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Abstract

Automated Grammatical Error Correction
(GEC) has been extensively researched in Nat-
ural Language Processing (NLP), primarily fo-
cusing on English and other resource-rich lan-
guages. This paper shifts the focus to GEC
for a scarcely explored low-resource language,
specifically Hindi, which presents unique chal-
lenges due to its intricate morphology and com-
plex syntax. To address data resource limi-
tations, this work explores various GEC data
generation techniques. Our research introduces
a carefully extracted and filtered, high-quality
dataset, HiWikiEdits, which includes human-
edited 8,137 instances sourced from Wikipedia,
encompassing 17 diverse grammatical error
types, with annotations performed using the
ERRANT toolkit. Furthermore, we investigate
Round Trip Translation (RTT) using diverse
languages for synthetic Hindi GEC data gener-
ation, revealing that leveraging high-resource
linguistically distant language for error gener-
ation outperforms mid-resource linguistically
closer languages. Specifically, using English
as a pivot language resulted in a 6.25% im-
provement in GLEU score compared to using
Assamese or Marathi. Finally, we also inves-
tigate the neural model-based synthetic error-
generation technique and show that it achieves
comparable performance to other synthetic data
generation methods, even in low-resource set-
tings.

1 Introduction

The field of Grammatical Error Correction (GEC)
involves automatically correcting typographical,
syntactic, and fluency errors in written text. Start-
ing in the early 2000s, initially relying on manually
crafted rules, the interest in GEC grew significantly
during the 2010s, resulting in substantial progress
and the development of GEC systems. GEC has
evolved through several stages: rule-based, statisti-
cal, neural, and language model-based approaches.

Today, the majority of efforts in addressing gram-
matical errors focus on deep learning and statisti-
cal methods rather than rule-based ones. These
modern techniques treat GEC as a translation prob-
lem, converting text from an ungrammatical form
to a grammatically correct one. However, these
approaches require a significant amount of super-
vised data in the form of "edits" which are pairs
of incorrect and correct sentences (Brockett et al.,
2006; Ge et al., 2018; Chollampatt and Ng, 2018;
Junczys-Dowmunt et al., 2018).

Despite the widespread interest in GEC, research
in this field has largely been concentrated on the
English language. This is mainly because there are
limited or no benchmark GEC datasets available
for other low-resource languages like Hindi.

Due to the difficulty and expense associated with
obtaining human-annotated GEC data, and the sub-
stantial data requirements for training GEC models,
several methods for generating artificial data for
GEC have been employed (Izumi et al., 2004; Zhao
et al., 2019). These techniques involve introduc-
ing noise into error-free sentences using rule-based
methods, probabilistic approaches, or round-trip
translation to generate errors (Lichtarge et al., 2019;
Grundkiewicz et al., 2019).

Model-based error generation approaches have
also been explored to generate high-quality syn-
thetic datasets (Xie et al., 2018; Stahlberg and Ku-
mar, 2021). However, these methods are limited by
the availability of high-quality seed datasets, typi-
cally only accessible for high-resource languages
like English. Alternatively, approaches such as
extracting corrections from online sources like lan-
guage learning sites, Wikipedia (Faruqui et al.,
2018), and GitHub (Hagiwara and Mita, 2020) of-
fer effective means of collecting data for GEC.

This research paper investigates low-resource
GEC for the Hindi language by employing and eval-
uating various GEC data generation techniques.

Our contributions are:
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1. HiWikiEdits, a carefully extracted and filtered,
high-quality new GEC corpus for Hindi con-
sisting of 8137 human edited sentence pairs.
The dataset is extracted from Wikipedia and
contains a near uniform distribution of 17
different kinds of errors, with annotations
performed using the ERRANT toolkit. The
dataset, along with all associated scripts used
in its creation, is available for access at link1.
(Refer Section 3.1.1)

2. A systematic evaluation of synthetic Hindi
GEC data generation through Round Trip
Translation (RTT) using four languages: En-
glish, Assamese, Marathi, and Tamil. For
Hindi, the findings indicate that using a
high-resource language, regardless of its lin-
guistic divergence, significantly enhances
error correction effectiveness compared to
mid-resource, linguistically similar languages.
Specifically, English as a pivot language
achieves a 6.25% improvement in the GLEU
score over Assamese and Marathi, which are
linguistically related to Hindi. (Refer Table 2)

3. A study of neural model-based synthetic er-
ror generation method, that aims to generate
errors similar to the seed GEC corpus. Our ex-
periments reveal that this approach achieves
comparable performance to other synthetic
data generation methods, showcasing its ro-
bustness and applicability in low-resource set-
tings. (Refer Table 3)

To the best of our knowledge, no prior study has
performed a similar analysis on various techniques
for generating synthetic Hindi GEC data. Addition-
ally, there is no manually annotated error correction
dataset available for Hindi.

2 Related Work

GEC is frequently regarded as closely related to
Machine Translation (MT) (Brockett et al., 2006;
Chollampatt and Ng, 2018). The primary objective
of GEC is to transform an "ungrammatical" sen-
tence into a "grammatical" one. Neural Machine
Translation (NMT) has emerged as a prominent
technique for GEC due to its capacity to correct er-
roneous words, phrases, and sentences not present
in the training set (Luong et al., 2015). The intro-
duction of the Transformer architecture (Vaswani,

1https://github.com/ujjwalsharmaIITB/Hi-GEC

2017) further solidified NMT as a leading approach
for GEC. However, these methods require a signif-
icant volume of supervised data comprising "ed-
its" sets of incorrect and correct sentence pairs.
While significant progress has been made in En-
glish and other resource-rich languages, resulting
in the development of numerous datasets for eval-
uating state-of-the-art methodologies (Ng et al.,
2014; Grundkiewicz and Junczys-Dowmunt, 2014;
Faruqui et al., 2018; Dale et al., 2012; Bryant et al.,
2019), low-resource languages, particularly Indic
languages, have been relatively neglected.

The creation of manually annotated corpora has
significantly advanced GEC technology for English
and other resource-rich languages such as Russian
(Rozovskaya and Roth, 2019). However, the devel-
opment of these corpora is both time-consuming
and resource-intensive, and such resources are of-
ten unavailable for low-resource languages, includ-
ing Indic languages like Hindi.

To address these challenges, generating artifi-
cial data for GEC has become increasingly popular
(Izumi et al., 2004; Zhao et al., 2019). This in-
cludes adding noise to error-free sentences using
rule-based and probabilistic methods, such as to-
ken swapping or insertion, and generating errors
via round-trip translations through a pivot language
(Lichtarge et al., 2019).

Another approach for generating artificial data
involves extracting corrections from online re-
sources, including language learning platforms,
public revision histories such as Wikipedia
(Faruqui et al., 2018), and code repositories like
GitHub (Hagiwara and Mita, 2020). Although this
method can yield extensive and natural datasets, it
has limitations: not all revisions address grammati-
cal errors; some merely enhance content semanti-
cally or add information.

Model-based approaches have also been exten-
sively explored for generating high-quality syn-
thetic datasets (Xie et al., 2018; Stahlberg and Ku-
mar, 2021). These methods involve training models
on high-quality seed datasets to generate erroneous
sentences from error-free ones, effectively simulat-
ing the process of introducing grammatical errors.
However, these approaches rely on the availability
of a high-quality seed corpus.

https://github.com/ujjwalsharmaIITB/Hi-GEC
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Figure 1: Error Distribution (frequency) of HiWikiEdits.

Dataset Name # Sentence Pairs # Tokens
HiWikiEdits 8,137 138,427

Train Split 5,696 96,960
Validation Split 976 16,590

Test Split 1,465 24,877
Direct-Noise 300,000 4,814,365

Round-Trip-Translated ≈ 300,000 5,235,857
Filtered on ≈ 100,000 -

BLUE (between 30 & 95)
EGM ≈ 600000 9,938,389

Table 1: Dataset statistics including number of sentences and tokens.

3 Data

3.1 Wikipedia Edits History
Wikipedia provides a data dump of the revision his-
tories of all its pages. This dump includes chrono-
logical snapshots of the entire content of each page
before and after every edit. Therefore, two consec-
utive snapshots represent a single revision to the
page.

To extract edits from Wikipedia we use the
Wikiedits 2.02 software which was modified by
Sonawane et al. (2020)3. We further modified the
tool by adding improved filtering and extracted
edits from Wikipedia revision dump dated 4 July
20244.

2https://github.com/snukky/wikiedits
3https://github.com/s-ankur/wikiedits
4https://dumps.wikimedia.org/hiwiki/20240701/

We filter the edits using the following con-
straints:

• We constrained the length of the extracted sen-
tences to be at least 10 words and at most 30
words.

• We constrained the edits such that they must
have a difference of no more than 3 words and
a Levenshtein edit ratio of less than 0.3.

• We follow Sonawane et al. (2020) and discard
the edits containing only a difference in punc-
tuation or numbers and corrections involving
rare tokens or HTML markups. We also fil-
tered edits that were related to vandalism and
also discarded all the identical pairs.

hiwiki-20240701-pages-meta-history.xml.7z

https://github.com/snukky/wikiedits
https://github.com/s-ankur/wikiedits
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
https://dumps.wikimedia.org/hiwiki/20240701/hiwiki-20240701-pages-meta-history.xml.7z
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3.1.1 HiWikiEdits
After applying the filtering mentioned in section
3.1, we end up with a relatively small corpus of er-
rors, HiWikiEdits_full, which we analyze through
the ERRANT56 toolkit. Similar to Sonawane et al.
(2020), we found that the error distribution for
this corpus is skewed towards certain error types
namely, inflectional errors on verbs and adpositions,
and some kinds of errors are not grammatical. So
we further filter the corpus to contain a limited num-
ber of error types and ensure a uniform distribution
of these errors. We call this final filtered dataset as
HiWikiEdits.

3.1.2 Errors in HiWikiEdits
The HiWikiEdits dataset encompasses a total of 17
distinct error types, as illustrated in Figure 1. These
errors have been extracted from an updated version
of the ERRANT toolkit. For a detailed explanation
of how these errors are obtained, please refer to the
official ERRANT repository or to Sonawane et al.
(2020).

Furthermore, we have introduced a new cate-
gory, denoted as NOOP, which includes error-free
sentences. This addition aims to evaluate the capa-
bility of models to accurately identify and process
grammatically correct sentences.

3.2 Direct-Noise

The structure of a text can be easily disrupted by
making changes such as removing a word or re-
arranging two words. With the abundance of text
available online in different languages, creating
significant amounts of artificial training data is rela-
tively easy (Izumi et al., 2004; Grundkiewicz et al.,
2019; Lichtarge et al., 2019). Although these types
of corruption methods may not always replicate
realistic errors made by human writers, they are
still beneficial for pre-training GEC models.

To create noisy input sentences, we are using the
approach employed by Grundkiewicz et al. (2019).
We start with a clean sentence and sample a prob-
ability perrors from a normal distribution with a
predefined mean and standard deviation. We then
multiply perrors by the number of words in the
sentence to obtain the number of errors in that par-
ticular sentence. After determining the words to
modify, we perform one of the following operations
for each chosen word, based on a predefined proba-

5https://github.com/chrisjbryant/errant
6https://github.com/s-ankur/errant

bility: replace the word with one of its ASpell7 pro-
posals, insert a random word from the dictionary
after the current word, delete the word, or swap
it with its right-adjacent neighbor. To make the
system more robust to spelling errors, the same op-
erations are also used on individual characters with
different probabilities. We also add some errors
in the matras8 by randomly replacing the current
matra with another from a dictionary. In our ex-
periments, we have chosen the mean and standard
deviation of the normal distribution to be 0.2 and
0.1, respectively. We are using the following prob-
ability values for different types of errors: 0.3 for
substitution, 0.15 for insertion, 0.15 for deletion,
0.1 for swapping, and 0.3 for word errors. Addi-
tionally, for word errors, we are using the following
probability values per character: 0.01 for dropping,
0.06 for swapping, 0.06 for insertion, and 0.06 for
matra errors.

3.3 Round Trip Translation

An alternative way to add noise to an error-free sen-
tence is to create a round-trip translation through
a pivot language. A pivot language is employed
to first convert the original sentence into the pivot
language and then back into the original language
(Lichtarge et al., 2019). Round-trip translations in-
troduce noise due to weaknesses in the translation
models and inherent ambiguities in translation.

In our experiments, we take sentences from the
examples that were filtered out during the edits
extraction process and create a separate parallel
corpus by adding noise to those sentences using
round-trip translation. The original sentence from
the corpus is the target sentence, and the output
of the round-trip translation is the corresponding
source sentence. We use a total of 4 different lan-
guages from different language families namely,
Assamese (Indo-Aryan), English (Indo-European),
Marathi (Indo-Aryan), and Tamil (Dravidian). We
used these languages because we wanted to assess
the effect of using linguistically close and distant
languages to Hindi on error correction.

For each pivot language, we create a corrupted
dataset by first translating the Hindi sentences
into the pivot language and then translating them
back to Hindi. We used IndicTrans2 (Gala et al.,
2023) for obtaining the translations for all these lan-
guages. We also filtered the obtained parallel cor-

7http://aspell.net
8A matra is used to indicate that a vowel is attached to a

consonant. (2002)

https://github.com/chrisjbryant/errant
https://github.com/s-ankur/errant
http://aspell.net
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pus by only taking the sentences that had a BLEU
score between 30 and 95. These scores were found
empirically by manual inspection.

An overview of dataset statistics is given in Ta-
ble 1. Figure 2 illustrates an example of the var-
ious types of errors introduced by different error-
introducing schemes.

4 Error Generation Module

Another method for generating parallel edits in-
volves training an Error Generation Module (EGM).
This technique is inspired by backtranslation (Sen-
nrich et al., 2016). The approach entails training a
neural sequence-to-sequence model in the reverse
direction (clean → noisy) to introduce errors into
a clean sentence (Xie et al., 2018). Following the
methodology outlined by Xie et al. (2018), we im-
plement a Neural EGM using the Transformer ar-
chitecture (Vaswani, 2017). By training this end-to-
end EGM on a large corpus, the model generates a
diverse range of errors that more accurately reflect
the noise distribution encountered in real-world
data.

In our experiment, we use the training split of
HiWikiEdits as the seed corpus, augmented with an
additional corpus of the Direct-Noise dataset and
the best round-trip translated dataset. We validate
the EGM on the validation split, which involves
generating errors in the opposite direction, to en-
sure that our model remains consistent with the
error distribution present in HiWikiEdits.

5 System Overview

To address both error correction and error genera-
tion, we employ a neural sequence-to-sequence
model built upon the Transformer architecture
(Vaswani, 2017).

5.1 Error Correction Module

The Error Correction Module (ECM) is designed
to rectify grammatical errors in text. This problem
is framed as a machine translation task, where the
goal is to translate an ungrammatical sentence into
its grammatical counterpart. Consequently, Gram-
mar Error Correction (GEC) utilizes the Encoder-
Decoder architecture (Vaswani, 2017).

In this framework, the encoder processes the un-
grammatical sentence and produces a latent repre-
sentation. The decoder then uses this representation
to autoregressively generate the grammatical sen-
tence. This process is mathematically represented

by Equation 1:

P (y|ŷ) =
n∏

i=1

P (yi|yi−1, . . . , y1, ỹ) (1)

where y denotes the output (grammatical) sen-
tence, yi represents the word generated at the i-th
step, ŷ is the source (ungrammatical) sentence, and
ỹ is the encoded representation of ŷ.

Given a dataset DE of erroneous sentences, the
objective is to maximize the likelihood of the data,
typically achieved through cross-entropy loss.

5.1.1 Implementation and Training
All the ECMs are based on the Transformer model
(Vaswani, 2017). For detailed information regard-
ing the training procedures, model configurations,
and implementation specifics, please refer to Ap-
pendix A.

The following approaches were used to train
different models :

Base: Training was performed on the train split
of the HiWikiEdits dataset.

Direct-Noise: Training was conducted on data
generated using the Direct-Noise method.

Base + Direct-Noise : Training was performed
using a combination of the training split from the
HiWikiEdits dataset and the Direct-Noise dataset
in a 6:4 ratio, respectively.

Round Trip Translated (RTT): A total of 10
models were trained using round-trip translated
data, including: One model for each pivot language
using the complete data. One model for each lan-
guage pair using filtered data with BLEU scores
between 30 and 95. Two models combining all four
pivot languages.

Base + Direct-Noise + RTT (best): Based on
our experiments, we selected the RTT dataset that
achieved the highest GLEU score on the test set.
The model was then trained using a combination
of the HiWikiEdits training split, the Direct-Noise
dataset, and the best-performing RTT data, with a
ratio of 6:2:2.

Base + EGM: Finally, a model was trained on
the HiWikiEdits training split and the dataset gen-
erated by EGM (5.2) in a 6:4 ratio.

5.2 Error Generation Module
EGM is tasked with artificially introducing errors
into sentences. This module formulates the prob-
lem as a sequence-to-sequence transduction task,
where the goal is to transform correct sentences
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Figure 2: Comparison of Different Error-Generation Schemes. The figure illustrates variations in errors across
different methods, including Direct-Noise, RTT-Assamese, RTT-English, RTT-Marathi, RTT-Tamil, and EGM
(Error Generation Module). Key differences include discrepancies in phrasing, the use of terms like ’gardan’ vs.
’gale’, ’jiske’ vs. ’iske’ (transliterated in English), the use of prepositions, and minor formatting errors across the
different error-introducing schemes. The transliterated versions of the sentences are provided below each example.

into erroneous ones. This approach is analogous
to the formulation used for error correction, as de-
scribed in Equation 1, but in reverse.

5.2.1 Training
Training the EGM follows a similar architecture as
ECM and the details can be found in Appendix A.
The training involves teaching the model to gener-
ate errors that reflect the distribution and types of
errors seen in real-world data.

5.2.2 Implementation Details
For the training of the EGM, we use a combination
of datasets:

Direct-Noise + RTT (best) + HiWikiEdits
Train Split: A model is trained on a dataset com-
bining Direct Noise data, RTT (best) data, and the
HiWikiEdits training split in a 2:2:6 ratio, respec-
tively. This combined dataset provides a diverse
range of errors and sentence structures to enhance
the model’s ability to generate realistic and varied
errors.

During validation, we ensure that the error gen-
eration model produces errors that match the distri-
bution of errors in the validation set. This involves
validating the model by generating errors and com-

paring them with the HiWikiEdits validation set
in the opposite direction, thereby ensuring that the
model’s error generation aligns with the expected
error patterns.

6 Results

To evaluate our models, we use the GLEU met-
ric (Napoles et al., 2015) along with the F0.5 met-
ric, which is computed using the MaxMatch (M2)
scorer9 (Dahlmeier and Ng, 2012). Given that the
GLEU score demonstrates a stronger correlation
with human judgment, it will serve as our primary
evaluation metric.

6.1 Quantitative Results

We use the Base model as the baseline for com-
parison. As indicated in Table 3, training with
Direct-Noise augmented data improved the GLEU
score by 11.23. In this zero-shot scenario, where
the model is trained exclusively on synthetic data,
it outperforms the baseline, which was trained on
a relatively small dataset. This improvement sug-
gests that the model benefits from the inclusion of

9http://github.com/nusnlp/m2scorer

http://github.com/nusnlp/m2scorer
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Round Trip Translated Dataset English Marathi Assamese Tamil Combined
Full Data 44.0 41.32 41.41 38.25 39.74

Filtered Data 41.54 40.49 37.00 39.20 43.75

Table 2: GLEU scores of models trained on round-trip translated datasets, evaluated on the HiWikiEdits test split.

Dataset used for training GLEU Precision (P) Recall (R) F0.5

Base 55.08 0.098 0.139 0.104
Direct-Noise 66.31 0.011 0.005 0.009

Base + Direct-Noise 71.59 0.213 0.058 0.138
Base + Direct-Noise + RTT (English): M1 73.17* 0.316 0.102 0.223

+ Finetune Train Split: M3 73.86* 0.403 0.121 0.275
Base + EGM: M2 72.62 0.378 0.059 0.182

Table 3: The results of various models evaluated on the HiWikiEdits test split, including GLEU, Precision (P),
Recall (R), and F0.5 scores, are summarized. An asterisk (*) indicates improvements are insignificant with respect
to M2.

synthetic errors, which enhances its error correc-
tion capabilities.

Combining the Direct-Noise data with the Hi-
WikiEdits training set further boosts performance,
improving the GLEU score by 16.51. The syn-
thetic data helps the model better understand the
grammatical structure of the language, and when
this knowledge is combined with the train split, it
performs well on the unseen test set.

The subsequent experiments investigate cross-
lingual transfer in grammar error correction. As
outlined in Section 3.3, we employed 10 parallel
corpora (4*2 + 2) to train models exclusively on
these synthetic datasets and evaluated them on an
unseen test set. Table 2 indicates that the model uti-
lizing English as the pivot RTT language achieves
a 6.25% higher GLEU score in both filtered and
unfiltered scenarios compared to its two next-best
counterparts. This improvement is likely due to the
fact that the translation model, IndicTrans2 (Gala
et al., 2023), was trained on a substantial amount
of English-Hindi and Hindi-English parallel cor-
pora compared to the Hi-X (Indic) and X-Hi (Indic)
corpora. Additionally, we observe that model per-
formance is better in the filtered combined dataset
compared to the unfiltered combined dataset. This
finding suggests that the quality of data has a more
significant impact on model performance than the
quantity of data.

After identifying the most effective RTT dataset,
we trained a model (M2) by combining these
datasets obtaining an improvement in GLEU score

Figure 3: Qualitative analysis of the three best-
performing models— M1, M2, and M3 (refer Table
3), focusing on two distinct error types: adjectives and
verbs. In the adjective error example (‘uparokta’ (above)
vs. ‘uparyukta’ (above-mentioned)), all models cor-
rected the error. In the verb error example (‘jāte’ (going)
vs. ‘āte’ (coming)), M1 and M2 missed the error, while
M3 successfully identified and corrected it using con-
text. The transliterated versions of the sentences are
provided below the examples.

by 18.09 with respect to the base model.
In our final experiment, we train the ECM using

data generated by the EGM, as detailed in Section
5.2. We utilize the same datasets—namely, the tar-
get side of the Direct-Noise and RTT corpora—and
generate the dataset using beam search with a beam
width of 5. As detailed in Table 3, the resulting
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Figure 4: Bar charts illustrating the performance of the error correction module (M3) across different categories,
showing the proportions of sentences that were corrected, left unchanged, or incorrectly addressed.

model achieved an improvement of 17.54 GLEU
score.

The significance test reveals no significant dif-
ferences with respect to M1. This result supports
the claim that EGMs are beneficial even in low-
resource scenarios.

Taking the best model (M2) and fine-tuning it
further on the train split of HiWikiEdits resulted
in additional improvements of 0.69 GLEU score
(M3).

Figure 3 presents sample outputs from our top
three models, illustrating their performance on two
distinct types of errors. In the first example, which
involves an adjective error (’uparokta’ (above) vs.
’uparyukta’ (above-mentioned)), all three models
successfully identified and corrected the error. In
the second example, which features a verb error
(’jāte’ (going) vs. ’āte’ (coming)), M1 and M2
failed to detect the error and produced the same
output as the source sentence. However, M3 accu-
rately identified the error and corrected it by con-
sidering the context of the sentence.

6.2 Error Analysis
The analysis is performed on the best model (M3)
to better understand its performance. Figure 4 il-
lustrates that the model performs well in correcting
specific types of errors, particularly adjective and
pronoun inflections. Additionally, the figure indi-

cates that the model employs a conservative correc-
tion strategy. Despite being trained on extensive
synthetic data (relative to the HiWikiEdits training
split), the model only addresses essential errors and
avoids making unnecessary changes to the input,
indicating a deliberate and cautious approach to
adjustments. For a detailed error analysis, please
refer to Appendix C.

7 Conclusion and Future Work

In this paper, we tackle the challenge of gram-
matical error correction (GEC) for Hindi, a low-
resource language with complex linguistic features.
We introduced HiWikiEdits, a comprehensive cor-
pus of 8,137 human-edited sentences extracted
from Wikipedia, encompassing 17 distinct gram-
matical error types, with annotations performed
using the ERRANT toolkit.

We performed an extensive evaluation of syn-
thetic data generation methods. Specifically, we
found that Round Trip Translation (RTT) with a
high-resource language, notably English, provides
superior error correction results compared to lan-
guages that are linguistically closer to Hindi. This
finding suggests that linguistic distance may not be
as crucial as resource availability and translation
model quality in improving GEC performance. Our
investigation into the neural model-based synthetic
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error-generation technique reveals that it delivers
performance comparable to other synthetic data
generation methods, even in low-resource scenar-
ios.

Combining various datasets, including Direct-
Noise and round-trip translated data, improves
model performance, with our best model achiev-
ing a GLEU score of 73.86. We will release all
the synthetically generated Hindi GEC data under
the CC-BY-SA 4.0 license publicly for further re-
search.

In the future, we aim to extend the HiWikiEdits
dataset by incorporating a broader range of errors.
Additionally, we plan to investigate the transfer
learning capabilities of our GEC model with lin-
guistically similar languages, such as Marathi.

Overall, our research contributes valuable re-
sources and insights for GEC Hindi, offering
methodologies that can be applied to similar lan-
guages and advancing the field of grammatical er-
ror correction.

8 Limitations

Although the HiWikiEdits corpus is a valuable re-
source, it is limited to errors found in Wikipedia.
This may not fully represent the wide range of
grammatical errors encountered in other contexts
or types of text. Another limitation is related to the
translation models used for round-trip translation
(RTT). The uneven training of the model, driven
by disparities in the amount of training data, may
lead to biases favoring high-resource languages. As
a result, the observations regarding cross-lingual
transfer may not remain valid if the translation mod-
els are trained with an equal or comparable amount
of data.

9 Ethics Statement

We have utilized the data extracted from Wikipedia
to train and evaluate our models. We acknowledge
several key ethical considerations associated with
the use of such data. We have taken steps to ensure
that any data used is aggregated and anonymized
to mitigate any potential privacy concerns. Indi-
vidual contributions were not identified or singled
out in our analyses. Wikipedia, as a crowd-sourced
platform, may reflect various biases inherent in its
contributors and the sources they cite. We acknowl-
edge the potential for such biases to influence the
models trained on this data.
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A Implementation Details

We utilized the OpenNMT10 library (Klein et al.,
2018) for training all our models.

During training, each model is validated on a
validation split of HiWikiEdits and evaluated on an
unseen test set of HiWikiEdits. Early stopping is
implemented with patience of 5 epochs, and models
are validated at the end of each epoch.

Table 4 provides a comprehensive overview of
the hyperparameters used for training the models

Hyperparameter Value
Encoder Layers 6
Decoder Layers 6
Hidden Size 512
Word-Vector Size 512
Multi-Head Attention Heads 8
Optimizer Adam
Initial Learning Rate 1.0
Early Stopping Patience 5

Table 4: Hyperparameters used for training the models.

Data tokenization is performed using byte-
pair encoding (Sennrich et al., 2015) with the
subword-nmt11 tool, employing 32,000 merge op-
erations.

B HiWikiEdits Data Splits

In the process of partitioning the HiWikiEdits
dataset, we ensured that the distribution of errors
was consistent across all three data splits. Specif-
ically, each split maintained the same percentage
distribution of error categories as found in the orig-
inal dataset. This approach guarantees that each
subset of the data accurately represents the overall
error distribution, thereby allowing for a fair and

10https://opennmt.net/
11https://github.com/rsennrich/subword-nmt

unbiased evaluation of model performance across
different training, validation, and test sets. By pre-
serving this error distribution, we aim to mitigate
any potential skewing of results that could arise
from uneven error representation, ensuring that the
models are trained and evaluated on data that re-
flects the true variability and challenges present in
the full dataset.

C Error Analysis

Table 5 demonstrates that the model excels at cor-
recting specific types of errors, particularly adjec-
tive and pronoun inflections. Additionally, the ta-
ble reveals that the model adopts a conservative
approach when making corrections. Despite being
trained on large synthetic synthetic data (relative
to the train split of HiWikiEdits), the model only
addresses essential errors, indicating a deliberate
and cautious approach to adjustments.

To better understand the model’s behavior, we
analyzed the Levenshtein distance between source
and target sentences in two scenarios: where cor-
rections were made and where no corrections were
made.

For sentences where no corrections were applied,
the mean Levenshtein distance was 2.2 with a stan-
dard deviation of 1.5. This relatively small mean
distance, along with its low standard deviation, sug-
gests that the model generally preserves the original
text when it detects minimal errors.

In contrast, for sentences where corrections were
made, the mean Levenshtein distance was 3.3 with
a standard deviation of 3.7. This larger mean dis-
tance suggests that the model identifies and adjusts
more substantial errors, resulting in greater modi-
fications to the text. This indicates that the model
can effectively distinguish and correct errors when
they are more pronounced.

Figure 6 presents example sentences illustrating
cases where the model adopted a conservative ap-
proach to making edits. In both examples, the edit
distance between the source and target sentences
is 1, highlighting minimal changes made by the
model.

We also compared the performance of different
models across various error categories. Figure 7
illustrates the error-wise GLEU scores for each
model. Generally, all models achieve higher scores
when there are no errors in the source sentence.
This indicates that the models perform optimally
under ideal conditions, where the input text does

https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://opennmt.net/
https://github.com/rsennrich/subword-nmt
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Figure 5: Error Distribution across train, test, and valid splits for HiWikiEdits.

Error Category Total Sentences Corrected Unchanged Incorrect
NOOP 108 - 97 (89.81%) 11 (10.18%)
ADJ 56 22 (39.29%) 27 (48.21%) 7 (12.5%)
PRON_INFL 108 33 (30.56%) 57 (52.78%) 18 (16.66%)
PRON 108 26 (24.07%) 61 (56.48%) 21 (19.44%)
VERB_INFL 108 23 (21.30%) 64 (59.26%) 21 (19.44%)
SPELL 108 12 (11.11%) 78 (72.22%) 18 (16.66%)
ADP_INFL 108 9 (8.33%) 85 (78.70%) 14 (12.96%)
PROPN 108 9 (8.33%) 85 (78.70%) 14 (12.96%)
MORPH 38 3 (7.89%) 27 (71.05%) 8 (21.05%)
NOUN_INFL 44 3 (6.82%) 35 (79.55%) 6 (13.63)
NOUN 108 6 (5.56%) 75 (69.44%) 27 (25%)
VERB_FORM 43 2 (4.65%) 32 (74.42%) 9 (20.93%)
CONJ 74 3 (4.05%) 56 (75.68%) 15 (20.27%)
ADP 108 4 (3.70%) 87 (80.56%) 17 ((15.74)
VERB 88 3 (3.41%) 73 (82.95%) 12 (13.63)
ADJ_INFL 42 1 (2.38%) 35 (83.33%) 6 (14.28%)
OTHER 108 0 (0.00%) 79 (73.15%) 29 (26.85)
HiWikiEdits 1465 256 (17.47%) 1053 (71.88%) 156 (10.64%)

Table 5: Performance of Models Across Different Error Categories Sorted by Corrected Percentage.

Figure 6: Sentences where the model produced the same output, the edit distance of both of these sentences is 1.
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Figure 7: Error-wise GLEU scores for different models across various error categories. The figure shows that
models perform better when no errors are present in the source sentences. Furthermore, performance improves with
larger and higher-quality training datasets.

not contain any mistakes or imperfections.
The results in Figure 7 also reveal a trend where

the performance of the models improves as the
volume and quality of the training data increase.
More comprehensive and diverse training datasets
seem to enhance the models’ ability to handle er-
rors and produce higher GLEU scores, suggesting
that a larger and better-curated training corpus con-
tributes to better model robustness and accuracy.
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