribute—diversity, redundancy, and
difficulty—affects the rankings of LLMs in com-
parison to the original rankings.

4.1 Assessed Datasets

We selected three disciplinary knowledge bench-
marks for our experiments, including an English
benchmark, MMLU, and two Chinese benchmarks,

M3KE and CMMLU. Firstly, disciplinary knowl-
edge is often gathered manually from publicly ac-
cessible exam questions on the Internet, and since
disciplinary knowledge is equivalent regardless of
whether the educational context is in English or
Chinese, these benchmarks are comparable. Sec-
ondly, although the knowledge points and exam-
ination points within these disciplines are fixed,
the sources of the questions are diverse, including
practice problems, mock exams, regional unified
examinations, and national examinations. There-
fore, the data attributes within these benchmarks
can help us understand how each attribute was con-
sidered during the data collection process.

We conducted our investigations into the three
benchmarks across three disciplinary categories:
Humanities, Social Sciences, and STEM. It is im-
portant to note that after clustering each disci-
plinary subject, we selected a subset of data from
each cluster for subsequent experiments. This se-
lection was necessary because our experiments on
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Benchmark Subject Topics Avg. Count of Qs

M3KE
Humanity 119 30.353

Social 224 27.777
STEM 271 30.118

CMMLU
Humanity 80 31.113

Social 117 31.214
STEM 97 26.093

MMLU
Humanity 200 23.355

Social 78 26.526
STEM 228 23.969

Table 2: Diversity statistics for the three evaluated
benchmarks. Avg. Count of Qs: Average counts of
Questions.

redundancy required using GPT-4 (OpenAI, 2023)
to evaluate paired questions. Given that we have N
questions, which would result in N×(N−1)

2 pairs,
the cost of processing all the data would be pro-
hibitively high. Therefore, a selective approach
was necessary to manage the scale and feasibility
of the experiments efficiently.

4.2 Model

To accurately depict the difficulty attribute and cre-
ate objective leaderboards, we first labeled all ques-
tions in each benchmark using 60 LLMs, with 0 rep-
resenting an incorrect answer and 1 a correct one.
We then selected 20 LLMs, varying from 0.5B to
72B parameters, to assess model difficulty. The re-
maining 40 models, with parameters ranging from
0.5B to 110B, were used to generate a baseline
leaderboard for each disciplinary subject within
each benchmark. A detailed list of all models used
in the experiments is provided in Appendix 4.

4.3 Evaluation Metrics

We used Spearman and Kendall metrics to assess
correlations pre- and post-attribute control, while
Rank Change and Standard Deviation show shifts
in rankings.

Spearman Spearman (Spearman, 1904) correla-
tion coefficient is a non-parametric measure of rank
correlation. It assesses how well the relationship
between two variables can be described using a
monotonic function. .

Kendall Kendall (Kendall, 1938) is another non-
parametric statistic used to measure the ordinal
association between two measured quantities. Un-
like the Spearman coefficient, Kendall’s tau is more
sensitive to outliers in rankings.

Rank Change This metric directly measures the
discrepancy between two rankings over the original
and revised benchmark.

Standard Deviation The metric helps under-
stand the volatility of ranking changes; the larger
the standard deviation, the more unstable the rank-
ing changes.

4.4 Main Results

We conducted a statistical analysis based on the
clustering results to determine the number of topics
and the average number of questions per bench-
mark in order to measure diversity, as shown in Ta-
ble 2. Overall, we find an imbalance in the subject
categories within each benchmark. For instance,
the number of topics in the humanities in M3KE
and in social sciences in MMLU is only about half
that of the other two categories. Although the topic
numbers across categories in CMMLU are closer
to each other, the total number of topics is signif-
icantly less diverse compared to the other bench-
marks.

Since samples corresponding to each topic were
selected, we used the LLM rankings associated
with these samples as the leaderboard under con-
trolled diversity. Table 1 describes the correlation
and changes in rankings under controlled diversity,
redundancy, and difficulty compared to the original
rankings. Generally, while there is a high overall
correlation between previous and current rankings,
metrics like rank change and standard deviation
indicate local fluctuations. In most disciplines, the
best outcomes—stronger correlations and minimal
rank changes—are observed when only diversity is
controlled. However, as redundancy and difficulty
are progressively included, over half of the disci-
plines show a trend of negative correlation with the
original rankings, indicating a general oversight of
these attributes in current benchmarks.

For M3KE, redundancy is only considered in
STEM subjects, where controlling for this attribute
improves ranking correlation and reduces both
ranking changes and standard deviation. In con-
trast, in the humanities and social sciences, account-
ing for redundancy and difficulty led to greater de-
viations from the original rankings.

In CMMLU, redundancy is observed in Human-
ities through four indicators, but difficulty was not
prioritized. This is evident from the notable change
in rankings—an increase from 36 to 64—when we
adjusted for difficulty by equalizing the distribu-
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Benchmark Subject Difficulty Spearman ↑ Kendall ↑ Rank Change ↓ Standard Deviation ↓

M3KE

Humanity
Easy 0.946 0.818 146 2.294

Normal 0.982 0.897 86 1.351
Hard 0.712 0.560 282 4.431

Social
Easy 0.935 0.792 162 2.546

Normal 0.977 0.879 100 1.571
Hard 0.721 0.545 292 4.588

STEM
Easy 0.904 0.731 208 3.268

Normal 0.946 0.802 154 2.420
Hard 0.669 0.477 330 5.185

CMMLU

Humanity
Easy 0.946 0.808 152 2.388

Normal 0.970 0.863 106 1.666
Hard 0.698 0.521 314 4.934

Social
Easy 0.941 0.800 162 2.546

Normal 0.969 0.863 112 1.760
Hard 0.682 0.509 318 4.997

STEM
Easy 0.911 0.752 198 3.111

Normal 0.946 0.810 144 2.623
Hard 0.658 0.481 344 5.405

MMLU

Humanity
Easy 0.685 0.505 358 5.625

Normal 0.696 0.511 370 5.814
Hard 0.409 0.283 502 7.888

Social
Easy 0.722 0.533 334 5.248

Normal 0.727 0.535 338 5.311
Hard 0.447 0.295 470 7.385

STEM
Easy 0.689 0.507 358 5.625

Normal 0.699 0.521 366 5.751
Hard 0.427 0.289 490 7.699

Table 3: Difficulty level results. ↑ denotes that the higher is better, while ↓ signifies that the lower is better.

tion of difficulty labels among the questions. This
suggests a concentrated distribution of difficulty la-
bels in the Humanities. Other disciplines exhibited
smaller ranking changes, indicating a similar ne-
glect of redundancy and difficulty considerations.

In the context of the MMLU evaluations, it be-
comes apparent that all disciplines tend to overlook
important factors such as redundancy and difficulty.
This oversight is evidenced by the increasingly sig-
nificant discrepancies that arise between the new
rankings and the original rankings. Adding more
controlled attributes increases differences, high-
lighting the impact of neglected aspects on evalua-
tion.

The experiments have confirmed that the cur-
rent LLM evaluation benchmarks indeed do not
sufficiently consider these data attributes. This is
first reflected in the imbalance in diversity, with
significant disparities in the number of topics. Ad-
ditionally, the lack of consideration for redundancy
and difficulty could lead to issues in the bench-
marks, such as questions involving similar knowl-
edge points and comparable levels of difficulty.

5 Fine-grained Analysis of the Difficulty
Attribute

With a difficulty attribute ranging from 0 to 5, we
can more precisely control difficulty labels to ana-
lyze fluctuations in the original rankings. We cate-
gorize these labels into Easy (less than 2), Normal
(2 to 4), and Hard (greater than 4).

An observation of the rank changes within a
particular difficulty type can provide meaningful
insights. If we notice that a difficulty category
exhibits only a minimal number of rank changes
and aligns closely with the original rankings, this
can be interpreted as a strong indication that the
original data effectively represented this type of
difficulty. On the other hand, when we encounter
significant fluctuations within a specific difficulty
category, this can serve as a clear signal that the
original data may not have adequately captured the
nuances of that particular category.

Table 3 compares original rankings to differ-
ent difficulty levels across various subjects under
benchmarks in this paper.
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5.1 Analysis of Various Difficulty Attributes
in the Humanity Subject

In the M3KE benchmark, there is a significant di-
vergence between the original and adjusted rank-
ings in the hard category. This indicates that the
hard level in the M3KE contribute minimally to the
rankings, suggesting that the difficulty of questions
under the humanities subject of M3KE primarily
comprises easy and normal questions. Furthermore,
considering only the rankings at normal difficulty,
which show the least fluctuation, suggests that ques-
tions at this level contribute slightly more to the
rankings than easy questions.

Moving to the CMMLU benchmark, the shifts
in rankings are generally more pronounced than in
M3KE, especially when considering only the nor-
mal difficulty level. The changes between the orig-
inal and adjusted rankings in the CMMLU bench-
mark are closer in the easy and normal levels than
hard level, suggesting that this benchmark is also
primarily composed of easy and normal questions.

Finally, MMLU exhibits a completely different
trend compared to M3KE and CMMLU, where
considering any single difficulty level alone leads
to significant fluctuations in rankings. This indi-
cates that the questions in MMLU have distinct
boundaries in terms of difficulty, meaning that the
differences between each difficulty level are very
pronounced.

5.2 Analysis of Various Difficulty Attributes
in the Social Subject

The social subject reflects a broader trend observed
in the field of the humanities, particularly regarding
the types of questions being presented across vari-
ous datasets. In both M3KE and CMMLU, there is
a notable predominance of Easy and Normal level
questions, while the occurrence of Hard questions
remains quite limited. This trend indicates a prefer-
ence or perhaps a tendency to focus on questions
that are more accessible and straightforward. On
the other hand, when we examine MMLU, we can
observe a distinct and pronounced differentiation
among the various levels of question difficulty.

5.3 Analysis of Various Difficulty Attributes
in the STEM Subject

Interestingly, the STEM subject exhibits fluctua-
tions that are completely different from those in
other categories.

For M3KE, even though its overall trend is rela-

tively similar to the other two categories, notable
variations can still be observed. Although consid-
ering only the hard questions results in the most
significant fluctuations, the variations in the other
two difficulty levels are also more pronounced com-
pared to other subject categories, especially at the
normal level. This suggests a decline in the con-
tribution of normal level questions to the rankings,
suggesting a reduced proportion of these questions,
even though they still hold the highest correlation
with the rankings.

For CMMLU, the correlation of normal and
easy questions to the rankings has significantly de-
creased, particularly at the normal difficulty level.
Compared to the three categories, questions of nor-
mal category have emerged as the difficulty level
with the strongest correlation to rankings, implying
that the STEM questions in CMMLU are predomi-
nantly moderate difficulty.

However, in MMLU, considering any single dif-
ficulty type alone shows less consistency with the
original rankings, especially when compared to
their performance with M3KE and CMMLU. This
also indicates that, overall, MMLU possesses a
more balanced difficulty distribution in STEM sub-
jects.

6 Conclusion

In this paper, we have explored the consideration of
data attributes in current LLM benchmarks, includ-
ing diversity, redundancy, and difficulty. We ini-
tially propose an automated attribute mining frame-
work to detect these attributes and then design a
step-by-step process to assess each attribute’s im-
pact on the benchmark’s original leaderboard to
determine whether the original datasets lack these
attributes. The experimental results indicate that
redundancy is the most commonly overlooked at-
tribute in LLM benchmarks, followed by difficulty.
Further analysis reveals that changes in difficulty
significantly affect the final model rankings. This
trend highlights a systemic issue within the bench-
mark, suggesting that further adjustments are neces-
sary to adequately account for these aspects. There-
fore, we recommend that, in the construction of
LLM evaluation benchmarks, a balance of various
data attributes should be maintained, rather than
relying solely on expanding dataset size, which can
lead to computational resource waste and unreli-
able evaluation rankings. This balanced approach
is crucial for achieving a reliable evaluation.
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Limitations

Although we have conducted extensive experi-
ments to investigate potential issues of inade-
quate consideration of data attributes in current
LLM benchmarks and proposed a framework and
pipeline solution to explore the impact of different
data attributes on the original rankings of bench-
marks, our work has two significant limitations.
First, the definition of the quality of LLM bench-
marks remains unclear, and there is no quantifi-
able metric to accurately represent the quality of
a benchmark, so our comparison of the three at-
tributes only covers a portion of this aspect. Sec-
ond, due to cost considerations, we cannot conduct
experiments on the entire dataset. Lastly, LLM
benchmarks involve multiple dimensions, and in
this study, we only select discipline knowledge-
oriented LLM benchmarks. It is important to em-
phasize that we carefully select the most repre-
sentative LLM benchmarks for our experiments,
aiming to explore whether the construction process
of LLM benchmarks adequately considers differ-
ent attribute dimensions and to demonstrate their
impact on benchmark rankings by controlling these
attributes.
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Model Parameters Pre-trained Role
Yi-1.5-6B-Chat (Young et al., 2024) 6B Yi 1.5 Leaderboard
Yi-1.5-34B-Chat (Young et al., 2024) 34B Yi 1.5 Leaderboard
Yi-1.5-9B-Chat (Young et al., 2024) 9B Yi 1.5 Leaderboard
Yi-34B-Chat (Young et al., 2024) 34B Yi Leaderboard
AquilaChat-7B (Zhang et al., 2024) 7B Aquila Leaderboard
aya-23-35B (Aryabumi et al., 2024) 35B Aya Leaderboard
c4ai-command-r-plus2 104B C4AI Leaderboard
c4ai-command-r-v013 35B C4AI Leaderboard
Orion-14B-Chat (Chen et al., 2024) 14B Orion Leaderboard
Qwen2-1.5B-Instruct (Yang et al., 2024) 1.5B Qwen 2 Leaderboard
Qwen2-7B-Instruct (Yang et al., 2024) 7B Qwen 2 Leaderboard
Qwen1.5-72B-Chat (Bai et al., 2023) 72B Qwen 1.5 Leaderboard
Qwen1.5-7B-Chat (Bai et al., 2023) 7B Qwen 1.5 Leaderboard
Qwen2-57B-A14B-Instruct (Yang et al., 2024) 57B Qwen 2 Leaderboard
Qwen1.5-110B-Chat (Bai et al., 2023) 110B Qwen 1.5 Leaderboard
Qwen1.5-14B-Chat (Bai et al., 2023) 14B Qwen 1.5 Leaderboard
Qwen1.5-MoE-A2.7B-Chat (Bai et al., 2023) 2.7B Qwen 1.5 Leaderboard
Qwen1.5-1.8B-Chat (Bai et al., 2023) 1.8B Qwen 1.5 Leaderboard
Qwen2-0.5B-Instruct (Yang et al., 2024) 0.5B Qwen 2 Leaderboard
glm-4-9b-chat (Zeng et al., 2024) 9B GLM 4 Leaderboard
Baichuan2-13B-Chat (Yang et al., 2023) 13B Baichuan 2 Leaderboard
Baichuan-13B-Chat (Yang et al., 2023) 13B Baichuan Leaderboard
gemma-2b-it (Mesnard et al., 2024) 2B Gemma 2 Leaderboard
gemma-2-2b-it (Mesnard et al., 2024) 2B Gemma 2 Leaderboard
gemma-2-9b-it (Mesnard et al., 2024) 9B Gemma 2 Leaderboard
gemma-7b-it (Mesnard et al., 2024) 7B Gemma Leaderboard
gemma-1.1-2b-it (Mesnard et al., 2024) 2B Gemma Leaderboard
internlm2.5-7b-chat (Cai et al., 2024) 7B InternLM 2.5 Leaderboard
internlm-chat-20b (Cai et al., 2024) 20B InternLM Leaderboard
internlm2-chat-18b(Caiet al., 2024) 1.8B InternLM 2 Leaderboard
internlm2-chat-20b (Cai et al., 2024) 20B InternLM 2 Leaderboard
internlm2-chat-7b (Cai et al., 2024) 7B InternLM 2 Leaderboard
internlm2.5-18b− chat(Caiet al., 2024) 1.8B InternLM 2.5 Leaderboard
Llama-3-70B-Instruct (Dubey et al., 2024) 70B Llama 3 Leaderboard
Llama-3.1-70B-Instruct (Dubey et al., 2024) 70B Llama 3.1 Leaderboard
Llama-3-8B-Instruct (Dubey et al., 2024) 8B Llama 3.1 Leaderboard
Llama-2-7b-chat-hf (Touvron et al., 2023a) 7B Llama 2 Leaderboard
Mixtral-8x22B-Instruct-v0.1 (Jiang et al., 2024) 22B Mixtral Leaderboard
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024) 7B Mixtral Leaderboard
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) 7B Mistral Leaderboard
Mistral-Large-Instruct-2407 (Jiang et al., 2023) 2407 Mistral Leaderboard
MiniCPM-2B-sft-bf16 (Hu et al., 2024) 2B MiniCPM Leaderboard
MiniCPM-2B-dpo-bf16 (Hu et al., 2024) 2B MiniCPM Leaderboard
XVERSE-13B-Chat4 13B XVERSE Leaderboard
XVERSE-7B-Chat5 7B XVERSE Leaderboard
Yi-6B-Chat (Young et al., 2024) 6B Yi Difficulty
AquilaChat2-7B (Zhang et al., 2024) 7B Aquila 2 Difficulty
aya-23-8B (Aryabumi et al., 2024) 8B Aya Difficulty
Qwen1.5-0.5B-Chat (Bai et al., 2023) 0.5B Qwen 1.5 Difficulty
Qwen2-72B-Instruct (Yang et al., 2024) 72B Qwen 2 Difficulty
Qwen1.5-32B-Chat (Bai et al., 2023) 32B Qwen 1,5 Difficulty
Qwen1.5-4B-Chat (Bai et al., 2023) 4B Qwen 1.5 Difficulty
Baichuan2-7B-Chat (Yang et al., 2023) 7B Baichuan 2 Difficulty
gemma-1.1-7b-it (Mesnard et al., 2024) 7B Gemma 1.1 Difficulty
gemma-2-27b-it (Mesnard et al., 2024) 27B Gemma 2 Difficulty
internlm2.5-20b-chat (Cai et al., 2024) 20B InternLM 2.5 Difficulty
internlm-chat-7b (Cai et al., 2024) 7B InternLM Difficulty
Llama-3.1-8B-Instruct (Dubey et al., 2024) 8B Llama 3.1 Difficulty
Llama-2-13b-chat-hf (Touvron et al., 2023a) 13B Llama 2 Difficulty
Mistral-Nemo-Instruct-2407 (Jiang et al., 2023) 2407 Mistral Difficulty
MiniCPM-1B-sft-bf16 (Hu et al., 2024) 1B MiniCPM Difficulty
XVERSE-65B-Chat6 65B XVERSE Difficulty
AquilaChat2-34B (Zhang et al., 2024) 34B Aquila 2 Difficulty

Table 4: The list of evaluated LLMs.
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