
Proceedings of the 31st International Conference on Computational Linguistics, pages 6088–6104
January 19–24, 2025. ©2025 Association for Computational Linguistics

6088

Multi-Layered Evaluation Using a Fusion of Metrics and LLMs as Judges
in Open-Domain Question Answering

Rashin Rahnamoun and Mehrnoush Shamsfard
Shahid Beheshti University, Tehran, Iran

rahnamounrashin@gmail.com and m-shams@sbu.ac.ir

Abstract
Automatic evaluation of machine-generated
texts, such as answers in open-domain question
answering (Open-Domain QA), presents a com-
plex challenge involving cost efficiency, hard-
ware constraints, and high accuracy. Although
various metrics exist for comparing machine-
generated answers with reference (gold stan-
dard) answers, ranging from lexical metrics
(e.g., exact match) to semantic ones (e.g., co-
sine similarity) and using large language mod-
els (LLMs) as judges, none of these approaches
achieves perfect performance in terms of accu-
racy or cost. To address this issue, we pro-
pose two approaches to enhance evaluation.
First, we summarize long answers and use the
shortened versions in the evaluation process,
demonstrating that this adjustment significantly
improves both lexical matching and semantic-
based metrics evaluation results. Second, we
introduce a multi-layered evaluation method-
ology that combines different metrics tailored
to various scenarios. This combination of sim-
ple metrics delivers performance comparable to
LLMs as judges but at lower costs. Moreover,
our fused approach, which integrates both lex-
ical and semantic metrics with LLMs through
our formula, outperforms previous evaluation
solutions.

1 Introduction

The use of Large Language Models (LLMs) in
various applications has increased significantly in
recent years. These models are designed and op-
timized for a range of tasks and objectives, with
evaluation being a key factor in understanding their
performance. While human evaluation is consid-
ered the gold standard, it is both costly and time-
consuming. As a result, many prefer automated
evaluation methods, despite their higher error rates.
These evaluations span different tasks and domains.
In this paper, we focus on Open-domain Question
Answering, where models are expected to gener-
ate appropriate answers to questions (Yang et al.,

2019), a task whose evaluation poses unique chal-
lenges. Our goal is to develop an automated evalua-
tion method that, with existing tools, can be applied
across various scenarios with acceptable accuracy.

According to references (Zheng et al., 2023),
and (Wang et al., 2023a), the approach of using
LLMs, such as GPT-based models, as judges has
shown remarkable performance compared to tra-
ditional methods. However, in real-world applica-
tions, many users may not want to rely on third-
party services or expensive processes for evaluation.
To address this, we propose a multi-layer evalua-
tion methodology that incorporates both lexical-
based metrics, such as exact match and ROUGE
(Lin, 2004), and semantic-based metrics, includ-
ing BERTScore (Zhang et al., 2020) and cosine
similarity between vector embeddings, and others.
In addition, large language models (LLMs) serve
as judges to function as evaluation metrics, work-
ing in combination with these metrics to provide a
comprehensive evaluation.

Previous works, such as (Kamalloo et al., 2023),
(Adlakha et al., 2024), and (Wang et al., 2023a),
relied solely on these metrics for evaluation, se-
lecting the best one as the evaluator. However, our
fused approach demonstrates that combining these
metrics can improve accuracy. By applying our
proposed formula, we show that this fusion of met-
rics in a multi-layer evaluation surpasses recent
methods. Furthermore, extracting short answers
from long model-generated responses and using
them for evaluation significantly improves results
for both lexical-based and semantic-based metrics.

In Layer 1, we apply highly accurate metrics
that are effective at distinguishing between correct
and incorrect data. The remaining data, after this
filtering, is passed to Layer 2, where it is evalu-
ated using metrics based on voting. For testing, we
employed well-known datasets for Open-domain
Question Answering evaluation, Natural Questions
and TriviaQA which were recently used by (Chang
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et al., 2024), (Li et al., 2024a), (Yang et al., 2024),
(Li et al., 2024b) and (Cuconasu et al., 2024) works.
We avoided custom metrics, instead relying on es-
tablished metrics and both commercial and open-
source LLMs to achieve results across different
evaluation preferences.

Lexical-based metrics performed well after con-
verting long generated responses into shorter forms.
According to Kamalloo et al. (2023), the issue of
low accuracy in lexical-based metrics was related
to answer length; by addressing this, these metrics
became reliable for filtering tasks. We also experi-
mented with combining metrics based on varying
requirements, budgets, and developmental needs.
For low-budget solutions in Layer 2, we used lexi-
cal matching-based metrics, which performed simi-
larly to GPT-3.5 Turbo as an evaluator.

Finally, by utilizing all available LLMs and met-
rics, and applying the optimal combination calcu-
lated by Eq. 7, we achieved a 3% improvement in
the best automated evaluation results for Natural
Questions, with 87% accuracy, and a 1% improve-
ment in TriviaQA, with 97% accuracy in the short-
answer form, for those seeking the most accurate
results.

2 Related Work

2.1 LLM Evaluation

Researchers have explored various evaluation meth-
ods for large language models (LLMs) across differ-
ent domains. For instance, An et al. (2024) tackled
the issue of evaluating LLMs on tasks requiring
long-context handling, while FineSurE Song et al.
(2024) concentrated on text summarization perfor-
mance. Another framework for assessing evalua-
tion metrics was proposed by Xiao et al. (2023),
and Balloccu et al. (2024) examined data leakage
issues in closed-source LLMs.

Noteworthy evaluation techniques include zero-
shot natural language evaluation through pairwise
comparisons of LLM outputs (Liusie et al., 2024)
and a method for assessing LLMs in conversational
question answering tasks (Li et al., 2023). These
studies underscore the complexity of automating
LLM evaluation due to the diverse range of tasks
and applications, highlighting the need for task-
specific evaluation strategies.

2.2 Open-Domain Question Answering

In this paper, we focus on evaluating the Open-
Domain Question Answering task, where the goal

is for the model to generate accurate answers with-
out additional context or clues about the correct
answer. Evaluating this task is particularly difficult.
As noted by Kamalloo et al. (2023), models often
generate correct answers that may not match the
"golden" reference answers exactly or may produce
long, verbose responses that are hard to assess ac-
curately. Their investigation into misjudgments in
evaluation highlighted the absence of a fully reli-
able alternative to human evaluation.

Other work has explored evaluation for
instruction-following models in question answer-
ing and highlighted the limitations of traditional
metrics. (Adlakha et al., 2024) introduced a recall-
based metric, while (Wang et al., 2023a) empha-
sized the importance of human evaluation and
created a human-annotated dataset. Additionally,
(Zheng et al., 2023) explored the use of LLMs as
judges, suggesting it as a potential method for au-
tomating the evaluation process.

Furthermore, a new method introduced by
Yona et al. (2024) proposes evaluating Open-
Domain Question Answering models using a multi-
granularity approach, providing a more nuanced
assessment. Recently, many works have been pro-
posed for achieving models or solutions for QA
tasks, such as those by (Schimanski et al., 2024),
(Chu et al., 2024), (Chen et al., 2024), (Huang et al.,
2024), and (Faldu et al., 2024), which highlight that
this task is challenging and underscore the impor-
tance of evaluating solutions.

2.3 Evaluation Metrics
Commonly used evaluation metrics can be catego-
rized into three groups: lexical matching, semantic-
based metrics, and the use of LLMs as judges. Lex-
ical matching metrics include Recall and Precision,
which compare tokens from reference and model-
generated answers, as suggested by Adlakha et al.
(2024). BLEU Score (Papineni et al., 2002) and
ROUGE Score (Lin, 2004) evaluate text similarity
using n-grams, while METEOR Score (Banerjee
and Lavie, 2005) relies on the harmonic mean. Ex-
act Match, on the other hand, requires a complete
match with the reference answer. Another type
of evaluation is based on semantic-based metrics,
commonly used for QA tasks, as shown by Risch
et al. (2021) with a bi-encoder-based metric that
utilizes sentence transformers to calculate seman-
tic similarity. Additionally, BERTScore, proposed
by Zhang et al. (2020), measures token-level sim-
ilarity. Another approach to evaluation leverages
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LLMs as judges, where the models function as
metrics for assessment, as explored by Zheng et al.
(2023),Kamalloo et al. (2023),Adlakha et al. (2024)
and Wang et al. (2023a).

3 Methodology

3.1 Problem Definition
As input, we consider a dataset D consisting of
tuples (qi, ri,mi,Hi), where qi ∈ Q denotes the
i-th question, with Q representing the set of all
possible questions. The corresponding reference
(gold) answer for each question is given by ri ∈
R(qi), where R is the set of all reference answers.
The model-generated answer for the question qi
is mi ∈ M(qi), with M being the space of all
possible model-generated responses. Additionally,
the human evaluation score for the pair (ri,mi)
is represented by Hi ∈ H , where H denotes the
space of human evaluation scores.

Our objective is to develop an evaluation pro-
cedure fe : M × R → R, which computes an
automated evaluation score fe(ri,mi) for the pair
(ri,mi). The aim is to minimize the difference
between the human evaluation score Hi and the
automated score fe(ri,mi), which can be defined
as finding:

argmin
fe

n∑
i=1

|fe(ri,mi)−Hi|2 . (1)

Thus, our goal is to refine the evaluation proce-
dure fe such that it achieves the closest possible
alignment with human evaluations Hi.

3.2 Metric Functions
To calculate the evaluation score, we use a combi-
nation of different metrics fM (ri,mi), where each
metric outputs a value within the range [0, 1]. Let
fM (ri,mi) be a metric that outputs a value in [0, 1],
and let TM be a threshold value. The evaluation of
the model’s response mi is defined using the binary
decision function ϕ(ri,mi) as follows:

ϕ(ri,mi) =

{
1, if fM (ri,mi) ≥ TM

0, if fM (ri,mi) < TM
(2)

In our experiments, we set the threshold TM =
0.5 because human evaluation is represented in
binary form, where 0 indicates incorrect and 1 in-
dicates correct. To map the values to this binary
format, we selected the midpoint as the threshold.
These metrics go beyond just numerical values.
Large Language Models (LLMs) can be used as

evaluators, comparing the reference response with
the model-generated response on a scale from 0 to
1.

3.3 Metric Scoring

The first step in selecting appropriate metrics for
evaluation is to assess the accuracy of each metric
relative to human judgment. To assign a score to
each metric, we define the accuracy of the metric as
the extent to which its evaluation aligns with human
assessment. Let fM (ri,mi) represent the metric
applied to the reference response ri and the model’s
response mi. The accuracy of the model is calcu-
lated by comparing the model’s metric fM (ri,mi)
against a threshold TM . If the metric meets or
exceeds the threshold, the result is treated as a
boolean condition, which is then compared to the
human evaluation boolean value Hi. The accuracy
is calculated as:

Acc =
1

|D|
∑
i∈D

I(δ(fM (ri,mi) ≥ TM ) = Hi) (3)

The function I() is an indicator function that out-
puts 1 if the condition inside it is true (i.e., if the
comparison fM (ri,mi) ≥ TM aligns with the hu-
man evaluation Hi), and 0 otherwise. Similarly,
δ(fM (ri,mi) ≥ TM ) also converts the comparison
into a boolean value, returning 1 if the condition
fM (ri,mi) ≥ TM is satisfied, and 0 if it is not.

3.4 Evaluation Procedure

3.4.1 Extracting Short Answers

Before delving into the evaluation procedure, the
first step is to calculate the accuracy of the met-
rics for both long model-generated answers and
short extracted answers, as response length can
impact the evaluation. The model’s response may
also be transformed from long to short form, de-
pending on the specific question. To achieve
this, we utilized a pre-trained RoBERTa-base
model(Zhuang et al., 2021), fine-tuned on the
SQuAD 2.0 dataset(Rajpurkar et al., 2018). This
model, which is commonly used for extracting
short answers from context , is one of the most
popular models available through Hugging Face1

for this task. We selected it due to its ease of use,
and widespread availability to the public.

1https://huggingface.co/deepset/
roberta-base-squad2

https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/deepset/roberta-base-squad2
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Dataset: Natural Questions

Question: Who plays the voice of johnny in sing?
Model Answer: Taron Egerton plays the voice of
Johnny in Sing.
Extracted Short Answer: Taron Egerton
Reference Answer: Taron Egerton
Human Evaluation: True

Dataset: TriviaQA

Question: Who did Germany defeat to win the 1990
FIFA World Cup?
Model Answer: Germany defeated Argentina 1-0 in the
1990 FIFA World Cup Final.
Extracted Short Answer: Argentina
Reference Answer: Argentina
Human Evaluation: True

Figure 1: Two examples from our English datasets, il-
lustrate the short answer extraction process output. It is
important to note that human evaluation is based on the
model’s full answer.

Figure 1 shows examples of the input and output
generated by this model. The accuracy of the long-
response model and the accuracy of the extracted
short-response model are calculated by comparing
the model’s metric fM (ri,mi) against a threshold
TM .

Although human evaluation focuses on long-
form answers, converting the model’s output into
short-form answers may introduce errors for met-
rics that depend on short-form responses. However,
in certain situations, this conversion can enhance
the performance of specific metrics, despite the
potential for occasional inaccuracies.

3.4.2 Threshold-Based Filtering (Layer 1)

The first layer of the evaluation procedure involves
selecting highly accurate metrics that can effec-
tively filter relevant data within their respective
domains. In the filtering procedure, the goal is to
select appropriate metrics that achieve high accu-
racy across various evaluation cases, aiming for
metrics that can achieve a high accuracy rate, sur-
passing a threshold, such as 97%. To achieve this,
we compute the accuracy using our formula from
Eq. 3 for both long-form and short-form model-
generated answers.

After selecting and sorting highly accurate met-
rics {M1,M2, . . . ,Mn} from Eq. 3, the evaluation
procedure begins. The first metric, M1, is applied
to filter the relevant data. The subset of data filtered
by M1 is represented as:

D1 = {di ∈ D | ϕM1(ri,mi) = 1} (4)

where ϕM1(ri,mi) represents the metric value.
If fM ≥ TM , the corresponding data will be

filtered. The remaining data that is not filtered by
M1 is then passed to the next metric, M2, and this
process is repeated for each subsequent metric:

Dk+1 = {i ∈ (D \Dk) | ϕMk+1(ri,mi) = 1} (5)

where Dk is the subset of data filtered by the previ-
ous metric Mk.

This iterative procedure continues until the final
metric Mn is applied. The remaining data after
filtering by all metrics in the layer are represented
by:

Dremaining = D \
n⋃

k=1

Dk (6)

where Dremaining denotes the data that were not
filtered by any of the metrics in Layer 1. These
remaining data will be forwarded to Layer 2 for
further evaluation.

3.4.3 Voting-Based Evaluation (Layer 2)
The remaining data from Layer 1 is evaluated using
a voting mechanism. In this layer, most of the
existing metrics, along with the remaining data,
are assessed. For the evaluation, we employ the
following our formula Eq. 7, which demonstrates
the method for selecting appropriate metrics.

The first term in the formula, Acc(fMi), repre-
sents the accuracy of each metric based on available
human evaluations. The second term reflects the
correlations between the metrics. To ensure that
the metrics selected by the voting mechanism do
not exhibit high correlations, we introduce a corre-
lation threshold Eq. 8, denoted by Θmin and Θmax.
In our experiments, the lower bound Θmin is set to
0.6, while the upper bound Θmax is set to 0.9. This
constraint ensures that highly accurate metrics do
not have low and very high correlations with one
another. The reasons why we have chosen these
numbers, along with their details, are provided in
the Appendix A.

We computed correlations using Spearman (ρs),
Pearson (ρp), and Kendall Tau (τ ) (Kendall, 1945)
, setting k = 3 in this formula. The third term of
the formula accounts for the comparison between
metric correlations and human judgment, following
the method used for comparing the metrics with
human judgment in (Liu et al., 2023). For simplic-
ity, we have set β, λ and γ to 1. However, these
coefficients could be adjusted to reflect the relative
importance of each term. Further details on the use



6092

and application of this formula are provided in the
Appendix B. In voting-based evaluation, the num-
ber of metrics must be odd because values above
or below TM represent a “yes” or “no” vote, re-
spectively. For a final evaluation, it is necessary
to avoid ambiguous results, which can occur when
using an even number of metrics, as it may lead to
indecisive outcomes. The formula for selecting the
metrics in the voting-based evaluation is given by:

S = arg max
S⊂M,|S| odd

β[ ∑
fMi

∈S

Acc(fMi) ]

− λ

 ∑
fMi

,fMj
∈S

i<j

1

k

k∑
l=1

ρl(fMi , fMj )


+ γ

 ∑
fMi

∈S

1

k

k∑
l=1

ρl(fMi ,Hi)


(7)

Here, S denotes the set of selected metrics,
where the number of selected metrics must be odd,
Acc(fMi) represents the accuracy of the metric
fMi , and ρl(fMi , fMj ) is the correlation between
metrics fMi and fMj . The term ρl(fMi ,Hi) cap-
tures the correlation between metric fMi and hu-
man judgment Hi.

The constraint on the correlations between met-
rics is expressed as:

Θmin ≤ 1

k

k∑
l=1

ρl(fMi , fMj ) ≤ Θmax

for all fMi , fMj ∈ S

(8)

This constraint ensures that the selected metrics
exhibit correlations within the predefined range
[Θmin,Θmax], thereby avoiding highly correlated
metrics in the final selection.

The voting system aggregates the results from
various metrics to produce a final decision. the
voting mechanism is represented by the following
equation:

Vevaluation =
∑

fMi
∈S

v(fMi) (9)

Here, S denotes the set of selected metrics from
Eq. 7, and v(fMi) corresponds to the vote provided
by the metric fMi . The final result of evaluation,
Vevaluation, is the simple sum of the votes from the
selected metrics. The evaluation is based on these
aggregated results.

4 Experiments

Following Wang et al. (2023a) and Yona et al.
(2024), we used the TriviaQA and Natural Ques-
tions datasets, both popular benchmarks in the
open-domain QA task ,to evaluate our automated
evaluation methodology. Specifically, our objec-
tive is not to evaluate and compare different mod-
els on the same tasks, but to develop an efficient
automated evaluation method with an acceptable
error rate. To address this, we tested our automatic
evaluation methodology on the model-generated
answers discussed in Section 3, in order to find
solutions to our problem, as formally defined in
Eq. 1.

4.1 Datasets

Following Adlakha et al. (2024), Wang et al.
(2023a) and Kamalloo et al. (2023), we used the
TriviaQA (Joshi et al., 2017) and Natural Ques-
tions (Kwiatkowski et al., 2019) datasets, both
popular benchmarks in the Open-Domain QA task
and commonly used in Wang et al. (2023b), Fang
et al. (2022),Izacard and Grave (2021) and Petroni
et al. (2021), to evaluate our automated evalua-
tion methodology. We utilized filtered versions of
these datasets from (Wang et al., 2023a), excluding
question-answer pairs with answers that were no
longer suitable, such as those whose answers had
changed over time.
Natural Questions. Natural Questions includes
real user queries submitted to Google Search and
answers sourced from Wikipedia, as annotated by
human evaluators. From the filtered and model-
generated responses of this dataset, we randomly
selected 250 unique question-answer pairs from
(Wang et al., 2023a), which were evaluated by five
models: FiD, GPT-3.5, ChatGPT-3.5, ChatGPT-
4, and NewBing. Human reviewers classified the
responses as true, false, or improper, resulting in
1,088 valid pairs from an initial 1,250.
TriviaQA. TriviaQA, a reading comprehension
dataset, we randomly selected 250 unique question-
answer pairs from (Wang et al., 2023a). These
were also evaluated by the same five models and
reviewed by humans, leading to 1,245 valid pairs
from an initial 1,250 after removing improper re-
sponses.

Both datasets, which include human annotations,
were used from (Wang et al., 2023a), and the prepa-
ration steps are also explained in it.
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4.2 Evaluation Methods

We applied widely used evaluation methods (Wang
et al., 2023a) and our own custom approach with
various configurations to achieve high accuracy
compared to human judgments.
Lexical Matching. Lexical matching metrics are
commonly used for model evaluation. These met-
rics compare reference answers with generated text
but often perform poorly when there is no exact
reference answer in generated answers or with long
responses according to Kamalloo et al. (2023). This
includes Exact Match, which requires an exact
match with the reference answer; BLEU Score (Pa-
pineni et al., 2002) and ROUGE Score (Lin, 2004),
which use n-grams to compare text according to
their formulas; and METEOR Score (Banerjee and
Lavie, 2005), which is based on the harmonic mean.
Additionally, Word Matching is a custom metric
that identifies matching words between the refer-
ence and generated text and calculates the accuracy
percentage. Recall and Precision metrics, based
on tokens from the reference and model-generated
answers, were also used, as proposed by Adlakha
et al. (2024).
Semantic Based. These scores focus on the se-
mantics of text rather than finding matches. We
employed BERTScore(Zhang et al., 2020), which
uses token similarity through contextual embed-
dings. Additionally, we used BERT-based uncased
embeddings combined with cosine similarity for
evaluation. We also utilized the all-MiniLM-L6-v2
2 model, a popular Hugging Face sentence trans-
former that operates using cosine similarity.
LLMs as Judges. Recently, strong LLMs used
as judges have shown impressive results corre-
lated with human evaluations. We compared the
performance of different LLMs, including Llama
3.1 8B and Llama 3.1 70B (Dubey et al., 2024),
both of which demonstrated excellent performance
among open-source models. Additionally, GPT-4-o
and GPT-3.5 Turbo(OpenAI et al., 2024) also per-
formed very well in these evaluations. The prompts
for LLMs to act as metrics are provided in Ap-
pendix C.
Our Method Setups. We explored different met-
rics tailored to specific needs. The first setup uses
simple, widely-used lexical matching metrics that
do not require third-party connections or powerful
hardware, offering a cost-effective solution. The

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

second setup combines these simple lexical match-
ing metrics with semantic-based ones for semantic
similarity checking, which are publicly available
and require minimal hardware.

The third setup builds on previous lexical match-
ing and semantic-based metrics by incorporating
Llama 3.1 (70B and 8B), an open-source model
known for strong performance. The fourth setup
uses only Llama 3.1 8B to accommodate the hard-
ware limitations of running the 70B model locally.
The fifth setup relies solely on large language mod-
els (LLMs), appealing to users preferring third-
party APIs without the need for development com-
plexity. The sixth setup simplifies the process by
using all metrics with just one LLM using Eq. 7.
In the seventh setup, we applied all the metrics
described to find the most suitable ones for our con-
figuration, which required some human-annotated
data for optimal performance using our formula
from Eq. 7. Lastly, the eighth setup is the default,
using the most commonly used metrics selected
via Eq. 7 without customizing them, as we did not
have access to human-annotated data.

4.3 Results
We applied commonly used automated evaluation
methods, as outlined in Section 4.2, to assess the ac-
curacy of model-generated answers against human
judgments on the Natural Questions and TriviaQA
datasets in Section 4.1. In some cases, we provided
gold-standard answers to the models (denoted by
“(Gold)”) and compared the results. Short answers
were extracted from model responses, as described
in Section 3.3, and evaluated using different met-
rics for both long and short-form answers.

The original responses were in long form, but to
further investigate the results, short answers were
extracted and evaluated, which are detailed in Ta-
ble 1.

4.4 Discussion and Analysis
Table 1 shows that, although Adlakha et al. (2024)
demonstrated that commonly used lexical match-
ing metrics perform poorly in open-domain QA,
our results suggest otherwise. After applying our
methodology, which is explained in Section 3.3,
where we converted the model-generated responses
into shorter forms, we observe significant improve-
ments in the accuracy of lexical matching metrics.
This change leads to more than a 60% improvement
in the accuracy of lexical matching metrics. Addi-
tionally, the results indicate over a 40% improve-

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Metric Natural Questions TriviaQA
Acclong Accshort Acclong Accshort

Exact Match 0.38 0.67 0.21 0.82
BLEU Score 0.36 0.57 0.20 0.64
METEOR Score 0.42 0.79 0.30 0.93
ROUGE-2 0.38 0.57 0.25 0.40
ROUGE-L 0.42 0.72 0.29 0.56
Word Matching 0.71 0.81 0.50 0.91
Precision 0.41 0.79 0.34 0.93
Recall 0.81 0.82 0.59 0.93

BERT Score 0.50 0.77 0.38 0.88
Sentence Transformer 0.57 0.84 0.55 0.94
BERT Embedding 0.75 0.81 0.49 0.92

GPT-4-o (Gold) 0.84 0.83 0.96 0.96
GPT-4-o 0.76 0.74 0.89 0.89
GPT-3.5 Turbo (Gold) 0.82 0.80 0.91 0.90
GPT-3.5 Turbo 0.73 0.73 0.83 0.81
Meta-Llama 3.1 70B (Gold) 0.85 0.82 0.96 0.95
Meta-Llama 3.1 70B 0.72 0.71 0.84 0.83
Meta-Llama 3.1 8B (Gold) 0.77 0.79 0.72 0.65
Meta-Llama 3.1 8B 0.68 0.67 0.80 0.77

Table 1: The table compares the accuracy of various evaluation metrics for long and short answers from the Natural
Questions and TriviaQA datasets. These metrics include lexical-based, semantic-based methods, and LLMs as
judges. Results are split based on whether the LLMs had access to gold (reference) answers or not. The best results
in each group are bolded, while the overall highest accuracy for each dataset is both bolded and underlined.

Evaluation Setup Natural Questions TriviaQA

1.Lexical Matching 0.81 0.92
2.Lexical Matching + Semantic-Based 0.83 0.93
3.Lexical Matching + Semantic-Based + Llama 3.1 All 0.86 0.96
4.Lexical Matching + Semantic-Based + Only Llama 3.1 8B 0.85 0.94
5.Only LLMs 0.82 0.96
6.Metrics Scoring Calculation + Only One LLM 0.85 0.96
7.Metrics Scoring Calculation 0.85 0.97
8.Metrics Scoring Calculation Default 0.87 0.97

Table 2: This table presents the accuracy of our different methodological setups, as explained in Section 4.2, for
Natural Questions and TriviaQA datasets separately. Metrics selection calculation is described in Eq. 7. The results
are based on short answer extraction.

ment in the accuracy of semantic-based metrics
such as Sentence Transformers and BERT embed-
ding cosine similarity. Since these metrics do not
require third-party external APIs, have lower hard-
ware requirements, and are not time-consuming,
many may prefer to use them for automatic evalua-
tions. The best accuracies were achieved by GPT-
4-o and Llama 3.1 70B, both of which were used as
judges. Llama 3.1 70B and 8B could be excellent
choices for automatic evaluation, as they demon-
strated no significant performance differences com-
pared to open-source models and commercial ones
in Open-domain QA.

Our experiments show the high accuracy of the
lexical matching and semantic-based metrics ap-
plied to the short-form versions of the Natural
Questions and TriviaQA datasets. The best perfor-
mance in evaluating correct answers was achieved
using Exact Match and BLEU Score, both with

100% accuracy. These metrics are simple, cost-
effective, and easy to implement. Interestingly,
when we applied our methodology (Layer 1 filter-
ing), described in Section 3.4.2, to extract model-
generated short answers from the Natural Ques-
tions and TriviaQA datasets, we observed notable
results. Specifically, 40.4% of the Natural Ques-
tions data was evaluated with 99% accuracy, and
65.7% of the TriviaQA data was filtered with 100%
accuracy. This was achieved simply by converting
long answers into short ones and evaluating them
using basic lexical matching metrics. Both Natural
Questions and TriviaQA are widely used bench-
marks in open-domain QA. The detailed results
can be found in Appendix D, while Appendix E
presents the impact of context length on both lexi-
cal matching and semantic-based metrics. Table 2
presents important results. These results are based
on the short answer form. In the setups described in
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Section 4.2, we used Exact Match and BLEU Score
for Layer 1 filtering and only employed three met-
rics in Layer 2 voting. Model-generated answers
from Natural Questions and TriviaQA were con-
verted to short form. Layer 1 filtering was applied
in all setups except the Only LLMs setup, which
did not include Layer 1 filtering. The results indi-
cate that using lexical matching metrics for Layer
2 can achieve evaluation accuracy comparable to
GPT-3.5 Turbo, as shown in Table 1. Incorporat-
ing semantic-based metrics slightly improved the
results, while adding only an open-source Llama
LLM in Layer 2 yielded better results. Using only
the Llama LLM 8B, which has lower hardware re-
quirements, produced better results than the second
setup but was weaker than the third setup. For se-
tups using only LLMs without Layer 1 filtering,
results for the Natural Questions dataset were even
weaker than in the second setup.

Using Eq. 7 to calculate metrics for Layer 2, a
single LLM in Layer 2 showed minimal differences
compared to the third setup. In the seventh setup,
all available metrics for Layer 2, selected using
Eq. 7, required some human-annotated data to cus-
tomize the metrics for the dataset. The latest setup,
which did not involve dataset-specific customiza-
tions and used overall performance metrics selected
for those without human-annotated data chosen by
Equation Eq. 7, along with Recall, Llama 3.1 70B,
and GPT-4-o in the voting layer. This achieved
3% better results for Natural Questions in short
form, with 87% accuracy and 1% better for Trivi-
aQA in short form, with 97% accuracy compared to
GPT-4-o, which had been the best evaluation metric
for both datasets. Interestingly, using only lexical
matching and semantic-based metrics that do not
require strong hardware or high costs resulted in
accuracy just 4% lower than the best possible setup
for automatic evaluation using well-known metrics
and LLMs.

5 Conclusions

In this paper, we demonstrated that our fused ap-
proach, which utilizes our proposed formula for
metrics selection and combines lexical-based met-
rics, semantic-based metrics, and LLMs as judges,
achieves strong performance in the automatic eval-
uation of open-domain QA datasets. We also high-
lighted the often-overlooked effectiveness of lexi-
cal matching metrics, which perform well in evalu-
ating short answers. This is particularly true given

that many generated model answers are lengthy;
our approach, which extracts short answers from
these long responses, significantly improved evalu-
ation results using these simple, low-computation
metrics. Furthermore, our best evaluation setup,
guided by our proposed formula, outperformed
GPT-4-o, previously considered the top performer.
Future work will focus on developing automated
evaluation methods for Open-domain QA tasks that
involve datasets without reference answers.

6 Limitations

Our methodology relies on publicly available pre-
trained models as metrics. While these models
perform well on general datasets, they may not be
optimal for domain-specific contexts. Addition-
ally, many of these models are trained primarily on
English-language data, limiting their effectiveness
for low-resource languages.

Furthermore, our testing was limited to the Nat-
ural Questions and TriviaQA datasets, which are
well-established benchmarks in open-domain QA
tasks. Incorporating a broader range of datasets
could provide more comprehensive results and en-
hance diversity. The choice of datasets was influ-
enced by the availability of publicly annotated hu-
man evaluations. Access to more human-annotated
datasets in this domain would likely improve the di-
versity and robustness of the evaluation results and
also the effectiveness of short answer extraction in
lexical-based metrics is related to whether a gold
answer appears within a longer answer. If the gold
answer is not present but the long answer is correct,
the short answer extraction methodology may not
be useful. It appears that our dataset primarily in-
cludes gold answers within model-generated long
answers for correct responses.
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A Correlation Matrix of Metrics

We explain the reason behind choosing Θmin = 0.6
and Θmax = 0.9. In the correlation matrix, the
correlation between metrics is displayed. Metrics
with a correlation below Θmin (i.e., 0.6) generally
exhibit unacceptable accuracy. Additionally, there
are not many metrics with a correlation of 0.9 or
higher. Even if such metrics are present, they are
not ideal candidates for voting as their high cor-
relation may reduce the benefit of including them.
Instead, it is preferable to select other highly ac-
curate metrics with lower correlation for voting
purposes.

We calculate the correlations between LLMs for
the Natural Questions and TriviaQA datasets sepa-
rately. These correlations are shown when model-
generated responses are converted into short form,
as depicted in Figures 4 and 5, respectively. Ad-
ditionally, we compute the correlations between
lexical and semantic-based metrics, which are il-
lustrated in Figures 6 and 7 for these datasets.

B Detailed Formula Calculation in Our
Experiments

This is the general form of our formula, as dis-
cussed in Eq. 7, We will now provide more details
on the calculations used in our experiments.

S = arg max
S⊂M,|S| odd

[
β

 ∑
fMi

∈S

Acc(fMi)



− λ

 ∑
fMi

,fMj
∈S

i<j

1

k

k∑
l=1

ρl(fMi , fMj )


+ γ

 ∑
fMi

∈S

1

k

k∑
l=1

ρl(fMi ,Hi)

]
(10)

where

Θmin ≤
k∑

l=1

ρl(fMi , fMj ) ≤ Θmax

for all fMi , fMj ∈ S.

(11)

In our experiments, we utilized three correlation
coefficients: Spearman’s ρS , Kendall’s τ , and Pear-
son’s ρP . A voting system with 3 voters, one for
each correlation method, was used to select the best
metrics by maximizing the combined rankings of
ρS , τ , and ρP for pairs fMi , fMj and metrics with
the human evaluation Hi.

S = arg max
S⊂M,|S| odd

[ ∑
fMi

∈S

Acc(fMi)

− λ

( ∑
fMi

,fMj
∈S

i<j

1

3

(
ρS(fMi , fMj )

+ τ(fMi , fMj ) + ρP (fMi , fMj )
))

+ γ

( ∑
fMi

∈S

1

3

(
ρS(fMi ,Hi)

+ τ(fMi ,Hi) + ρP (fMi ,Hi)
))]

(12)

In our case, we considered Θmin and Θmax to be
0.6 and 0.9, respectively, with

Θmin ≤ 1

3

(
ρS(fMi , fMj )

+ τ(fMi , fMj ) + ρP (fMi , fMj )
)

≤ Θmax

for all fMi , fMj ∈ S.

(13)

In the formulas, S is an odd-sized subset of metrics
M. The parameter β scales the sum of metric val-
ues Acc(fMi) within S. With k = 3 representing
the number of correlations used. For Spearman’s
correlation, dij,n is the rank difference and N is the
number of pairs. Kendall’s tau uses concord and
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discord for concordant and discordant pairs, respec-
tively, with Nij as the number of pairs compared.
Pearson’s correlation involves xij,n and yij,n as
data points, x̄ij and ȳij as their means, and NiH as
the number of pairs between fMi and Hi. We can
expand the formula as follows:

S = arg max
S⊂M,|S| odd
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β
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Acc(fMi
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 ∑
fMi

,fMj
∈S

i<j

1

3

(
1 −

6
∑N

n=1 d2
ij,n

N(N2 − 1)

+
concord(fMi

, fMj
) − discord(fMi

, fMj
)

1
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∑Nij

n=1(yij,n − ȳij)2




+ γ

 ∑
fMi

∈S

1

3

(
1 −

6
∑N

n=1 d2
iH,n

N(N2 − 1)

+
concord(fMi

,Hi) − discord(fMi
,Hi)

1
2NiH(NiH − 1)

+

∑NiH
n=1 (xiH,n − x̄iH)(yiH,n − ȳiH)√∑NiH

n=1 (xiH,n − x̄iH)2
∑NiH

n=1 (yiH,n − ȳiH)2


]

(14)

C Prompts for LLM to Act as a Metric
Scorer

The following prompts instruct the LLM to act
as a metric scorer, evaluating the correctness of
predicted answers on a scale from 0 to 1. Depicted
in 2 and 3

Given the question: '{question}', the predicted 

answer: '{answer}', and the correct gold 

answer: '{gold_answer}', score the predicted 

answer from 0 to 1 based on its correctness 

and similarity to the gold answer. Just return 

the score in the format: score:<value>

Figure 2: Prompt used to instruct the LLM to score the
predicted answer from 0 to 1 based on its correctness
and similarity to the provided gold answer.

D Filtering Metrics Threshold Accuracy
Comparison

Table 3 presents the accuracy comparison between
automated evaluation metrics and human judg-
ments. A threshold TM of 0.5 was used in our

Given the question: '{question}' and the 

predicted answer: '{answer}', score the 

predicted answer from 0 to 1 based on its 

correctness. Just return the score in the 

format: score:<value>

Figure 3: Prompt used to instruct the LLM to score the
predicted answer from 0 to 1 based on its correctness,
without access to a gold answer.

experiments.The accuracy is calculated by true pos-
itive fM >= TM and true negative fM < TM

E Effect of Context Length on Lexical
Matching and Semantic-Based Metrics
Accuracy

We present an analysis of the effect of convert-
ing model-generated answers into short-form ver-
sus long-form on accuracy. Specifically, we com-
pare the accuracy of lexical matching and semantic-
based metrics when applied to both short and long
answers. As shown in Figure 8
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Llama-3_1-70B_gold

Llama-3_1-70B

Judge

1.00 0.46 0.80 0.25 0.85 0.16 0.78 0.31 0.63

0.46 1.00 0.37 0.42 0.44 0.26 0.42 0.45 0.35

0.80 0.37 1.00 0.24 0.75 0.10 0.64 0.23 0.52

0.25 0.42 0.24 1.00 0.25 0.32 0.25 0.34 0.18

0.85 0.44 0.75 0.25 1.00 0.19 0.75 0.29 0.57

0.16 0.26 0.10 0.32 0.19 1.00 0.19 0.35 0.14

0.78 0.42 0.64 0.25 0.75 0.19 1.00 0.35 0.58

0.31 0.45 0.23 0.34 0.29 0.35 0.35 1.00 0.19

0.63 0.35 0.52 0.18 0.57 0.14 0.58 0.19 1.00

Natural Questions (short) Correlation Matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4: Correlation matrix for the Natural Questions, LLMs metrics. Judge is human evaluation.
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Llama-3_1-70B

Judge

1.00 0.65 0.75 0.30 0.33 0.15 0.88 0.39 0.84

0.65 1.00 0.53 0.40 0.27 0.26 0.64 0.55 0.59

0.75 0.53 1.00 0.37 0.29 0.18 0.73 0.39 0.68

0.30 0.40 0.37 1.00 0.15 0.44 0.30 0.37 0.29

0.33 0.27 0.29 0.15 1.00 0.16 0.34 0.20 0.33

0.15 0.26 0.18 0.44 0.16 1.00 0.16 0.38 0.13

0.88 0.64 0.73 0.30 0.34 0.16 1.00 0.42 0.85

0.39 0.55 0.39 0.37 0.20 0.38 0.42 1.00 0.38

0.84 0.59 0.68 0.29 0.33 0.13 0.85 0.38 1.00

TriviaQA (short) Correlation Matrix
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1.00

Figure 5: Correlation matrix for the TriviaQA, LLMs metrics. Judge is human evaluation.
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SentenceTransformer

BertEmbedding

WordMatching

Judge

1.00 0.70 0.65 0.70 0.61 0.49 0.81 0.76 0.53 -0.06 0.79 0.50

0.70 1.00 0.47 0.59 0.38 0.38 0.64 0.60 0.42 -0.00 0.60 0.40

0.65 0.47 1.00 0.71 0.76 0.37 0.62 0.59 0.41 -0.01 0.58 0.37

0.70 0.59 0.71 1.00 0.66 0.52 0.80 0.78 0.57 0.19 0.76 0.50

0.61 0.38 0.76 0.66 1.00 0.49 0.70 0.75 0.54 0.22 0.70 0.45

0.49 0.38 0.37 0.52 0.49 1.00 0.56 0.61 0.70 0.27 0.59 0.44

0.81 0.64 0.62 0.80 0.70 0.56 1.00 0.82 0.64 0.22 0.81 0.57

0.76 0.60 0.59 0.78 0.75 0.61 0.82 1.00 0.69 0.16 0.93 0.61

0.53 0.42 0.41 0.57 0.54 0.70 0.64 0.69 1.00 0.29 0.67 0.62

-0.06 -0.00 -0.01 0.19 0.22 0.27 0.22 0.16 0.29 1.00 0.12 0.16

0.79 0.60 0.58 0.76 0.70 0.59 0.81 0.93 0.67 0.12 1.00 0.59

0.50 0.40 0.37 0.50 0.45 0.44 0.57 0.61 0.62 0.16 0.59 1.00

Natural Questions (short) Correlation Matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: Correlation matrix for the Natural Questions, lexical and semantic-based metrics. Judge is human
evaluation.
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METEOR
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Judge

1.00 0.64 0.26 0.27 0.49 0.50 0.80 0.77 0.57 0.44 0.82 0.61

0.64 1.00 0.10 0.17 0.09 0.35 0.55 0.53 0.40 0.28 0.56 0.42

0.26 0.10 1.00 0.69 0.46 0.18 0.29 0.27 0.21 0.03 0.28 0.22

0.27 0.17 0.69 1.00 0.44 0.26 0.38 0.35 0.30 0.11 0.34 0.29

0.49 0.09 0.46 0.44 1.00 0.37 0.53 0.57 0.43 0.24 0.52 0.45

0.50 0.35 0.18 0.26 0.37 1.00 0.57 0.62 0.71 0.40 0.58 0.54

0.80 0.55 0.29 0.38 0.53 0.57 1.00 0.78 0.72 0.48 0.79 0.73

0.77 0.53 0.27 0.35 0.57 0.62 0.78 1.00 0.74 0.52 0.92 0.77

0.57 0.40 0.21 0.30 0.43 0.71 0.72 0.74 1.00 0.45 0.70 0.79

0.44 0.28 0.03 0.11 0.24 0.40 0.48 0.52 0.45 1.00 0.53 0.46

0.82 0.56 0.28 0.34 0.52 0.58 0.79 0.92 0.70 0.53 1.00 0.74

0.61 0.42 0.22 0.29 0.45 0.54 0.73 0.77 0.79 0.46 0.74 1.00

TriviaQA (short) Correlation Matrix
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Figure 7: Correlation matrix for the TriviaQA, lexical and semantic-based metrics. Judge is human evaluation.
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Metric Natural Questions TriviaQA
fM >= TM fM < TM fM >= TM fM < TM

Exact Match 1.00 0.47 1.00 0.49
BLEU Score 0.99 0.41 1.00 0.33
METEOR Score 0.96 0.60 0.99 0.72
ROUGE-2 0.99 0.40 1.00 0.23
ROUGE-L 0.96 0.52 0.98 0.28
Word Matching 0.95 0.62 0.98 0.68
Precision 0.95 0.60 0.98 0.73
Recall 0.95 0.64 0.98 0.75

BERT Score 0.83 0.62 0.90 0.72
Sentence Transformer 0.90 0.71 0.95 0.88
BERT Embedding 0.95 0.62 0.99 0.72

GPT-4-o (Gold) 0.89 0.69 0.97 0.89
GPT-4-o 0.79 0.58 0.91 0.78
GPT-3.5 Turbo (Gold) 0.87 0.65 0.93 0.75
GPT-3.5 Turbo 0.74 0.59 0.86 0.46
Meta-Llama 3.1 70B (Gold) 0.89 0.69 0.97 0.90
Meta-Llama 3.1 70B 0.75 0.50 0.88 0.52
Meta-Llama 3.1 8B (Gold) 0.94 0.60 0.93 0.30
Meta-Llama 3.1 8B 0.73 0.41 0.84 0.31

Table 3: This table presents the accuracy of various evaluation metrics applied above and below their thershold from
two datasets: Natural Questions and TriviaQA. The metrics include both lexical-based and semantic-based methods,
as well as using LLMs as judges, similar to a metric. Results are further divided based on whether gold answers
were provided to the LLMs (denoted by "(Gold)") or not. The best-performing results in each group are bolded.
The overall best accuracy for each dataset is bolded and underlined
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Figure 8: The figure illustrates the performance accuracy of various metrics in comparison to human judgments.
It compares the accuracy of model-generated answers in both their short and long forms. Results for the Natural
Questions (NQ) dataset are represented in blue, while the TriviaQA dataset is represented in green.
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