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Abstract

In the domain of Document AI, parsing semi-
structured image form is a crucial Key Informa-
tion Extraction (KIE) task. The advent of pre-
trained multimodal models significantly em-
powers Document AI frameworks to extract
key information from form documents in dif-
ferent formats such as PDF, Word, and images.
Nonetheless, form parsing is still encumbered
by notable challenges like subpar capabilities in
multilingual parsing and diminished recall in in-
dustrial contexts in rich text and rich visuals. In
this work, we introduce a simple but effective
Multimodal and Multilingual semi-structured
FORM PARSER (XFormParser), which an-
chored on a comprehensive Transformer-based
pre-trained language model and innovatively
amalgamates semantic entity recognition (SER)
and relation extraction (RE) into a unified
framework. Combined with Bi-LSTM, the
performance of multilingual parsing is signifi-
cantly improved. Furthermore, we develop InD-
FormSFT, a pioneering supervised fine-tuning
(SFT) industrial dataset that specifically ad-
dresses the parsing needs of forms in various
industrial contexts. XFormParser has demon-
strated its unparalleled effectiveness and robust-
ness through rigorous testing on established
benchmarks. Compared to existing state-of-
the-art (SOTA) models, XFormParser notably
achieves up to 1.79% F1 score improvement on
RE tasks in language-specific settings. It also
exhibits exceptional cross-task performance
improvements in multilingual and zero-shot
settings.1

1 Introduction

Document AI is the technology of automatically
reading, understanding, and analyzing business

†Both authors contributed equally to this research.
* Corresponding Author.
1 The codes, datasets, and pre-trained models are publicly
available at https://github.com/zhbuaa0/xformparser.

Figure 1: An illustration of named entity recognition for
unstructured forms.

documents. It is widely applied in commercial, gov-
ernmental, and educational sectors and is crucial
to departmental efficiency and productivity. A key
task of Document AI is to parse and extract form
information from scanned documents. As shown
in Figure 1, form parsing is essentially an entity re-
lation mining task that connects the Named Entity
Recognition (NER) task (Li et al., 2020) and KIE
task (Cui et al., 2021; Yu et al., 2021; Hong et al.,
2022). Due to the diversity of the layout and the
format, poor quality of scanned document images,
and complexity of template structures, representing
and understanding the unstructured information in
documents using generic rules becomes a highly
challenging task.

Unlike traditional NER tasks which only deal
with textual information, and traditional pattern
recognition tasks (Medvet et al., 2011; Cheng et al.,
2020), mainstream Document AI methods typically
involve using deep neural networks to model ele-
ments in documents from the perspectives of com-
puter vision (CV) (He et al., 2016; Ren et al., 2016),
natural language processing (NLP) (Zhou et al.,
2023; Zhang et al., 2024c), or multimodal fusion
(Li et al., 2024). Apart from textual information,
the position and layout of text blocks also play a
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crucial role in semantic interpretation.
Form parsing algorithms based on deep learn-

ing initially involved detecting and classifying spe-
cific regions of document images. Then, it utilized
Optical Character Recognition (OCR) models (Li
et al., 2023; Cheng et al., 2024) to extract text in-
formation. This process is called unstructured to
semi-structured, and the resulting form is called
semi-structured. Subsequently, different categories
of form blocks and their corresponding text content
were routed to dedicated information extraction
modules, constructing a pipeline to process entire-
page documents (Xu et al., 2020b; Wang et al.,
2022). Current researchers believe that effective
language models for form parsing must compre-
hend target entities and adapt to different docu-
ment formats in contexts involving multiple modal-
ities. Advanced Document AI models (Wang et al.,
2020; Zhang et al., 2020; Li et al., 2021; Peng
et al., 2022) are expected to automatically classify,
extract, and structure information from business
documents, minimizing manual intervention.

Although advanced models have made signifi-
cant progress in the field of Semi-structured form
parsing, as research and applications have become
more widespread, most existing methods still face
three limitations: 1) The accuracy of key informa-
tion extraction from complex, multilingual form
images remains insufficient; 2) Multimodal mod-
els dominated by visual modalities still lag be-
hind text-dominated multimodal models in form
parsing tasks in rich-text and long-text scenarios;
3) Multi-modal large language models (MLLM)
such as GPT4o (Huang et al., 2023; Islam and
Moushi, 2024) and LayoutLLM (Fujitake, 2024)
are difficult to deploy to the end side and achieve
fast and high-performance inference via CPUs or
low-memory GPUs due to the excessive weight
of model parameters. Therefore, in industrial ap-
plications, it is a crucial research direction to fur-
ther mine the entity classification and the relations
between entities in multimodal and multilingual
forms based on simple and effective pre-trained
models (PTM) (Zoph et al., 2020), and to study
more effective fine-tuning paradigms in complex
scenes.

To address these issues, we propose a simple but
effective semi-structured form parser with multi-
modal and multilingual knowledge, named XForm-
Parser. For input data from semi-structured forms,
XFormParser utilizes the multilingual document
understanding PTM LayoutXLM (Xu et al., 2022)

to generate vectors containing text, visual, and spa-
tial positional information. Subsequently, these
vectors are fed into the downstream joint network
to complete two tasks: Semantic Entity Recogni-
tion (SER) and Relation Extraction (RE), to realize
form parsing. The SER Task obtains text box classi-
fication through fully connected layers, and the RE
task learns the categories of entity relations through
a decoder based on Bi-LSTM (Sun et al., 2022)
and Biaffine (Nguyen and Verspoor, 2019). In addi-
tion, we further build InDFormSFT, a Chinese and
English multi-scenario form parsing SFT dataset
for industrial applications, based on public bench-
marks. Training the model on this dataset helps
XFormParser learn semi-structured forms from the
real world and achieve new SOTA performance.

The contributions of this paper are summarized
as follows:

• We propose XFormParser, which integrates
two tasks: SER and RE, along with the joint
loss function and training method of soft la-
bels warm-up in stages. XFormParser ef-
fectively enhances form parsing performance
without additional inference resources and
overhead.

• We construct InDFormSFT, a cross-scenario
form parsing SFT dataset in both Chinese and
English. It contains 562 form images col-
lected from 8 major industrial application sce-
narios and corresponding annotation informa-
tion in JSON format that is semi-automatically
generated using tools such as GPT4o and rig-
orously verified by humans.

• Through experiments and analysis, we con-
firm that XFormParser achieves an F1 score
of at most 1.79% over the SOTA model
for RE tasks in Language-specific scenarios.
XFormParser achieves significantly better re-
sults than SOTA for both dual-task in Multi-
language and Zero-shot scenarios. The ab-
lation experiments on InDFormSFT demon-
strate the effectiveness and robustness of
XFormParser.

2 Related Work

Limited by the lack of training data and the com-
plexity of the corpus, relatively few effective
models for parsing multilingual forms have been
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Figure 2: Overall architecture of the proposed XFormParser. For Multimodal input, XFormParser utilizes lay-
outXLM to generate vectors containing text, visual, and spatial positional information. Subsequently, these vectors
are fed into the downstream joint network to complete SER and RE tasks. The SER Task obtains text box classifica-
tion through fully connected layers, and the RE task learns the categories of entity relations through a decoder based
on Bi-LSTM and Biaffine.

proposed in the past few years. Most applica-
tions use a pipeline approach to process form in-
formation one modality by one, such as XLM-
RoBERTa (Conneau et al., 2020), which is a mul-
tilingual version of RoBERTa (Liu et al., 2019),
and InfoXLM (Chi et al., 2021), a multilingual pre-
trained model (Vaswani et al., 2017; OpenAI, 2023)
that maximizes the mutual information between
multilingual and multi-granularity texts, which are
used as text information processors to analyze
forms.

The Visual-Language models (Wu et al., 2021;
Radford et al., 2019; Zhang et al., 2024b) demon-
strate the potential to effectively align gaps between
textual and other modal features, which can be used
to integrate form structure information and content
information. It is further revealed that form infor-
mation extraction can be achieved by multi-modal
techniques combining CV (Cheng et al., 2022) and
NLP (Yang et al., 2024, 2020, 2022, 2019; Chai
et al., 2024; Zhang et al., 2024a).

The LiLT (Wang et al., 2022) model proposes a
language-independent transformer focusing on text
layout, introducing a new Bidirectional Attention
Complement Mechanism to enhance cross-modal
cooperation. It also proposes Key Point Local-
ization and Cross-modal Alignment Identification
tasks, combined with the widely used Masked Vi-
sual Language Model as pre-training objectives.
LayoutLM (Xu et al., 2020a) introduced the PTM,
which combined language models and Transformer,

expanding BERT (Devlin et al., 2018) architecture
by incorporating layout information to consider
spatial relations between tokens and textual content
connections, resulting in outstanding performance
in form parsing tasks. Furthermore, LayoutLMv2
(Xu et al., 2020b) and LayoutLMv3 (Huang et al.,
2022) enhance the integration of multimodal in-
formation in the pretraining stage. They also add
pretraining strategies for text-image alignment and
text-image matching, incorporating word token
alignment targets.

Regarding the joint modeling of SER and RE,
existing work primarily targets sequence labeling
tasks, training jointly at the token granularity (Jiang
et al., 2024; Ji et al., 2024; Wang et al., 2023;
El Khbir et al., 2024; Liu et al., 2023). At present,
there is a lack of available models or methods for
joint pattern training with cell information.

GeoLayoutLM (Luo et al., 2023) improves the
feature representation of text and layout by explic-
itly modeling geometric relationships and special
pre-training tasks, which can improve the perfor-
mance of form information extraction. However,
the complex model structure makes the pre-training
cost of related tasks high and too dependent on data.
GOSE (Chen et al., 2023) first generates initial re-
lation predictions for entity pairs extracted from
document scan images. It then captures global
structure knowledge from previous iterative pre-
dictions and incorporates it into entity representa-
tions. This "generate-capture-incorporate" loop is
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repeated multiple times, allowing entity representa-
tions and global structure knowledge to reinforce
each other.

3 Method

3.1 Task Definition
The semi-structured form processed by the OCR
model can be represented as a list of n semantic
entities. Each entity consists of a set of words
named Wordsi, the coordinates of the bounding
box named Bboxi, and an image named Imagei,
called i-th cell of the form and defined as bi:

bi = [Wordsi, Bboxi, Imagei] (1)

The documents in our dataset are annotated with
labels for each entity and relations between entities.
We represent each comment document D as:

D = [B,L,R] (2)

where B=[b1, . . . , bn] denote all the cells of
the form; L=[l1, . . . , ln] is a predefined set of
entity labels and l is the label of each entity;
R=[(b1, b2), . . . , (bj , bk)] is the set of relations be-
tween entities, (bj , bk) refers to the relation be-
tween j-th entity and k-th entity, as well as the link
point from bk to bj . It is worth noting that one
entity may have relations with multiple entities or
may not have a relationship with some other entity.

Semantic Entity Recognition Task. The se-
mantic entity recognition needs to classify all the
cells and obtain a list of resulting labels L, the label
of cells can be: Header entity (HEADER), QUES-
TION entity (QUESTION), ANSWER entity (AN-
SWER) and OTHER entity (OTHER). When the
entity classification is completed, each token needs
to be converted into a BIO label according to the
entity category, to facilitate the alignment with ex-
periments on open-source benchmark datasets.

Relation Extraction Task. Given the above
definition and description of a form, for a
form D, each cell bi needs to find its corre-
sponding sequence of cells in the whole form
Bbi=[bj , . . . , bk], Finally, the normalized cell re-
lation Rbi=[{(bi, bj), . . . , (bi, bk)}] is obtained.

3.2 Overall Architecture
As shown in Figure 2, we built the XFormParser
model based on the multimodal Transformer ar-
chitecture. The model accepts information from
three different modalities: text, position, and vi-
sion, encoded using text embedding, 2D position

embedding, and image embedding layers, respec-
tively. Concatenate the text and image embeddings
and then add the position embeddings to obtain
the input embeddings. The input embedding is
encoded by layoutXLM, and the context represen-
tation is output through the dense layer. On the one
hand, the representation vector is passed through
the MLP layer to obtain the entity classification.
On the other hand, the entity embedding vector is
mined through the Bi-LSTM sequence relation and
then entered into the MLPhead or MLPtail accord-
ing to the type to obtain the entity expression. The
Score is obtained by Biaffine to determine whether
there is a relation between two entities.

3.3 PTM and Multimodal Input
layoutXLM adds two new embedding layers, 2-D
Position Embedding and Image Embedding, based
on BERT. The 2-D Position Embedding corre-
sponds to text blocks with the content and posi-
tion information in the document, both content and
position information obtained by OCR and other
technologies. By considering the top-left corner
of the document page as the origin of the coordi-
nate system, the representation of each text block
in terms of horizontal coordinate, vertical coordi-
nate, width, and height can be calculated, and the
final 2-D Position Embedding is the sum of the
representations of the four sub-layers. The image
embedding divides the image into several blocks
based on the bounding boxes of each word in the
OCR results, and each block corresponds to each
word. After normalizing embeddings of multiple
modalities, they are input into layoutXLM.

Vectorization of Text Information. Tokeniza-
tion, word embeddings, and sentence embeddings
mainly realize the vectorization of text informa-
tion. Among them, tokenization breaks down text
into smaller units such as words or subwords. Lay-
outXLM uses RoBERTa Tokenizers to map these
tokens into dense vectors in a continuous vector
space where semantically similar words are posi-
tioned closely together. Sentence embeddings are
also used, provide a vector representation for entire
sentences, capturing the semantic meaning of the
sentence as a whole.

Vectorization of Location Information. Two-
dimensional position embedding uses OCR and
other techniques to obtain the content and posi-
tion information of each text block in the docu-
ment. The upper-left corner of the document page
is regarded as the origin of constructing the co-
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ordinate system so that the embeddings of each
text block corresponding to XY coordinates, width,
and height can be calculated, and the final two-
dimensional position embedding is the sum of the
four embeddings.

Vectorization of Image Feature. In this work,
the image embedding is not simply obtained by
uniform segmentation, but the text block is used to
locate the bounding box of each word in the result,
and the image is divided into several equal size
patches, to ensure that each word has embedding
vector of the image containing it.

3.4 Semantic Entity Recognizer
As shown in Figure 2, the PTM receives multi-
modal input B=[b1, . . . , bn], obtains hidden states
H , and processes the hidden representation H
through a fully connected layer (Dense). The hid-
den representation Hser for the SER task is ob-
tained, and then the classification result logitsser
is obtained by a classification MLP. The formulas
are expressed as follows:

H = PLM(B) (3)

Hser = Denseser(H) (4)

logitsser = MLPser(Hser) (5)

Then logitsser uses argmax to get the predicted
vectors P=[p1, . . . , pn], pi corresponds to the la-
bel li of i-th entity, such as "QUESTION", "AN-
SWER", etc.

3.5 Relation Extraction Decoder
For the RE task, we first get the PTM output of the
i-th entity, denoted as Hre. The model then uses a
pooling operation (Reimers and Gurevych, 2019)
on Hre to obtain the embeddings of the entities.
Then we concatenate the entity embeddings and
the corresponding label embeddings pi predicted
by the SER. As the output of the encoder for each
semantic entity, the formula is as follows:

ei = pooling(Hre)⊕ pi (6)

Note that for two tasks to implicitly share H , Hre

needs to be obtained using a Dense layer identical
to Eq. (4), that is, Hre= Densere(H). In addition,
mean-pooling is experimentally verified to be the
most effective pooling operation applied in Eq. (6).

In the experiment, it was found that the distri-
bution of entity expression and label embedding
was not uniform, which would make it difficult for

MLP to learn the importance of both information.
Therefore, ei was input into the Bi-LSTM decoder
to unify, and after the entity passed the decoder,
according to the type, it entered the head entity de-
coder MLPhead or the tail entity decoder MLPtail,
and finally produces the entity representation. It
obtains the score through Biaffine to determine
whether there is a relation between the two entities.

3.6 Traning Method
Training Loss. Since it is a joint model, the team
must be trained to calculate the loss. The loss
formula is as follows:

Lossser = CE(logitsser, Lser) (7)

Lossre = CE(ScoreBiaffine, Lre) (8)

Loss = Lossser + Lossre (9)

where CE is the cross-entropy function. Lossser is
the loss for the SER task, Lossre is the loss for the
RE task, and the final training Loss is the sum of
the two used as the learning target of the joint task.

Warm-up Soft Label. We propose an improved
warm-up soft label (Huang et al., 2019) based on
the warming mechanism, which can effectively im-
prove the performance when applied to fine-tuning
form parsing models. In the beginning stage of
training, hard labels are used to supervise the model
so that it can converge quickly. In the middle and
later stages of training, soft labels are used to help
model training. During the transition period be-
tween soft and hard labels, a warming mechanism
is added, and the weight of soft tags is continu-
ously increased. This is useful for tasks such as
multi-label classification.

In actual experiments, it was found that the train-
ing effect was not good in the first half of model
training. Although soft labels contain more infor-
mation, they cannot guide the model in learning
tasks in the early stage of training, so hard labels
are still used in the early stage of model training.
After the model has been trained to have prelimi-
nary capabilities, then use soft label training, and
provide a transition for the conversion of hard label
and soft label. For the construction method of the
warm-up soft label and related training parameter
Settings, please refer to Appendix A.

4 Experiments and Discussion

4.1 Experiment Settings
Datasets. FUNSD (Guillaume Jaume, 2019) is a
scanned document dataset for form parsing. It is
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Setup Multi-language model

Optimizer AdamW
Weight ratio 0.1
Lr scheduler LINEAR
vocab size 250002
Max Steps 512
Batch size 8

Initial learning rate 5e-5
Training epochs 100

Evaluation metric ref. B.4

Table 1: Training configurations for XFormParser

a subset of the RVL-CDIP (Harley et al., 2015)
and consists of 149 training samples and 50 test
samples with various layouts. XFUND (Xu et al.,
2022) is a multilingual form parsing benchmark. It
includes 1,393 fully annotated forms in 7 languages.
Each language contains 199 forms, with 149 forms
in the training set and 50 forms in the test set.

XFUND and FUNSD datasets have two tasks:
SER, where BIO labeling format is used for se-
quence labeling of each entity, and RE, where all
possible pairs of given semantic entities are gen-
erated to gradually construct a candidate set of
relations, identifying all entity pairs with existing
associations.

In this paper, InDFormSFT is constructed based
on the Chinese-English context and eight applica-
tion scenarios, the training set contains 422 sam-
ples, and the validation set and test set contain
70 samples each. Compared with FUNSD and
XFUND datasets, larger datasets can provide more
samples for the model to learn and train, which
helps to improve the generalization ability and per-
formance of the model. Please refer to Appendix B
for the construction process of InDFormSFT.

4.2 Language-specific Fine-tuning
Table 2 presents the results of specific language
fine-tuning experiments on the XFUND and
FUNSD public datasets. Each column in the ta-
ble represents a different language (FUNSD, ZH,
JA, ES, FR, IT, DE, PT) (Xu et al., 2022). The
table compares different models, including XLM-
RoBERTaBASE, InfoXLMBASE, LayoutXLMBASE,
LayoutLMv3BASE, LiLT[InfoXLM]BASE, GeoLay-
outLM, and XFormParserBASE. The numerical val-
ues in the table indicate the performance metrics
of each model fine-tuned in specific languages.
XFormParser demonstrates superior performance

compared to other models in most languages. On
the FUNSD dataset, XFormParser achieves a per-
formance of 92.46%. XFormParser also exhibits
strong performance on the XFUND datasets in dif-
ferent languages, with average performance metrics
of 89.04% (SER) and 90.54% (RE).

4.3 Multi-language Fine-tuning

XFUND dataset inspired Multilingual fine-tuning
Task, refers to multilingual task fine-tuning on
XFUND dataset, all trained on 8 languages and
tested on a specific language. As shown in Ta-
ble 3, in the multilingual training task, XLM-
RoBERTaBASE, InfoXLMBASE, LayoutXLMBASE,
and XFormParserBASE all show stronger abil-
ity than language-specific fine-tuning, obtaining
higher F1 score. In the case of multiple languages,
XFormParserBASE shows a more powerful extrac-
tion ability. XFormParser performs best in the
multi-language fine-tuning experiment. The av-
erage F1 accuracy of SER task is 91.67%. For RE
task, XFormParser also achieves the best perfor-
mance in multi-language fine-tuning experiments,
with an average F1 of 95.89%. These results under-
score the efficacy of the XFormParser in handling
multi-language tasks within the XFUND dataset,
particularly in comparison to other baseline and ad-
vanced models. With more data, our model demon-
strates stronger learning capabilities.

4.4 Zero-shot Fine-tuning

Previous experiments illustrate that our method
achieves improvements using full training samples.
We explored the transferability of our model struc-
ture and found that it will gain strong transferability
on RE tasks. Thus, we compare with the previ-
ous SOTA model LiLT on few-shot settings. The
experimental results in Table 4 indicate that the
average performance of XFormParser still outper-
forms the SOTA model LiLT and GOSE. In the
task of SER, XFormParser exhibited the highest F1
scores across all languages, achieving an average
of 71.35%, with notable improvements in Chinese
(72.00%) and Portuguese (73.46%). In the task of
RE, the highest performance in the RE task was
again seen with XFormParser, which achieved an
impressive average F1 score of 81.18%, showing
its robustness in relation extraction across different
languages. the XFormParser consistently outper-
forms other models in both the SER and RE tasks
across various languages, highlighting its superior
cross-lingual transfer capabilities, and it can im-
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Model FUNSD ZH JA ES FR IT DE PT Avg.

SER

XLM-RoBERTaBASE 66.70 87.74 77.61 61.05 67.43 66.87 68.14 68.18 70.47
InfoXLMBASE 68.52 88.68 78.65 62.30 70.15 67.51 70.63 70.08 72.07

LayoutXLMBASE 79.40 89.24 79.21 75.50 79.02 80.82 82.22 79.03 80.56
LiLT[InfoXLM]BASE 84.15 89.38 79.64 79.11 79.53 83.76 82.31 82.20 82.51

GeoLayoutLM 92.86 - - - - - - - -
XFormParser[LiLT] 91.42 91.89 82.25 87.18 87.64 89.42 87.05 87.86 88.09(+5.58)

XFormParser 92.46 93.14 82.59 87.77 88.69 90.51 88.48 88.68 89.04(+6.53)

RE

XLM-RoBERTaBASE 26.59 51.05 58.00 52.95 49.65 53.05 50.41 39.82 47.69
InfoXLMBASE 29.20 52.14 60.00 55.16 49.13 52.81 52.62 41.70 49.10

LayoutXLMBASE 54.83 70.73 69.63 68.96 63.53 64.15 65.51 57.18 64.32
LiLT[InfoXLM]BASE 62.76 72.97 70.37 71.95 69.65 70.43 65.58 58.74 67.81

GeoLayoutLM 89.45 - - - - - - - -
GOSE[LiLT] 76.97 87.52 80.96 85.95 86.46 84.15 80.23 73.84 82.01

XFormParser[LiLT] 90.02 92.00 91.32 90.21 91.01 91.37 91.11 88.48 90.82(+8.81)
XFormParser 91.24 93.42 92.19 90.82 91.55 92.48 92.36 89.12 91.65(+9.64)

Table 2: Language-specific fine-tuning F1 accuracy on FUNSD and XFUND (fine-tuning on X, testing on X).“SER”
denotes the semantic entity recognition, and “RE” denotes the relation extraction.

Model FUNSD ZH JA ES FR IT DE PT Avg.

SER

XLM-RoBERTaBASE 66.33 88.3 77.86 62.23 70.35 68.14 71.46 67.26 71.49
InfoXLMBASE 65.38 87.41 78.55 59.79 70.57 68.26 70.55 67.96 71.06

LayoutXLMBASE 79.24 89.73 79.64 77.98 81.73 82.1 83.22 82.41 82.01
LiLT[InfoXLM]BASE 85.74 90.47 80.88 83.40 85.77 87.92 87.69 84.93 85.85

XFormParser 93.89 94.02 90.94 90.19 89.72 91.74 91.94 90.94 91.67(+5.82)

RE

XLM-RoBERTaBASE 36.38 67.97 68.29 68.28 67.27 69.37 68.87 60.82 63.41
InfoXLMBASE 36.99 64.93 64.73 68.28 68.31 66.90 63.84 57.63 61.45

LayoutXLMBASE 66.71 82.41 81.42 81.04 82.21 83.10 78.54 70.44 78.23
LiLT[InfoXLM]BASE 74.07 84.71 83.45 83.35 84.66 84.58 78.78 76.43 81.25

XFormParser 97.00 95.49 94.53 95.67 96.76 97.3 95.49 95.06 95.89 (+14.64)

Table 3: Multi-language fine-tuning accuracy (F1) on the XFUND dataset (fine-tuning on 8 languages all, testing on
X), where “SER” denotes the semantic entity recognition and “RE” denotes the relation extraction.

Model FUNSD ZH JA ES FR IT DE PT Avg.

SER

XLM-RoBERTaBASE 66.70 41.44 30.23 30.55 37.10 27.67 32.86 39.36 38.24
InfoXLMBASE 68.52 44.08 36.03 31.02 40.21 28.80 35.87 45.02 41.19

LayoutXLMBASE 79.40 60.19 47.15 45.65 57.57 48.46 52.52 53.90 55.61
LiLT[InfoXLM]BASE 84.15 61.52 51.84 51.01 59.23 53.71 60.13 63.25 60.61

XFormParser 92.46 72.00 58.25 59.12 69.92 73.72 71.88 73.46 71.35(+10.74)

RE

XLM-RoBERTaBASE 26.59 16.01 26.11 24.40 22.40 23.74 22.88 19.96 22.76
InfoXLMBASE 29.20 24.05 28.51 24.81 24.54 21.93 20.27 20.49 24.23

LayoutXLMBASE 54.83 44.94 44.08 47.08 44.16 40.90 38.20 36.85 43.88
LiLT[InfoXLM]BASE 62.76 47.64 50.81 49.68 52.09 46.97 41.69 42.72 49.30

GOSE[LiLT] 76.97 69.30 68.05 70.72 71.45 63.55 59.97 58.30 67.29
XFormParser 91.24 74.02 81.77 83.02 79.60 78.61 80.18 81.01 81.18 (+13.89)

Table 4: Cross-lingual zero-shot transfer F1 accuracy on FUNSD and XFUND (fine-tuning on FUNSD, testing on
XFUND).

Method Task Component SER F1 Accuracy RE F1 Accuracy↑
SER RE Decoder soft label EN ZH EN ZH

XFormParser ✓ ✓ ✓ ✓ 92.46 93.42 91.2 93.14
1 w/o Task RE ✓ ✗ ✗ ✗ 91.89 92.86 - -
2 w/o Task SER ✗ ✓ ✓ ✓ - - 90.90 92.64
3 w/o Decoder ✓ ✓ ✗ ✓ 91.40 92.75 79.79 81.73
4 w/o soft label ✓ ✓ ✓ ✗ 91.19 92.19 90.75 91.20

Table 5: Ablation study of our model using LayoutXLM as the backbone, InDFormSFT as training dataset and test
on the FUNSD and XFUND (ZH). The symbol EN denotes FUNSD and ZH means Chinese language.

prove the generalization of the model.

4.5 Ablation Study

To better understand the working principle of the
model and determine the extent to which the key

components or strategies contribute to the model
performance, we designed ablation experiments to
verify the feasibility of the method proposed in this
paper. In ablation experiments, a series of modi-
fications or eliminations are made to the original
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epoch start epoch warm RE F1

✗ ✗ 91.20
10 ✓ 92.67
20 ✓ 92.74
30 ✗ 92.44
30 ✓ 93.14
40 ✗ 91.06
40 ✓ 91.35
50 ✗ 90.93
50 ✓ 91.43

Table 6: For the ablation experiments of epoch start and
epoch warm, epoch start refers to the epoch round when
the soft label is started, epoch warm refers to whether
to use the transition mechanism, and the total training
rounds are 100. The first line refers to the method of
warm-up soft label that is not applicable.

model to see how these modifications affect the
model’s performance. Ablation experiments are
designed and implemented from three innovations
of our method:

Effectiveness of Individual Components. We
further investigate the effectiveness of different
modules in our method. we compare our model
with the following variants in Table 5.

1) w/o multi-task. In this variant, we try to re-
move the multi-task training method and only use
SER or RE for training. This change causes a sig-
nificant performance decay. The results shown in
Table 5 suggest that training two tasks at the same
time has the same effect on both SER and RE tasks.
With improvement, two tasks that share PTM pa-
rameters will learn cross-information that improves
this task.

2) w/o Decoder. In this variant, we remove the
decoder. This change causes a significant perfor-
mance decay. This suggests the injection of an ad-
ditional decoder can guide the powerful decoding
capabilities of entities and provide strong depen-
dencies for relation classification.

3) w/o Warm-up soft label. In this variant, we re-
move the training method Warm-up soft label from
XFormParser. This change means the model only
uses hard labels due to the training. The results
shown in Table 5 indicate that a Warm-up soft label
can improve the effect of the model and prevent
the model from overfitting. Experimental data Ta-
ble 6 indicates that as epoch starts increases, model
performance initially improves but then decreases.
This trend suggests that the model learns sufficient

data features by a certain stage, and further train-
ing with a Warm-up soft label does not enhance
performance and may even lead to overfitting.

4.6 Visualization Display

We visualize the SER and RE of XFormParser on a
text-intensive form image as shown in Figure 3(b),
where the orange boxes are named entities and the
arrows represent the matching relations between
the entities. This figure confirms the effectiveness
of XFormParser.

(a)

(b)

Figure 3: Illustration of (a) The form image that is
entered into the system; (b) Visualization of SER and
RE results.

5 Conclusion

Aiming at the common problems in rich text form
parsing tasks, this paper proposes a semi-structured
form parser XFormParser based on multi-modal
and multi-lingual knowledge. XFormParser inte-
grates layoutXLM pre-trained backbone, seman-
tic entity recognizer, and relation extraction de-
coder, and implements SER and RE tasks for
semi-structured form parsing. At the same time,
to enrich the experimental data in this field and
improve the parsing ability of industrial applica-
tion scenarios, this paper constructs a Chinese and
English multi-scenario form parsing SFT dataset
InDFormSFT. Four different Settings (such as
Language-specific fine-tuning, Multi-language fine-
tuning, Cross-lingual fine-tuning, and Zero-shot)
are designed on two benchmark datasets and InD-
FormSFT ), and the results show the effectiveness
and superiority of XFormParser.
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6 Limitations

The purpose of this work is to provide a simple,
efficient, and easy-to-deploy semi-structured form
parsing component for the end side (PC or mobile).
Although we use a multi-modal approach and ex-
pand the training set to improve the performance
of the model, while taking into account the multi-
language parsing scenario, this work still has the
following limitations.

Diversity of Languages. InDFormSFT only in-
cludes two languages, Chinese and English, and
lacks expansion of form knowledge for the other six
languages in XFUND. After that, multi-language
augmented data can be constructed by using the
same data set construction process with the help of
machine translation and layout design algorithms.

Model Diversity. The comparative experiments
do not include the experimental results of the
large model of multi-modal documents on rele-
vant benchmarks, thus lacking the most powerful
demonstration of the upper bound of the perfor-
mance of the model for the current task. In addition,
our work does not further improve the multilingual
pre-trained model backbone and directly adopts the
strongest and most easy-to-use model investigated
as the backbone of XFormParser. These limitations
need to be further studied and improved.

Completeness of Verification. There is a lack
of validation of model compression and inference
acceleration methods such as model distillation,
model pruning, and model quantization.
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A Build the Warm-up Soft Label

Soft labeling, also known as soft targets or proba-
bilistic labeling, is a technique in natural language
processing where labels for training data are rep-
resented as probability distributions rather than as
hard, binary labels. Soft labels provide more in-
formation about the uncertainty and distribution of
classes, leading to better generalization. In tradi-
tional hard labels, each sample can only belong to
one category, while using soft labels can represent
situations where a sample may belong to multiple
categories.

We used the improved warm-up soft label, which
can effectively improve the performance when ap-
plied to fine-tuning form parsing models. In the
beginning stage of training, hard labels are used to
supervise the model so that it can converge quickly.
In the middle and later stages of training, soft la-
bels are used to help model training. During the
transition period between soft and hard labels, a
warming mechanism is added, and the weight of
soft tags is continuously increased. This is useful
for tasks such as multi-label classification. For the
soft labels logitsser and its embedding are calcu-
lated. The specific formula is as follows,

LEsl =
softmax(logitsser) · LEweight

N
(10)

where N is the number of tags, LEweight is
the weight of the word list that stores tag em-
beddings, logitsser first obtains the distribution
probability through a layer of softmax, and
softmax(logitsser) Perform dot multiplication
with LEweight to get a weighted label embedding
vector. Finally, the weighted label embedding vec-
tor is divided by the number of samples in the
dataset N to obtain the average value of the label
embedding vector LEsoftlabel, LEsl for short.

In actual experiments, it was found that the train-
ing effect was not good in the first half of model
training. Although soft labels contain more infor-
mation, they cannot guide the model in learning
tasks in the early stage of training, so hard labels
are still used in the early stage of model training.
After the model has been trained to have prelimi-
nary capabilities, then use soft label training, and
provide a transition for the conversion of hard label
and soft label. In fact, the final label embedding
calculation method is as follows:

α = min(1, (ep− epstart/epwarm)) (11)

   Internet 
Documents

FUNSD
XFUND

Current 
Dataset

Extracting 
Headings

Library search Filtering tools

     Form 
Documents

Figure 4: It shows the process of data search. On the
basis of the constructed data, the title of the document
is extracted as the search term, and other form files are
searched in the document search engine.

OCR      PDF 
Documents

      Text 
Information

      BBox 
Information

       Document 
Structure Building Filter categories

Figure 5: Firstly, the optical character recognition tool
is used to process the file, and the text information and
border information are obtained. The data structure
of the form is constructed through the border and text,
including the structure information and the text infor-
mation of the form.

OCR     Form 
Documents

        Data 
filtering tools

      Form Info 
Extraction Model

Labeling Cells

  Manual 
Relabeling

Resulting data

Figure 6: It shows the construction of a form data aux-
iliary labeling tool. Firstly, the optical character recog-
nition tool is used to process the file to obtain text and
border information. Then the form data filtering tool
is used to determine whether the cell can be labeled.
Then the form information extraction model is used for
auxiliary labeling, and finally, the data result is obtained
by manual labeling.

LE =

{
LEhl, ep ≤ epstart

αLEsl + βLEhl, ep > epstart
(12)

where α is a parameter that decays sublinearly with
training and β=1-α. where ep represents the cur-
rent training epoch, epstart denotes the starting
epoch, and epwarm is a predefined value determin-
ing the warm-up duration. The parameter α acts
as a scaling factor for the learning rate, ensuring
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OCR      Identified 
bounding boxes

Template         
data

Distributional 
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Discard

  Proportion 
of empty cells

      Form Info 
Extraction Model

  Manual 
Relabeling

Annotating 
Data

>50%

Pass

No

≤50%

Figure 7: Firstly, a PDF form is obtained, the text and border information are extracted through OCR, and the
cell characteristics are calculated to determine whether it conforms to the form structure. If it does not meet the
conditions, it is directly discarded. If it meets the conditions, the vacancy rate of the cell is calculated. The qualified
forms are pre-predicted and labeled by the model, and the pre-labeled results are imported into the labeling system.
Finally, the correct labeled data are obtained by manual verification for training and testing.

a gradual transition from an initial learning rate to
the desired rate, as the training progresses.

B Approach to building InDFormSFT

The large labeled data set is the main support for the
high performance of deep learning. Form datasets
are a common type of datasets used to collect, store,
and analyze user-submitted data. It is commonly
used in various application areas such as market
research, user surveys, online registration, order
forms, etc. In recent years, there have been some
academic data sets in the field of forms. This kind
of data set contains two kinds of information, one is
the image of the original document, and the other
is the specific information of the document that
has been annotated or parsed, usually including
the image, the coordinates of the text box, the text
content of the text box, the label of the text box and
the relationship between the text box.

B.1 Data Collection and Annotation
The basic data set is constructed through the Chi-
nese and English data sets of FUNSD and XFUND,
and then the Chinese form data on the Internet is
collected. To avoid privacy and sensitive infor-
mation issues of real-world documents, this paper
collects documents publicly available on the Inter-
net. Semi-structured forms were collected through
Baidu Library, and the search keywords included: a
comprehensive table of university teachers, a com-

prehensive table of senior safety engineers, a com-
prehensive table of professor-level senior engineers,
etc. By downloading and collecting the files of
the Shenzhen Stock Exchange, Shanghai Stock Ex-
change, and other financial platforms, the form files
that meet the task definition are found.

Figures 4, 5, 6 show the data search process, the
form data filtering, and the construction process of
the auxiliary labeling tool, respectively. Finally, to
facilitate the pre-processing and labeling of forms,
a set of engineering developments of data screening
and labeling process based on Chinese forms was
completed, as shown in Figure 7 below.

B.2 Instances of Semi-structured Data

The form data also aligns with the format of the
XFUND dataset, with cell granularity, where each
cell contains information such as absolute cell co-
ordinates (box), cell text information (text), cell
label information (label), cell ids (id), and linking
between cells (linking).

The first row of the picture is shown in Fig-
ure 8(a), and the corresponding annotated data for-
mat is shown in Figure 8(b). In Figure 8(b), lang
denotes the language of the text. In this case, its
value is "zh", indicating that the text is Chinese. ver-
sion indicates the version of the dataset, where the
value is "0.1" and "split", which means the dataset
is split into train, val, and test sets. "id" represents
a unique identifier for the form data. documents
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Dataset partition Data volume Question Entity Answer Entity Single Entity Title Entity Continuous char entity

Training set 422 6702 6825 422 370 194
Validation set 70 1375 1443 65 18 83

Testing set 70 1468 1644 78 58 18

Table 7: Analysis of the number of entity labels in InDFormSFT.

Dataset partition One-to-one One-to-two One-to-three One-to-many

Training set 11806 265 96 171
Validation set 2366 55 38 39

Testing set 2626 76 53 72

Table 8: Entity relationship analysis of InDFormSFT.

(a)

(b)

Figure 8: Illustration of (a) A form image in InD-
FormSFT; (b) The annotation corresponding to the first
row of the image.

contain a list of form cell information, and box rep-
resents the coordinates of the text’s bounding box
on the image. The value is a list of four integers
representing the top-left x-coordinate, the top-left
y-coordinate, the bottom-right x-coordinate, and
the bottom-right y-coordinate. text represents the
text content of the cell. Here, the value is a string
that contains some text. label denotes the label
content of the cell, which includes the SINGLE en-
tity (SINGLE), QUESTION entity (QUESTION),
ANSWER entity (ANSWER), and continuous char-
acter entity (ANSWERNUM) mentioned above. id

represents the unique identifier of the cell. link-
ing represents a linking relationship between cells
and is a list of entity pairs with two ids, the first
for the question entity and the second for the an-
swer or consecutive character entity. img contains
the form image information, where fname repre-
sents the name of the image file, width represents
the width of the image, and height represents the
height of the image.

B.3 Analysis of InDFormSFT

As shown in Table 7, for the analysis of the entity
content of the data set, according to the table con-
tent analysis, the entity labels of the data set of this
paper have the following characteristics: the num-
ber of question entities and answer entities is large.
In the training set, the number of question entities
is 6702, the number of answer entities is 6825, and
the number of question entities and answer enti-
ties is basically the same. This indicates that there
are a large number of question-and-answer entities
in the dataset that need to be identified and anno-
tated. These entities may include person names,
place names, organizations, etc., and we need our
model to be able to accurately identify and label
these entities. The number of single entities, title
entities, and continuous character entities is rela-
tively rare, and recognizing these sparse entities is
a challenging task.

According to the content analysis of Table 8, the
table shows the division of the data set and the
corresponding relationship types. Entities are clas-
sified by relationship type, including one-to-one,
one-to-two, one-to-three and one-to-many (greater
than three). These relation types describe the num-
ber of entity-time correspondences in the form in-
formation extraction task. We can see that most re-
lationships are concentrated in one-to-one relation-
ships, and a few exist in one-to-two, one-to-three,
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and one-to-many (greater than three) relationships.
By analyzing the distribution of the number of dif-
ferent correspondences, we can get the distribution
of the number of samples of different relation types
in the dataset.

B.4 Evaluation Metrics
In this paper, the target tasks for the datasets used
are divided into SER and RE. For the SER task,
the model needs to determine the class of each Cell
in the form: SINGLE, QUESTION, ANSWER,
and ANSWERNUM. The evaluation metric is Cell
Acc (CA). The accuracy of Cell Discrimination is
determined by Correct Cell Discrimination (CCD)
and Total Cell Count (TCC). The formula is as
follows:

CA =
CCD

TCC
(13)

For the cell relation linking task, we need to de-
termine which combinations of cells in each table
have a key-value relation. The F1-Score is a com-
monly used metric to evaluate the performance
of classification models, which takes into account
both Precision and Recall. The formula for calcu-
lating the F1 score is as follows:

F1 = 2× Precision×Recall

Precision+Recall
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

In this task, TP represents the number of entity
pairs correctly predicted by the model as having
a relationship. Actually, having a relationship, FP
represents the number of entity pairs predicted by
the model as having a relationship but actually hav-
ing no relationship. FN represents the number of
entity pairs predicted by the model as having no
relationship but actually having a relationship. The
F1 value ranges from 0 to 1, with values closer to 1
indicating better performance of the model.
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