
Proceedings of the 31st International Conference on Computational Linguistics, pages 6212–6229
January 19–24, 2025. ©2025 Association for Computational Linguistics

6212

DROWN: Towards Tighter LiRPA-based Robustness Certification

Yunruo Zhang1, Tianyu Du2, Shouling Ji3, Shanqing Guo1,
1School of Cyber Science and Technology, Shandong University,

2School of Software Technology, Zhejiang University,
3College of Computer Science and Technology, Zhejiang University,

zhangyunruo@mail.sdu.edu.cn,{zjradty,sji}@zju.edu.cn,guoshanqing@sdu.edu.cn

Abstract
The susceptibility of deep neural networks to
adversarial attacks is a well-established con-
cern. To address this problem, robustness certi-
fication is proposed, which, unfortunately, suf-
fers from precision or scalability issues. In this
paper, we present DROWN (Dual CROWN),
a novel method for certifying DNNs’ robust-
ness. The advantage of DROWN is that it tight-
ens classic LiRPA-based methods yet maintains
similar scalability, which comes from refining
pre-activation bounds of ReLU (and other ac-
tivations) relaxations using two pairs of lin-
ear bounds derived from different relaxations
of ReLU units in previous layers. The exten-
sive evaluations show that DROWN achieves
up to 83.39% higher certified robust accuracy
than the baseline on CNNs and up to 4.68
times larger certified radii than the baseline
on Transformers. Meanwhile, the running time
of DROWN is about twice that of the baseline.

1 Introduction

Benefiting from big data and parallel computing,
deep neural networks (DNNs) have achieved great
success in various applications, such as image clas-
sification (He et al., 2016; Szegedy et al., 2016)
and natural language processing (Chen et al., 2017;
Vaswani et al., 2017; Lei et al., 2018). Despite their
widespread use, extensive researches (Szegedy
et al., 2014; Goodfellow et al., 2015; Carlini and
Wagner, 2017; Madry et al., 2018) have revealed a
vulnerability in DNNs to adversarial attacks. These
attacks involve the meticulous crafting of adversar-
ial examples, achieved by subtly modifying clean
examples (e.g., replacing some words with their
synonyms) to deceive the model. The existence of
adversarial examples significantly hinders the appli-
cation of DNN-based models in security-sensitive
domains such as fraud detection and toxic content
detection.

To address the challenge caused by adversarial
attacks, recent researchers have been devoted to

robustness certification (also known as certified ro-
bustness) (Zhang et al., 2018; Gehr et al., 2018;
Gowal et al., 2019). This paradigm employs math-
ematical techniques to formally verify the presence
of adversarial examples within a specified neighbor-
hood around a clean example. Unfortunately, most
methods focus on image classification and certify
simple models composed of only affine transfor-
mations and element-wise activations (e.g., CNNs)
(Du et al., 2021; Li et al., 2020), which are usually
challenged by NLP models due to challenges in-
cluding sequential inputs, feed-back architectures
(Ko et al., 2019), and self-attention layers (Shi et al.,
2020). In fact, only a few of them (e.g., several
LiRPA-based methods including this work) can be
applied to NLP models such as Transformers.

To handle the non-linearity of DNNs (e.g., ReLU
units in Transformers), some robustness certifica-
tion methods (Bunel et al., 2018) adopt the branch-
and-bound (BaB) approach, which solve the cer-
tification problem using the divide-and-conquer
strategy, i.e., they divide the original problem into
sub-problems by splitting non-linear ReLUs into
two linear halves. BaB-based methods are usually
complete, meaning that they can gain exact results.
However, their superior precision is at the cost of
super-polynomial time since the problem of ro-
bustness certification is proved to be NP-complete
(Katz et al., 2017; Weng et al., 2018). As a result, it
is extremely challenging to apply BaB-based meth-
ods to large-scale models such as Transformers.
To certify larger models, other methods relax non-
linear functions into linear areas, including IBP,
zonotopes, and polytopes (among which LiRPA-
based methods, e.g., CROWN (Zhang et al., 2018),
are shown to be the most promising according to
the full benchmark results provided by Li et al.,
2023). Relaxation-based methods trade precision
for efficiency, which results in conservative certi-
fications. Therefore, researchers have been pursu-
ing tighter relaxations (Salman et al., 2019; Zhang

6213

original lower bound

refined lower bound

refined upper bound

original upper bound

Figure 1: Refining pre-activation bounds (from (l, u) to
(l′, u′)) to tighten ReLU (y = max(x, 0)) relaxations.

et al., 2022), which is a hot topic in robustness
certification currently.

There are mainly two approaches to tighten
LiRPA-based robustness certification methods. The
first is to optimize the linear bounds of ReLU units
using gradient-based method, such as FROWN
(Lyu et al., 2020) and alpha-CROWN (Xu et al.,
2021). However, as the scale of the DNN grows,
the number of optimization variables increases
rapidly, leading to a more challenging and time-
consuming optimization problem. The second is
to bounding multiple ReLU units jointly instead
of bounding each one of them separately, such as
k-ReLU (Singh et al., 2019a) and PRIMA (Müller
et al., 2022). Unfortunately, as pointed out by Tjan-
draatmadja et al. (2020), the tightest convex poly-
tope may contain an exponential number of linear
constraints, which leads to about 70× ∼ 1000×
more running time than classic LiRPA-based meth-
ods (according to Singh et al., 2019a and Müller
et al., 2022). Tighter relaxations require more com-
putation and memory in general, which hinders
their application to larger models, while the rapid
growth of DNNs’ scale has been a trend in recent
years. This stark contrast prompts us to question: is
it possible to tighten LiRPA-based methods without
significantly compromising the scalability?

In this work, we answer this question and pro-
pose a novel robustness certification method called
DROWN (Dual CROWN), based on the key insight
that refining pre-activation bounds is an effective
and efficient way to tighten ReLU relaxations (as
shown in Fig. 1). Specifically, in contrast to clas-
sic LiRPA-based methods that propagate one pair
of linear bounds through DNNs, DROWN propa-
gates two pairs of linear bounds that use different
ReLU relaxations. As a result, the pre-activation

bounds of ReLU units in later layers calculated
from each pair of linear bounds in DROWN are
different and such difference can be used to refine
the pre-activation bounds. We exhaustively eval-
uate DROWN to validate its performance across
diverse network architectures and compare it to the
current state-of-the-art methods. The evaluation
results show that DROWN achieves up to 83.39%
higher certified robust accuracy than the baseline
on CNNs and up to 4.68 times larger certified radii
than the baseline on Transformers. Meanwhile,
DROWN consumes roughly twice the time of the
baseline methods. These results solidify the con-
clusion that DROWN can improve the precision of
robustness certification at an acceptable cost.

Main Contributions.

• We propose a novel robustness certifica-
tion method called DROWN, which tightens
LiRPA-based robustness certification while
maintaining adequate scalability.

• The key design behind its advantage is an al-
gorithm that propagates two pairs of linear
bounds using different relaxations to refine
pre-activation bounds of ReLU (and other ac-
tivations) units in later layers of DNNs.

• Through extensive evaluations, we demon-
strate that DROWN surpasses the baseline by
up to 83.39% in certified robust accuracy on
CNNs and achieves up to 4.68 times larger
certified radii on Transformers, albeit with ap-
proximately twice the running time.

2 Related Work

Complete methods. Early complete methods usu-
ally model the robustness certification problem as a
satisfiability modulo theories (SMT) (Ehlers, 2017;
Katz et al., 2017; Bunel et al., 2018) or mixed in-
teger linear programming (MILP) (Lomuscio and
Maganti, 2017; Cheng et al., 2017; Tjeng et al.,
2019) problem. Since the above problems lack effi-
cient solutions, such methods typically do not scale
well. Later, linear programming (LP) and BaB are
composed to form the common framework of BaB-
based robustness certification (Bunel et al., 2018;
Lu and Kumar, 2020), which splits hidden layer
activations (e.g., ReLU units) into sub-domains.
Since splitting all ReLU units is time-consuming,
the recent trend in BaB-based robustness certifi-
cation has been finding heuristics to select good
nodes to split. Nevertheless, as reported in recent

6214

papers (Li et al., 2023), BaB-based methods can
certify models (without special training) with up to
104 neurons and about 6 layers.

Incomplete methods. To certify the robustness
of large models with general activation functions,
incomplete methods employ relaxed approaches
including Linear Programming (LP) (Weng et al.,
2018; Salman et al., 2019; Tjandraatmadja et al.,
2020), polytopes (Zhang et al., 2018; Boopathy
et al., 2019; Singh et al., 2019b), zonotopes (Gehr
et al., 2018; Mirman et al., 2018; Singh et al., 2018),
interval bound propagation (IBP) (Gowal et al.,
2019), and dual optimization (Wong and Kolter,
2018; Wong et al., 2018; Dvijotham et al., 2018).
Among the above methods, LiRPA-based methods
(e.g., CROWN (Zhang et al., 2018)) achieve a good
balance between precision and efficiency. To fur-
ther tighten LiRPA-based methods, FROWN (Lyu
et al., 2020) and alpha-CROWN (Xu et al., 2021)
optimize the linear bounds of hidden layer activa-
tions using gradient-based methods while k-ReLU
(Singh et al., 2019a) and PRIMA (Müller et al.,
2022) try to bound multiple ReLU units jointly.
However, those methods trade efficiency for preci-
sion, which hurts the scalability.

3 Preliminaries

3.1 Adversarial Robustness

DNNs for Classification. Given an input sample
(image or text) x ∈ Rn0 , a classification model
f : Rn0 7→ RC calculates numerical scores y ∈
RC for every class. The prediction of f (i.e., F)
is the label with the highest score, i.e., F (y) =
argmaxc∈[C] yc, where yc is y’s c-th component.

Adversarial Attack. Adversarial attackers mod-
ify a clean sample x0 to find an adversarial example
x′ that triggers misclassification, i.e., F (f(x0)) ̸=
F (f(x′)). To maintain imperceptibility, adversar-
ial examples have to be close to the clean example,
e.g., their distance is smaller than a small posi-
tive number ϵ under the ℓp norm in the embedding
space. We refer to the set containing all poten-
tial adversarial examples as adversarial space, de-
noted by S(x0) or S. For image classification,
S(x0) is an ℓp ball with a radius ϵ around x0, i.e.,
S(x0) = {x : ∥x−x0∥p ≤ ϵ}. For NLP attacks by
perturbing embedding vectors, S(x0) is an ℓp ball
with a radius ϵ around x0’s embedding vector. For
synonym substitution attacks, S(x0) is the smallest
box containing all synonyms’ embedding vectors.

Adversarial Robustness. A classification

model f is adversarially robust within a certain
adversarial space S(x0) if it consistently predicts
the target class F (f(x0)) for all samples in S(x0),
i.e.,

F (f(x)) = F (f(x0)),∀x ∈ S(x0). (1)

3.2 Robustness Certification

The condition of adversarial robustness, i.e., Eq. 1,
is equivalent to the following condition.

F (y) = F (f(x0)), ∀y ∈ R(f,S),
R(f,S) = {y : y = f(x), ∀x ∈ S}.

(2)

Calculating the exact R(f,S) is impractical
on large DNNs due to the expensive computa-
tional cost. As a result, many robustness certi-
fication methods, such as LiRPA-based methods,
calculate an over-approximation of R(f,S), i.e.,
Ro(f,S) ⊃ R(f,S), for better efficiency. Since
a model f satisfying the following condition un-
questionably satisfies Eq. 2, the results of those
methods are sound.

F (y) = F (f(x0)), ∀y ∈ Ro(f,S). (3)

LiRPA-based methods calculate lower and upper
bounds for each neuron in DNNs in a layer-by-layer
way to eventually get lower and upper bounds for
each score yc(c ∈ [C]), i.e., lc ≤ yc ≤ uc. Let t
be the ground-truth label, f is certified to be robust
within S(x0) if the lower bound of ground-truth
score is larger than the upper bound of any other
score, i.e.,

lt − max
c∈C,c̸=t

uc > 0. (4)

3.3 LiRPA Solution

In this work, we adopt LiRPA (Xu et al., 2020),
a popular family of LiRPA-based methods (e.g.,
CROWN-BaF (Shi et al., 2020)), as the bounding
procedure for robustness certification.

Linear Bounds and Propagation. Here we
briefly introduce the procedure of LiRPA. Let zi,j
be the j-th neuron in the i-th layer (j ∈ [ni], i ∈
[N]). The lower and upper bound of zi,j with re-
spect to neurons in the previous layer is

Ai,L
j,: zi−1 +Bi,L

j ≤ zi,j ≤ Ai,U
j,: zi−1 +Bi,U

j , (5)

6215

(a) (b) (c) (d)

Figure 2: Different relaxations of ReLU: (a) the tightest relaxation used in LP-based methods, (b, c) two efficient
relaxations used in most LiRPA-based methods, (d) the optimized relaxation with adjustable lower bound.

where Ai,L/U ∈ Rni×ni−1 and Bi,L/U ∈ Rni are
parameters of lower and upper bounds. The linear
bounds (i.e., Eq. 5) can be propagated backward
to the previous layers by substituting zi−1 with its
linear bounds with respect to zi−2 as follows.

Ai,L,+
j,: (Ai−1,Lzi−2 +Bi−1,L)+

Ai,L,−
j,: (Ai−1,Uzi−2 +Bi−1,U) +Bi,L

j

≤zi,j ≤

Ai,U,+
j,: (Ai−1,Uzi−2 +Bi−1,U)+

Ai,U,−
j,: (Ai−1,Lzi−2 +Bi−1,L) +Bi,U

j ,

(6)

where A:,+ denotes a copy of A: in which the non-
positive elements are set to be zeros and A:,− re-
places non-negative elements in A: with zeros.

Numerical Bounds Calculation. By conduct-
ing the above substitution recursively, we can de-
rive zi,j’s linear bounds with respect to the input
x = z0 as follows.

A0,L
j,: z0 +B0,L

j ≤ zi,j ≤ A0,U
j,: z0 +B0,U

j . (7)

Since z0 = x ∈ S(x0), we can combine it with Eq.
7 to get numerical bounds of zi,j .

Linear Bounds of Linear Layers. Since layers
in DNNs can be linear or non-linear, the calculation
of parameters in Eq. 5 varies according to the
type of layers. Specifically, if the i-th layer is a
linear layer, e.g., zi,j = αizi−1 + βi, we have the
following equations.

Ai,L = Ai,U = αi, Bi,L = Bi,U = βi. (8)

Linear Bounds of Non-linear Layers. When
the i-th layer is non-linear, e.g., ReLU units, the
calculation is more complicated. In this work, we
relax ReLU units in a layer separately. First, we cal-
culate pre-activation bounds, i.e., numerical bounds
of zi−1,j , j ∈ [ni−1], ni−1 = ni. Let li−1,j , ui−1,j

(l, u for short) denote the lower and upper numeri-
cal bounds of zi−1,j , i.e., li−1,j ≤ zi−1,j ≤ ui−1,j .

If li−1,j ≥ 0 or ui−1,j ≤ 0, ReLU units degener-
ate into linear functions (zi,j = 0 or zi,j = zi−1,j ,
respectively). In this case, the calculation of pa-
rameters in Eq. 5 is similar to that of linear lay-
ers. If li−1,j ≤ 0 ≤ ui−1,j , we need to calculate
two bounding lines. The upper bounding line is
zi,j = u(zi−1,j − l)/(u − l) while the lower one
has various choices.

There are different relaxations for ReLU units, as
shown in Fig. 2. The tightest relaxation used in LP-
based methods calculate two lower lines, which is
time-consuming since each non-linear unit results
in an additional bound. Thus, most LiRPA-based
methods use the following lower line to minimize
the relaxation area (i.e., blue triangles in Fig. 2).{

zi,j = 0, if l + u ≥ 0 (e.g., Fig. 2b),
zi,j = zi−1,j , otherwise (e.g., Fig. 2c).

(9)

Recently, a few new methods try to tighten ReLU
relaxations by optimizing the slopes of lower bound
lines (see Fig. 2d), which face challenges in effi-
ciency since their optimization variables (i.e., the
slopes) increase with the DNN’s scale.

Generally, let zi,j = kLi,jzi−1,j + bLi,j and zi,j =

kUi,jzi−1,j + bUi,j be the lower and upper bounding
lines of ReLU unit zi,j respectively, we can get the
following parameters in Eq. 5.

Ai,L = diag(kLi,1, k
L
i,2, . . . , k

L
i,ni

),

Ai,U = diag(kUi,1, k
U
i,2, . . . , k

U
i,ni

),

Bi,L = [bLi,1, b
L
i,2, . . . , b

L
i,ni

],

Bi,U = [bUi,1, b
U
i,2, . . . , b

U
i,ni

].

(10)

4 Methodology

Nowadays, the scalability of DNNs proliferates
while most works that aim to tighten LiRPA-based
methods (e.g., optimizing ReLU bounds or relax-
ing ReLU units jointly) consume significantly more
computational cost, which hinders their scalability.
Hence, it is more practical to tighten LiRPA-based

6216

methods without significantly increasing the com-
putational cost. Since the imprecision of LiRPA-
based methods is caused by the relaxation of ReLU
units, our key insight is to design tighter ReLU
relaxations while maintaining adequate efficiency.

As shown in Fig. 2, bounding ReLU units with
one lower line always results in a redundant area,
while two lower bounding lines can lead to the
growth of bounds’ number and deterioration of
scalability. To tighten the relaxation without signif-
icantly hurting the scalability, we propose to calcu-
late an additional pair of lower and upper bounds,
which use different relaxations instead of those in
the original pair. The benefits of our solution are
as follows. First, the numerical bounds calculated
from the two pairs can be used for the refinement
of each other’s pre-activation bounds. Second, the
number of linear bounds is limited to ensure ade-
quate efficiency. We introduce the details of our
method in the following.

4.1 The Proposed Algorithm: DROWN
Linear Bounds and Propagation. First, we start
with building relations between two adjacent layers,
e.g., the i-th layer and the i− 1-th layer. Besides
the original pair of bounds, i.e., Eq. 5, we calculate
an additional pair of bounds as follows.

Ci,L
j,: zi−1 +Di,L

j ≤ zi,j ≤ Ci,U
j,: zi−1 +Di,U

j ,
(11)

where Ci,L/U ∈ Rni×ni−1 and Di,L/U ∈ Rni .
Similar to the original one (Eq. 7), we can also
build relations between zi,j and z0.

C0,L
j,: z0 +D0,L

j ≤ zi,j ≤ C0,U
j,: z0 +D0,U

j . (12)

The two pairs of linear bounds (i.e., Eq. 5 and 11)
propagate through the DNNs separately and only
interact with each other when performing numeri-
cal bounds refinement as shown in the following.

Numerical Bounds Refinement. Since we have
that z0 ∈ S(x0) (e.g., x0 − ϵ ≤ z0 ≤ x0 + ϵ),
we can substitute it into Eq. 7 to get the numerical
bounds of zi,j , denoted as l1i,j , u

1
i,j (l1, u1 for short),

and substitute it into Eq. 12 to get l2i,j , u
2
i,j (l2, u2

for short). Note that both l1, u1 and l2, u2 are cal-
culated by LiRPA, and thus their soundness are
guaranteed. Consequently, we have the following
equations.

l′i,j ≤ zi,j ≤ u′i,j ,

l′i,j = max{l1i,j , l2i,j},
u′i,j = min{u1i,j , u2i,j}.

(13)

We will refer to l′i,j , u
′
i,j (l′, u′ for short) as refined

bounds in the rest of this paper.
Linear Bounds of Linear Layers. Assuming

that the i-layer is linear and zi,j = αizi−1+βi, we
calculate the parameters in Eq. 11 as follows.

Ci,L = Ci,U = αi, Di,L = Di,U = βi, (14)

which is similar to those in the original pair because
there are no relaxations for linear bounds.

Linear Bounds of Non-linear Layers. Here we
take ReLU units as an example to demonstrate our
calculation procedure, i.e, zi,j = ReLU(zi−1,j).
Similar to those in LiRPA, we assume that pa-
rameters of Eq. 11 have been calculated for each
two adjacent layers before the i-th layer. Here
we only discuss the relaxation of ReLU when
l′i−1,j ≤ zi−1,j ≤ u′i−1,j since in other cases the
calculation is similar to those for linear layers.

First, we calculate refined bounds l′, u′ for each
zi−i,j in the (i − 1)-th layer. Note that refined
bounds are usually tighter (definitely not looser)
than the pre-activation bounds calculated by LiRPA
with the original pair of bounds, which is beneficial
to the tightening of relaxations, as shown in Fig. 1.

Then, we calculate bounding lines for the two
pairs of linear bounds according to the refined pre-
activation bounds l′, u′. The upper bounding lines
of the two pairs is identical, denoted as zi,j =

kU,1i,j zi−1,j + bU,1i,j .

kU,1i,j =
u′

u′ − l′
, bU,1i,j =

u′l′

u′ − l′
. (15)

For the lower bounding lines, we set different
bounding lines for each pair of bounds. Let zi,j =
kL,1i,j zi−1,j + bL,1i,j and zi,j = kL,2i,j zi−1,j + bL,2i,j be
the two lower bounding lines respectively.

kL,1i,j = 0, bL,1i,j = 0, (e.g., Fig. 2b)

kL,2i,j = 1, bL,2i,j = 0. (e.g., Fig. 2c)
(16)

Finally, the parameters of the two pairs of bound-
ing lines (Eq. 5 and Eq. 11) are calculated accord-
ing to the following equations.

Ai,L = diag(kL,1i,1 , kL,1i,2 , . . . , kL,1i,ni
),

Ci,L = diag(kL,2i,1 , kL,2i,2 , . . . , kL,2i,ni
),

Ai,U = Ci,U = diag(kU,1i,1 , kU,1i,2 , . . . , kU,1i,ni
),

Bi,L = [bL,1i,1 , b
L,1
i,2 , . . . , b

L,1
i,ni

],

Di,L = [bL,2i,1 , b
L,2
i,2 , . . . , b

L,2
i,ni

],

Bi,U = Di,U = [bU,1i,1 , b
U,1
i,2 , . . . , b

U,1
i,ni

].

(17)

6217

Algorithm 1: DROWN
Input: a model f with N layers, a sample x0, its label yt, and an adversarial space S(x0)
Output: certification result

1 Initial a list L to store linear bound parameters;
2 for i← 1 to N do
3 if the i-th layer is linear then
4 Calculate linear bound parameters according to Eq. 8 and 14;
5 Append the i-th layer’s linear bound parameters to L;
6 else
7 Calculate numerical bounds l1i−1,j , u

1
i−1,j using S(x0) and Ai,L/U , Bi,L/U in L;

8 Calculate numerical bounds l2i−1,j , u
2
i−1,j using S(x0) and Ci,L/U , Di,L/U in L;

9 Calculate refined bounds l′i−1,j , u
′
i−1,j according to Eq. 13;

10 Calculate bounding lines according to Eq. 15 and 16;
11 Calculate linear bound parameters according to Eq. 17;
12 Append the i-th layer’s linear bound parameters to L;
13 Calculate numerical bounds l1N,j , u

1
N,j using the first pair of linear bounds in L;

14 Calculate numerical bounds l2N,j , u
2
N,j using the second pair of linear bounds in L;

15 Calculate refined bounds l′N,j , u
′
N,j according to Eq. 13;

16 l← l′N , u← u′N ;
17 if l, u satisfy the condition in Eq. 4 then
18 return Certified;
19 else
20 return Uncertain;

The complete algorithm is shown in Algorithm
1. We refer to Ai,L/U , Bi,L/U , Ci,L/U , Di,L/U as
linear bound parameters. The first pair of bounds
refer to linear bounds with Ai,L/U , Bi,L/U and the
second pair refer to those with Ci,L/U , Di,L/U . We
provide a simple example of DROWN with its com-
parison to CROWN in Appendix A.

4.2 Discussion

Effectiveness. DROWN’s effectiveness primar-
ily stems from its refined pre-activation bounds.
As Fig. 1 illustrates, the relaxed area of the re-
fined bound, i.e., the green triangle, is smaller than
that of the original bounds, i.e., the blue triangle.
Smaller relaxed areas are crucial to the tighten-
ing of robustness certification because the linear
bounds after the relaxation will be closer to the
exact ones. We also demonstrate DROWN’s effec-
tiveness in our experimental evaluations.

Efficiency. According to Zhang et al. (2018),
CROWN’s time complexity is O(m2n3) for an m-
layer model with n neurons in each layer. Since
DROWN doubles CROWN’s calculations, its time
complexity is also O(m2n3). Though it’s challeng-
ing to certify large models, we note that even very

small models have practical applications in specific
domains such as IoT devices (Rjoub et al., 2024).

Beyond ReLU Relaxation. This paper focuses
on the relaxation of activations. Thus, we extend
DROWN to other widely-adopted activations such
as LReLU (similarly, PReLU and RReLU), ELU
(similarly, CELU and SELU), and Swish (similarly,
Mish and Hardswish). Similar to the two different
relaxations for ReLU (e.g., Fig. 2b and 2c), we
present illustrations of those for LReLU, ELU, and
Swish in Fig. 3. Due to limited space, the details
of those relaxations are presented in Appendix C.

More discussions are provided in Appendix B.

5 Experiments

5.1 Setup

Datasets. We use the following datasets for evalua-
tion. MNIST dataset (LeCun et al., 1998), which is
a famous image classification dataset. SST dataset
(Socher et al., 2013), which is a benchmark cor-
pus of movie reviews for sentiment analysis. Yelp
dataset (Zhang et al., 2015), which is a large text
classification benchmark.

Models. We use the following models for evalua-
tion. Convolutional Neural Network models, which

6218

(a) (b)

(c) (d)

(e) (f)

Figure 3: The relaxations for LReLU (a,b), ELU (c,d),
and Swish (e,f) used in DROWN.

are classic models for image classification. We use
CNN models with 4 to 7 layers. Transformer mod-
els, which are the most widely applied models for
NLP tasks. We use a Transformer with 3 layers,
4 attention heads, 128 hidden neurons (the feed-
forward network in it also has 128 hidden neurons).
We also conduct evaluations on RNNs (see Ap-
pendix D), which are presented in Appendix F.

Evaluation Metrics. We use the following met-
rics for evaluation: The certified robust accuracy
(C.Acc.), which is the fraction of test samples for
which the robustness certification method confirms
that the model’s predictions within the given region
around them are robust. The certified radius (also
referred to as certified bounds), which is the ra-
dius of the largest ℓp-ball within which the model’s
prediction is proved to be robust by a robustness
certification method.

We provide additional details in Appendix E.

5.2 CNN Results

In this subsection, we evaluate the precision and
efficiency on CNNs. We certify the robustness of
10 CNNs with various depths and widths against
ℓp-bounded attackers, i.e., attackers who try to
search adversarial examples within a neighborhood
{x : ∥x− x0∥p ≤ ϵ} around the clean sample x0.
We report certified robust accuracy and average
running time per batch in Tab. 1.

Method CROWN DROWN

Model C.Acc. Time C.Acc. Time

CNN1 46.83% 0.008 84.84% 0.012
CNN2 48.35% 0.008 88.96% 0.013
CNN3 10.42% 0.037 87.96% 0.072
CNN4 6.92% 0.074 90.31% 0.147
CNN5 13.51% 0.044 86.96% 0.085
CNN6 8.95% 0.084 90.74% 0.167
CNN7 35.90% 0.038 86.12% 0.073
CNN8 37.35% 0.117 87.15% 0.232
CNN9 61.73% 0.033 82.07% 0.063
CNN10 35.87% 0.086 89.49% 0.169

Table 1: Evaluation results of CROWN and DROWN on
10 CNNs trained on the MNIST dataset (ϵ = 0.3 under
the ℓ∞ norm). All time results are in seconds.

Precision. The certified robust accuracy cal-
culated by DROWN is higher on all models. As
shown in Tab. 1, DROWN achieves 20.34%
to 83.39% higher certified robust accuracy than
CROWN. The results above indicate that DROWN
is more precise than the baseline method.

Efficiency. Though DROWN is slower, its com-
putational cost is acceptable. As shown in Tab.
1, the running time of DROWN is about twice
that of CROWN, which is reasonable since our
method propagates two pairs of linear bounds while
CROWN propagates one. The results above indi-
cate that the scalability of DROWN is similar to
CROWN’s.

5.3 Transformer Results

In this subsection, we extend DROWN to sup-
port Transformers and evaluate its precision and
efficiency under two scenarios. In the one-word
attacks scenario, we assume that attackers can
perturb arbitrary but only one word’s embedding
(within a certain ℓp-bounded neighborhood around
the embedding vector) in a sentence. In the multi-
word attacks scenario, we suppose more powerful
attackers can perturb multiple word’s embedding
simultaneously (also ℓp-bounded). Due to limited
GPU memory, we limit multi-word attackers to per-
turbing at most four words in the sentence. We
report the minimum of certified radii, the average
of certified radii, the average of running time, and
the average of GPU memory usage in Tab. 2 and 3.

Precision. Both the minimum and the average
of certified radii calculated by DROWN are the

6219

Dataset SST Yelp

Method Norm Min. Avg. Time(s) Mem.(B) Min. Avg. Time Mem.

CROWN-BaF
ℓ1 0.036 1.686 3.7 5.4e8 0.102 0.573 3.6 4.8e8
ℓ2 6.1e-3 0.328 3.7 5.4e8 0.023 0.137 3.5 4.9e8
ℓ∞ 6.0e-4 0.033 3.7 5.4e8 2.4e-3 0.015 3.8 5.1e8

DeepT
ℓ1 0.036 1.806 24.8 3.9e9 0.077 0.427 26.2 3.0e9
ℓ2 6.4e-3 0.330 25.4 3.9e9 0.068 0.186 26.1 3.0e9
ℓ∞ 2.0e-3 0.032 24.7 3.9e9 7.9e-3 0.024 25.1 3.0e9

GaLileo
ℓ1 0.036 1.749 3.7 5.4e8 0.262 0.755 3.4 4.8e8
ℓ2 6.2e-3 0.337 3.7 5.4e8 0.059 0.181 3.5 4.8e8
ℓ∞ 6.0e-4 0.034 3.7 5.4e8 6.2e-3 0.020 3.6 4.8e8

DROWN
ℓ1 0.178 3.064 5.6 4.7e9 0.836 2.638 5.7 3.7e9
ℓ2 0.034 0.569 5.9 4.7e9 0.163 0.638 5.7 3.8e9
ℓ∞ 3.3e-3 0.056 5.5 4.6e9 0.017 0.070 5.7 3.7e9

Table 2: Evaluation results of CROWN-BaF (Shi et al., 2020), DeepT (Bonaert et al., 2021), GaLileo (Zhang et al.,
2024), and DROWN on Transformers trained on the SST and Yelp datasets against one-word attacks.

highest among all methods. As shown in Tab.
2, DROWN achieves 1.65 to 3.49 times larger
certified radii than baseline methods against one-
word attacks. Besides, as we can seen in Tab. 3,
DROWN achieves 2.00 to 4.68 times larger certi-
fied radii than baseline methods against multi-word
attacks. The results above show that DROWN is
more precise than baseline methods.

Efficiency. DROWN is slower than the fastest
method but its computational cost is acceptable. As
shown in Tab. 2 and 3, the average of DROWN’s
running time is about two times longer than that of
CROWN-BaF or GaLileo but DROWN is still sig-
nificantly faster than DeepT. As for GPU memory
usage, DROWN is the most memory-consuming
method. As shown in Tab. 2 and 3, DROWN re-
quires up to 4.17 times more memory than DeepT,
the second most memory-consuming method. Con-
sidering that DROWN is more precise than base-
line methods, we conclude that DROWN is the best
choice for robustness certification of Transformers.

5.4 Beyond Norm-bounded Attacks

In addition to evaluations against ℓp-bounded at-
tacks above, we further conduct evaluation against
synonym substitution attacks where every word
in the sentence can be replaced with one of its
synonyms, which is considered to be more intu-
itive. Following previous works (Bonaert et al.,
2021), we record the number of certified sentences
of DROWN and compare it to previous methods

that are also based on LiRPA, which are shown in
Tab. 4. The model used here is a 3-layer Trans-
former with 4 attention heads and an embedding
size of 64. The result demonstrates that DROWN
is more precise than previous methods at the cost
of approximately double the running time.

5.5 Beyond ReLU Activations

To further evaluate DROWN’s performance on
other activations, we record its certified accuracy
and running time on seven CNNs with three widely-
applied activation functions (i.e., LReLU, ELU,
and Swish) respectively and compare its results to
CROWN’s. As shown in Tab. 5, DROWN achieves
higher precision than CROWN, albeit with approx-
imately double the running time.

6 Conclusion

In this paper, we present DROWN, a novel method
to tighten bounds in LiRPA-based robustness certi-
fication without significantly reducing the scalabil-
ity. DROWN propagates two pairs of linear bounds
using two different relaxations to efficiently refine
pre-activation bounds of ReLU units in later layers.
Our evaluation results across various models and
datasets show that DROWN achieves up to 83.39%
higher certified robust accuracy than the baseline
on CNNs and up to 4.68 times larger certified radii
than the baseline on Transformers while consuming
about twice the baseline’s running time.

6220

Dataset SST Yelp

Method Norm Min. Avg. Time(s) Mem.(B) Min. Avg. Time Mem.

CROWN-BaF
ℓ1 6.7e-3 0.391 5.5 1.0e9 1.1e-3 0.101 4.5 9.6e8
ℓ2 1.2e-3 0.076 4.7 1.0e9 2.4e-4 0.025 4.3 9.3e8
ℓ∞ 1.1e-4 7.6e-3 5.2 1.0e9 2.6e-5 2.7e-3 5.1 1.6e9

DeepT
ℓ1 6.2e-4 9.7e-3 27.0 3.0e9 4.6e-5 7.4e-3 28.1 2.3e9
ℓ2 6.2e-4 9.5e-4 27.3 3.0e9 3.4e-5 7.2e-3 28.1 2.3e9
ℓ∞ 5.8e-4 7.4e-3 27.6 3.0e9 1.3e-5 5.6e-3 28.2 2.2e9

GaLileo
ℓ1 6.7e-3 0.410 5.4 1.0e9 1.2e-3 0.170 4.5 9.5e8
ℓ2 1.2e-3 0.080 4.6 1.0e9 2.7e-4 0.043 4.2 9.2e8
ℓ∞ 1.1e-4 8.0e-3 5.2 1.0e9 2.9e-5 4.9e-3 5.1 9.8e8

DROWN
ℓ1 0.040 0.895 9.6 1.0e10 0.204 0.796 9.1 9.6e9
ℓ2 7.5e-3 0.160 8.5 1.0e10 0.058 0.195 7.6 8.9e9
ℓ∞ 7.4e-4 0.016 8.1 9.7e9 4.6e-3 0.021 7.3 8.8e9

Table 3: Evaluation results of CROWN-BaF, DeepT, GaLileo, and DROWN on Transformers trained on the SST
and Yelp datasets against multi-word attacks.

Method Certified Sentences Time(s)

CROWN-BaF 133 0.80
GaLileo 133 0.75
DROWN 134 1.47

Table 4: Evaluation results of CROWN-BaF, GaLileo,
and DROWN against synonym substitution attacks on
135 sentences in the SST dataset.

Method CROWN DROWN

Model C.Acc. Time C.Acc. Time

LReLU-1 51.38% 2.205 86.17% 4.283
LReLU-2 26.19% 1.519 88.17% 3.051
LReLU-3 49.77% 2.704 85.31% 5.203

ELU-1 51.44% 2.251 84.04% 4.564
ELU-2 89.91% 1.675 94.58% 3.154
ELU-3 80.42% 2.675 89.17% 5.397

Swish-1 20.85% 2.262 46.32% 4.456

Table 5: Evaluation results of CROWN and DROWN
on 7 CNNs (with LReLU, ELU, and Swish as activation
respectively) trained on the MNIST dataset. All time
results are in seconds.

7 Limitations

This study has certain important potential limita-
tions. First, similar to other LiRPA-based meth-
ods, DROWN is challenged by modern pre-trained
models. In fact, most deterministic methods for
robustness certification are challenged by the scale
of pre-trained models. Currently, only probabilis-
tic methods (or randomized smoothing) can certify
such large models, which build a smoothed model
with higher robustness upon a given model. How-
ever, the smoothed model involves a large number
of random sampling, which leads to an increase in
computational cost in the inference phase (deter-
ministic methods do not affect the inference phase).
Second, due to relaxations, certifying nontrivial
robustness for very deep models requires further
research. Specifically, the errors caused by relax-
ations accumulate layer by layer, which enlarges
the pre-activation bounds and eventually results in
trivial results for deeper models. DROWN can only
mitigate the above issue. Finally, like most of pre-
vious works, DROWN is restricted to classification
task. The reason is that the current definition of
robustness (i.e., Eq. 1) is tailored for classification
tasks and there is no well-established definitions of
robustness for other tasks (albeit a few recent works
that propose their own definitions of robustness for
tasks beyond classification such as semantic seg-
mentation (Yatsura et al., 2023)).

6221

Acknowledgments

This work was supported by the National Natu-
ral Science Foundation of China (under Grant No.
62372268), the Major Scientific and Technological
Innovation Projects of Shandong Province (under
Grant No. 2024CXGC010114), Shandong Provin-
cial Natural Science Foundation (under Grant No.
ZR2022LZH013 and No. ZR2021LZH007), and
Jinan City “20 New Universities” Funding Project
(under Grant No. 2021GXRC084) and partly sup-
ported by the National Natural Science Foundation
of China (under Grant No. 62402418) and the
Key R&D Program of Ningbo (under Grant No.
2024Z115).

References
Gregory Bonaert, Dimitar I. Dimitrov, Maximilian

Baader, and Martin T. Vechev. 2021. Fast and pre-
cise certification of transformers. In PLDI, pages
466–481.

Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia
Liu, and Luca Daniel. 2019. Cnn-cert: An efficient
framework for certifying robustness of convolutional
neural networks. In AAAI, pages 3240–3247.

Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Push-
meet Kohli, and Pawan Kumar Mudigonda. 2018.
A unified view of piecewise linear neural network
verification. In NeurIPS, pages 4795–4804.

Nicholas Carlini and David A. Wagner. 2017. Towards
evaluating the robustness of neural networks. In S&P,
pages 39–57.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In ACL, pages 1657–
1668.

Chih-Hong Cheng, Georg Nührenberg, and Harald
Ruess. 2017. Maximum resilience of artificial neural
networks. In ATVA, volume 10482, pages 251–268.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In SSST@EMNLP, pages 103–111.

Tianyu Du, Shouling Ji, Lujia Shen, Yao Zhang, Jinfeng
Li, Jie Shi, Chengfang Fang, Jianwei Yin, Raheem
Beyah, and Ting Wang. 2021. Cert-rnn: Towards
certifying the robustness of recurrent neural networks.
In CCS, pages 516–534.

Krishnamurthy Dvijotham, Robert Stanforth, Sven
Gowal, Timothy A. Mann, and Pushmeet Kohli. 2018.
A dual approach to scalable verification of deep net-
works. In UAI, pages 550–559.

Rüdiger Ehlers. 2017. Formal verification of piece-
wise linear feed-forward neural networks. In ATVA,
volume 10482, pages 269–286.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen,
Petar Tsankov, Swarat Chaudhuri, and Martin T.
Vechev. 2018. AI2: safety and robustness certifi-
cation of neural networks with abstract interpretation.
In S&P, pages 3–18.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples. In ICLR.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato,
Relja Arandjelovic, Timothy Arthur Mann, and Push-
meet Kohli. 2019. Scalable verified training for prov-
ably robust image classification. In ICCV, pages
4841–4850.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In CVPR, pages 770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9:1735–1780.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian,
and Mykel J. Kochenderfer. 2017. Reluplex: An effi-
cient SMT solver for verifying deep neural networks.
In CAV, volume 10426, pages 97–117.

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel,
Ngai Wong, and Dahua Lin. 2019. POPQORN: quan-
tifying robustness of recurrent neural networks. In
ICML, volume 97, pages 3468–3477.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proc. IEEE, 86(11):2278–
2324.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly paral-
lelizable recurrence. In EMNLP, pages 4470–4481.

Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. 2020. Sok:
Certified robustness for deep neural networks. CoRR,
abs/2009.04131.

Linyi Li, Tao Xie, and Bo Li. 2023. Sok: Certified
robustness for deep neural networks. In S&P, pages
1289–1310.

Alessio Lomuscio and Lalit Maganti. 2017. An ap-
proach to reachability analysis for feed-forward relu
neural networks. CoRR, abs/1706.07351.

Jingyue Lu and M. Pawan Kumar. 2020. Neural network
branching for neural network verification. In ICLR.

Zhaoyang Lyu, Ching-Yun Ko, Zhifeng Kong, Ngai
Wong, Dahua Lin, and Luca Daniel. 2020. Fastened
CROWN: tightened neural network robustness cer-
tificates. In AAAI, pages 5037–5044.

6222

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversarial
attacks. In ICLR.

Matthew Mirman, Timon Gehr, and Martin T. Vechev.
2018. Differentiable abstract interpretation for prov-
ably robust neural networks. In ICML, volume 80,
pages 3575–3583.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep
Singh, Markus Püschel, and Martin T. Vechev. 2022.
PRIMA: general and precise neural network certifica-
tion via scalable convex hull approximations. Proc.
ACM Program. Lang., 6(POPL):1–33.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In ACL, pages 115–124.

Gaith Rjoub, Saidul Islam, Jamal Bentahar, Mo-
hammed Amin Almaiah, and Rana Al-Rawashdeh.
2024. Enhancing iot intelligence: A transformer-
based reinforcement learning methodology. CoRR,
abs/2404.04205.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh,
and Pengchuan Zhang. 2019. A convex relaxation
barrier to tight robustness verification of neural net-
works. In NeurIPS, pages 9832–9842.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie
Huang, and Cho-Jui Hsieh. 2020. Robustness verifi-
cation for transformers. In ICLR.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel,
and Martin T. Vechev. 2019a. Beyond the single
neuron convex barrier for neural network certification.
In NeurIPS, pages 15072–15083.

Gagandeep Singh, Timon Gehr, Matthew Mirman,
Markus Püschel, and Martin T. Vechev. 2018. Fast
and effective robustness certification. In NeurIPS,
pages 10825–10836.

Gagandeep Singh, Timon Gehr, Markus Püschel, and
Martin T. Vechev. 2019b. An abstract domain for
certifying neural networks. PACMPL, 3:41:1–41:30.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer vi-
sion. In CVPR, pages 2818–2826.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In ICLR.

Christian Tjandraatmadja, Ross Anderson, Joey
Huchette, Will Ma, Krunal Patel, and Juan Pablo
Vielma. 2020. The convex relaxation barrier, revis-
ited: Tightened single-neuron relaxations for neural
network verification. In NeurIPS.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019.
Evaluating robustness of neural networks with mixed
integer programming. In ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998–6008.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao
Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning,
and Inderjit S. Dhillon. 2018. Towards fast compu-
tation of certified robustness for relu networks. In
ICML, volume 80, pages 5273–5282.

Eric Wong and J. Zico Kolter. 2018. Provable defenses
against adversarial examples via the convex outer
adversarial polytope. In ICML, volume 80, pages
5283–5292.

Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, and
J. Zico Kolter. 2018. Scaling provable adversarial
defenses. In NeurIPS, pages 8410–8419.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang,
Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura,
Xue Lin, and Cho-Jui Hsieh. 2020. Automatic pertur-
bation analysis for scalable certified robustness and
beyond. In NeurIPS.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang,
Suman Jana, Xue Lin, and Cho-Jui Hsieh. 2021. Fast
and complete: Enabling complete neural network ver-
ification with rapid and massively parallel incomplete
verifiers. In ICLR.

Maksym Yatsura, Kaspar Sakmann, N. Grace Hua,
Matthias Hein, and Jan Hendrik Metzen. 2023. Cer-
tified defences against adversarial patch attacks on
semantic segmentation. In ICLR.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui
Hsieh, and Luca Daniel. 2018. Efficient neural net-
work robustness certification with general activation
functions. In NeurIPS, pages 4944–4953.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NeurIPS, pages 649–657.

Yunruo Zhang, Lujia Shen, Shanqing Guo, and Shouling
Ji. 2024. Galileo: General linear relaxation frame-
work for tightening robustness certification of trans-
formers. In AAAI, pages 21797–21805.

Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min
Zhang. 2022. Provably tightest linear approxima-
tion for robustness verification of sigmoid-like neural
networks. In ASE, pages 80:1–80:13.

6223

A A Simple Example of DROWN

We provide a simple example of DROWN to facili-
tate understanding. As shown in Fig. 4, x1, . . . , x6
are six neurons in a hypothetical DNN. The for-
ward process of that DNN is

x3 = x1 + x2, (18)

x4 = x1 − x2, (19)

x5 = ReLU(x3), (20)

x6 = ReLU(x4), (21)

where −1
2 ≤ x1 ≤ 1 and −1

2 ≤ x2 ≤ 1. We show
the bounding procedure and results of CROWN
and DROWN in the following.

CROWN Bounds. We start with explaining how
CROWN derive the numerical bounds of x5 and
x6. The first layer of the DNN (i.e., x3 and x4) is a
linear layer, which does not need relaxations. Thus,
according to Eq. 18 and 19, the linear bounds of
x3 and x4 are

x1 + x2 ≤ x3 ≤ x1 + x2, (22)

x1 − x2 ≤ x4 ≤ x1 − x2. (23)

The second layer of the DNN (i.e., x5 and x6)
is a non-linear layer, which requires relaxations.
To perform relaxations for x5 and x6, we need to
calculate their pre-activation bounds first, i.e., nu-
merical bounds of x3 and x4. Given the numerical
bounds of x1 and x2, we can derive the following
numerical bounds based on Eq. 22 and 23.

−1 ≤ x3 ≤ 2, −3

2
≤ x4 ≤

3

2
. (24)

According to the ReLU relaxation in CROWN (i.e.,
Eq. 9), the upper and lower bound of x5 and x6 are

x3 ≤ x5 ≤
2

3
x3 +

2

3
, (25)

0 ≤ x6 ≤
1

2
x4 +

3

4
. (26)

We substitute x3 and x4 in Eq. 25 and 26 with
Eq. 22 and 23 (i.e., the backward propagation of
the bounds) to derive the following linear bounds.

x1 + x2 ≤ x5 ≤
2

3
(x1 + x2) +

2

3
, (27)

0 ≤ x6 ≤
1

2
(x1 − x2) +

3

4
. (28)

Based on the numerical bounds of x1 and x2, we
can derive the numerical bounds of x5 and x6 as
follows.

−1 ≤ x5 ≤ 2, 0 ≤ x6 ≤
3

2
. (29)

 −
1

2
, 1

 −
1

2
, 1

−1

ReLU 1

1

1

ReLU

x1

x2

x3

x4 x6

x5 ⋯

⋯

Figure 4: A hypothetical DNN as the example to explain
DROWN (as well as CROWN) in detail.

DROWN Bounds. In contrast to CROWN,
DROWN propagates two pairs of linear bounds.
For linear layer such as the first layer in the hypo-
thetical DNN, the two pairs of linear bounds are
identical (i.e., Eq. 22 and 23). Since they are iden-
tical to those in CROWN, we do not rewrite the
same equations here.

For non-linear layer such as the second layer,
DROWN calculates two pairs of linear bounds that
are different from each other. Since the second
layer is the first non-linear layer in the DNN, the
pre-activation bounds of x5 and x6 are identical to
those calculated by CROWN (i.e., Eq. 24). Note
that the pre-activation bounds will be different from
CROWN’s after the first non-linear layer and dif-
ferent from each other. Thus, DROWN refines the
pre-activation bounds using Eq. 13.

Based on the pre-activation bounds, two pairs of
linear bounds are calculated. The first pair of linear
bounds for x5 and x6 are

0 ≤ x5 ≤
2

3
x3 +

2

3
, (30)

0 ≤ x6 ≤
1

2
x4 +

3

4
. (31)

The second pair of linear bounds for x5 and x6 are

x3 ≤ x5 ≤
2

3
x3 +

2

3
, (32)

x4 ≤ x6 ≤
1

2
x4 +

3

4
. (33)

By substituting x3 and x4 in the two pairs of
linear bounds with the two pairs of linear bounds in
the last layer respectively (i.e., the backward prop-
agation of linear bounds), we derive the following
linear bounds. The first pair of linear bounds for
x5 and x6 (with respect to x1 and x2) are

0 ≤ x5 ≤
2

3
(x1 + x2) +

2

3
, (34)

0 ≤ x6 ≤
1

2
(x1 − x2) +

3

4
. (35)

6224

The second pair of linear bounds for x5 and x6
(with respect to x1 and x2) are

x1 + x2 ≤ x5 ≤
2

3
(x1 + x2) +

2

3
, (36)

x1 − x2 ≤ x6 ≤
1

2
(x1 − x2) +

3

4
. (37)

Based on the numerical bounds of x1 and x2, we
can derive the two pairs of numerical bounds of x5
and x6 as follows.

0 ≤ x5 ≤ 2, 0 ≤ x6 ≤
3

2
, (38)

−1 ≤ x5 ≤ 2, −3

2
≤ x6 ≤

3

2
. (39)

DROWN refines the numerical bounds of x5 and
x6 with Eq. 13 and derives the following refined
numerical bounds.

0 ≤ x5 ≤ 2, 0 ≤ x6 ≤
3

2
. (40)

Comparison. Compared to CROWN’s results
(i.e., Eq. 29), DROWN’s results for x5 is tighter
while its results for x6 is identical to CROWN’s,
which indicates that DROWN can tighten some
(not all) relaxations in the first layer of DNNs. The
results of tighter relaxations (e.g., the refined nu-
merical bounds of x5 and x6) will result in tighter
pre-activation bounds of the later non-linear layers,
which can further tighten the relaxations in those
layers (as shown in Fig. 1).

B Additional Discussions

Why not use more pairs of linear bounds?
DROWN only use two pairs of linear bounds be-
cause they’re sufficient in ReLU relaxations. For
simplicity, we only analyze the relationship be-
tween the slope of the lower bounding line kLi,j and
the corresponding units zi,j here. According to the
previous equations, we have that

Ci,L
j,j zi−1,j +Di,L

j ≤ zi,j , (41)

where Ci,L
j,j = kLi,j and Di,L

j = 0. As shown in Fig.
2, the range of kLi,j is 0 ≤ kLi,j ≤ 1. Meanwhile, we
don’t know whether zi−1,j is positive or negative.
Apparently, zi,j reaches it minimum when kLi,j = 0

or 1. Therefore, we set kLi,j = 0 for one pair of
linear bounds and kLi,j = 1 for the other, as shown
in Eq. 16. This conclusion also holds for LReLU,
PReLU, and RReLU.

Beyond LiRPA-based methods. The methodol-
ogy of DROWN can be used to tighten some other
robustness certification methods. For example, we
extend DROWN to zonotope-based methods and
evaluate it on some RNNs, which is presented in
Appendix F.

C Extension to More Activations

We extend DROWN to other widely-adopted activa-
tions such as LReLU (which shares similar proper-
ties with PReLU and RReLU), ELU (which shares
similar properties with CELU and SELU), and
Swish (which shares similar properties with Mish
and Hardswish). Similar to ReLU, we provide the
upper and lower bounds of those activations (de-
noted by y = σ(x)). For an activation neuron
zi,j = σ(zi−1,j) where l′i−1,j ≤ zi−1,j ≤ u′i−1,j

(l′, u′ for short), we calculate two pairs of linear
bounds as follows (note that l′, u′ here are the re-
fined bounds).{

zi,j = kL,1i,j zi−1,j + bL,1i,j ,

zi,j = kU,1i,j zi−1,j + bU,1i,j ,
first pair (42){

zi,j = kL,2i,j zi−1,j + bL,2i,j ,

zi,j = kU,2i,j zi−1,j + bU,2i,j ,
second pair (43)

where kU,2i,j = kU,1i,j and bU,2i,j = bU,1i,j if using a
shared upper bound as used for relaxing ReLU.
The two pairs of linear bounds should satisfy the
following condition.

k
L,1/2
i,j zi−1,j + b

L,1/2
i,j ≤ σ(zi−1,j)

≤ k
U,1/2
i,j zi−1,j + b

U,1/2
i,j ,

∀zi−1,j ∈ [l′, u′],

(44)

where 1/2 means the condition holds for the first
and second pairs of bounds.

We provide the detailed calculation of kL/U,1/2i,j

and b
L/U,1/2
i,j for each activation in the following.

LReLU. The LReLU activation function is

LReLU(x) =

{
x, if x ≥ 0,

αx, otherwise,
(45)

where α is the negative slope (default: α = 0.01).
Similar to ReLU, LReLU (and PReLU, RReLU) is
a piece-wise linear function. Thus, we only need
to relax it when l′ ≤ 0 ≤ u′.

6225

We use a shared upper bound for LReLU as
follows.

kU,1i,j =
LReLU(u′)− LReLU(l′)

u′ − l′
,

bU,1i,j = u′(1− kU,1i,j).

(46)

The lower bounds in the first and second pairs
of linear bounds for LReLU are

kL,1i,j = α, bL,1i,j = 0, (e.g., Fig. 3a)

kL,2i,j = 1, bL,2i,j = 0. (e.g., Fig. 3b)
(47)

ELU. The ELU activation function is

ELU(x) =

{
x, if x > 0,

α(ex − 1), otherwise,
(48)

where α is a hyper-parameter (default: α = 1.0).
The right half of ELU is linear while its left half is
not. Thus, we only need to relax it when l′ ≤ 0.

We use a shared upper bound for LReLU as
follows.

kU,1i,j =
ELU(u′)− ELU(l′)

u′ − l′
,

bU,1i,j = ELU(u′)− u′ · kU,1i,j .

(49)

The lower bounds in the first and second pairs
of linear bounds for LReLU are

kL,1i,j = ELU′(l′), (e.g., Fig. 3c)

bL,1i,j = ELU(l′)− l′ · ELU′(l′),

kL,2i,j = ELU′(u′), (e.g., Fig. 3d)

bL,2i,j = ELU(u′)− u′ · ELU′(u′),

(50)

where ELU′ is the derivative of ELU.
Swish. The Swish (also known as SiLU) activa-

tion function is

Swish(x) = x · Sigmoid(x). (51)

The direct relaxation of Swish is more complicated
since it is non-convex (e.g., the straight line be-
tween (l,Swish(l)) and (u,Swish(u)) may not be
its upper bound). However, we discover a globally
upper and lower bounds of Swish (as the following
equation shows), which are piece-wise linear, as
shown in Fig. 5.

ReLU(x) + β ≤ Swish(x) ≤ ReLU(x). (52)

Calculating the exact value of β is challenging (and
unnecessary) since it involves solving transcenden-
tal equations. Thus, we calculate a lower bound of
β, i.e., β = −0.2786.

Figure 5: Piece-wise linear bounds in global relaxation
of Swish (where we set β = −0.2786).

We will discuss the relaxed relaxation of Swish
in three different cases.

Case 1: 0 ≤ l′ ≤ u′. In this case, we use a shared
upper bound as well as a shared lower bound as
follows (i.e., the upper bounds for the two pairs of
bounds are identical, so do the lower bounds).

kU,1i,j = 1, bU,1i,j = 0, (53)

kL,1i,j = 1, bL,1i,j = β. (54)

Case 2: l′ ≤ u′ ≤ 0. In this case, we also use
a shared upper bound as well as a shared lower
bound (in other words, we set kU,1i,j = kU,2i,j , bU,1i,j =

bU,2i,j , k
L,1
i,j = kL,2i,j , bL,1i,j = bL,2i,j).

kU,1i,j = 0, bU,1i,j = 0, (55)

kL,1i,j = 0, bL,1i,j = β. (56)

Case 3: l′ ≤ 0 ≤ u′. In this case, we adopt
the upper bound of ReLU (i.e., Swish’s globally
upper bound) as the shared upper bound, which is
presented in the following.

kU,1i,j =
u′

u′ − l′
, bU,1i,j =

u′l′

u′ − l′
. (57)

Meanwhile, we use the lower bounds of Swish’s
globally lower bound (i.e., ReLU(x) + β) as the
lower bounds of Swish respectively as follows.

kL,1i,j = 0, bL,1i,j = β, (e.g., Fig. 3e)

kL,2i,j = 1, bL,2i,j = β. (e.g., Fig. 3f)
(58)

D RNNs for Text Classification

Following prior works (Ko et al., 2019; Du et al.,
2021), we apply RNNs to text classification tasks

6226

Layer

1

Layer

t

··· ···

··· ···

Layer

T

Hidden State

Cell State

Input

······

Vanilla RNN layer

LSTM layer GRU layer

Figure 6: The recurrent neural network architecture for text classification. The cell state is unique to LSTM models.

such as sentiment prediction and toxic content de-
tection. The RNN model receives a sentence of
variable lengths (denoted by T) composed of words
(or tokens) and performs classification into C dis-
tinct classes. As shown in Fig. 6, the RNN model
updates a hidden state ht at each time step accord-
ing to the current frame xt and the last hidden state
ht−1:

ht = layer(xt, ht−1), (59)

where t = 1, 2, . . . , T . The initial hidden state h0
is usually set to zero. In particular, LSTM models
update an additional hidden state ct called cell state.
The output vector h ∈ RC is calculated according
to each hidden state:

h = Wo ·h1+Wo ·h2+ · · ·+Wo ·ht+ bo. (60)

For simplicity, we replace it with h = Wo ·
ht + bo. The prediction of the input X is y =
argmaxc∈[C] hc, where hc is the c-th component
of h.

We mainly consider two kinds of RNN models
in this paper: long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) models and
gated recurrent unit (GRU) (Cho et al., 2014) mod-
els. Each kind of model updates its hidden states
differently.

LSTM models update ht and ct according to

it = σ(Wxixt + bxi +Whiht−1 + bhi), (61)

ft = σ(Wxfxt + bxf +Whfht−1 + bhf), (62)

gt = tanh(Wxgxt + bxg +Whght−1 + bhg),
(63)

ot = σ(Wxoxt + bxo +Whoht−1 + bho), (64)

ct = ft ⊙ ct−1 + it ⊙ gt, (65)

ht = ot ⊙ tanh(ct), (66)

where ⊙ is the Hadamard product.
GRU models update ht according to

rt = σ(Wxrxt + bxr +Whrht−1 + bhr), (67)

zt = σ(Wxzxt + bxz +Whzht−1 + bhz), (68)

nt = tanh(Wxnxt + bxn+

rt ⊙ (Whnht−1 + bhn)),
(69)

ht = (1− zt)⊙ nt + zt ⊙ ht−1. (70)

E Additional Experiment Setup

Datasets. We use the following benchmark
datasets for evaluation:

MNIST dataset (LeCun et al., 1998), which is
a is a large database of handwritten digits that is
commonly used for training various image process-
ing systems. The MNIST dataset contains 60,000
training images and 10,000 testing images.

Rotten Tomatoes Movie Review dataset (Pang
and Lee, 2005), which is a benchmark corpus of
movie reviews used for sentiment analysis. The RT
dataset contains about 39000 and 4800 samples in
the training set and the testing set, respectively.

6227

Stanford Sentiment Treebank dataset (Socher
et al., 2013), which is also a benchmark corpus
of movie reviews used for sentiment analysis. The
SST dataset contains about 67349 and 1821 sam-
ples in the training set and the testing set, respec-
tively.

Yelp Reviews Polarity dataset (Zhang et al.,
2015), which is a large text classification bench-
mark. The Yelp dataset contains about 560000 and
38000 samples in the training set and the testing
set, respectively.

Models. We use the following models for evalu-
ation:

Convolutional Neural Network models, which
are classic models for image classification. The
CNNs used in our experiments are:

• CNN1: 2 conv layer, 2 linear layer, first linear
layer size 392*128 width.

• CNN2: 2 conv layer, 2 linear layer, first linear
layer size 784*128 width.

• CNN3: 4 conv layer, 3 linear layer, first linear
layer size 392*256 width.

• CNN4: 4 conv layer, 3 linear layer, first linear
layer size 784*256 width.

• CNN5: 4 conv layer, 3 linear layer, first linear
layer size 392*512 width.

• CNN6: 4 conv layer, 3 linear layer, first linear
layer size 784*512 width.

• CNN7: 3 conv layer, 2 linear layer, first linear
layer size 392*64 width.

• CNN8: 3 conv layer, 2 linear layer, first linear
layer size 784*128 width.

• CNN9: 3 conv layer, 2 linear layer, first linear
layer size 288*64 width.

• CNN10: 3 conv layer, 2 linear layer, first lin-
ear layer size 576*128 width.

Recurrent Neural Network models, including
LSTM (Hochreiter and Schmidhuber, 1997), and
GRU (Cho et al., 2014), are classic models for
NLP tasks. We use RNNs that consist of 32 and
64 hidden neurons (consistent with those used in
previous work (Du et al., 2021)). We refer to them
as LSTM-32 (L-32), LSTM-64 (L-64), GRU-32
(G-32), and GRU-64 (G-64).

Class lable

Classifier

Pooling layer & Tanh

Add & Normalize

FFN

Add & Normalize

Multi-head attention

Embedding layer

Positional

embedding

M Transformer layer

Input sentence

Figure 7: The Transformers used in this work.

Transformer models are the most widely applied
models for NLP tasks. We use a Transformer with
3 layers, 4 attention heads, 128 hidden neurons
(the feed-forward network in it also has 128 hidden
neurons), as shown in Fig. 7.

Baseline. We choose the following methods as
baselines.

CROWN (Zhang et al., 2018) achieves the high-
est precision on almost all models in the evaluation
1 of a recent survey (Li et al., 2023), which is also
part of the auto_LiRPA library (Xu et al., 2020).

CROWN-BaF (Shi et al., 2020) is the first
method proposed for certifying Transformers,
which uses the LiRPA procedure to bound the out-
put scores (it is part the of auto_LiRPA library).

DeepT (Bonaert et al., 2021) is a zonotope-based
method, which surpasses CROWN-BaF in preci-
sion at the cost of longer running time.

GaLileo (Zhang et al., 2024) also uses the LiRPA
procedure but adopts a more precise relaxation of
softmax functions. GaLileo focuses on tightening
the relaxation of the self-attention mechanism (the
softmax in it) while this work focuses on tightening
the relaxation of activation functions.

Hardware. Experiments on Transformers are
conducted on a server with an Intel Core i9-10920X
CPU running at 3.50 GHz, 128 GB memory, and
a GeForce RTX 3090 GPU card. Others are con-
ducted on a server with an Intel Xeon Silver 4210R
CPU running at 2.40GHz, 128 GB memory, and a
GeForce RTX 2080Ti GPU card.

1https://sokcertifiedrobustness.github.io/
benchmark/

https://sokcertifiedrobustness.github.io/benchmark/
https://sokcertifiedrobustness.github.io/benchmark/

6228

0 0.5 1 1.5 2

0

0.5

1

1.5

(a)
0 0.5 1 1.5 2

0

0.5

1

1.5

(b)
0 0.5 1 1.5 2

0

0.5

1

1.5

(c)

Figure 8: Extension of DROWN to tanh and zonotopes: the box-style relaxation used in IBP (Gowal et al., 2019)
(a), the parallelogram-style relaxation used in Cert-RNN (Du et al., 2021) (b), and their intersection.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

(a)
0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)
0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)
0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d)

Figure 9: An intuitive example of different relaxations’ over-approximation under tanh. (a) the input set I0, (b) the
box-style relaxation areaO1, (c) the parallelogram-style relaxation areaO2, (d) the refined relaxation areaO1

⋂
O2.

The yellow area is the input set and the grey area O0 is its exact image under tanh.

Dataset RT Yelp

Model L-32 L-64 G-32 G-64 L-32 L-64 G-32 G-64

Clean Acc. 73.78% 73.63% 73.49% 74.71% 72.39% 73.16% 71.34% 73.14%

C.Acc.
Base 6.80% 5.79% 17.38% 17.14% 15.67% 14.32% 21.69% 28.81%
Ours 14.81% 10.58% 17.83% 18.18% 27.37% 22.60% 22.07% 29.44%

Time(s)
Base 73.8 73.5 73.5 74.5 9.1e2 9.8e2 4.5e2 5.4e2
Ours 73.7 73.6 73.6 74.5 1.1e3 1.1e3 5.3e2 6.4e2

Table 6: Evaluation results of Cert-RNN (Base) and DROWN (Ours) on the RNN models against multi-word attacks.

0.05 0.1 0.15

Radius

0 %

10 %

20 %

30 %

40 %

50 %

60 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(a) RT LSTM-32

0.05 0.1 0.15

Radius

0 %

10 %

20 %

30 %

40 %

50 %

60 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(b) RT LSTM-64

0.05 0.1 0.15

Radius

0 %

10 %

20 %

30 %

40 %

50 %

60 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(c) RT GRU-32

0.05 0.1 0.15

Radius

0 %

10 %

20 %

30 %

40 %

50 %

60 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(d) RT GRU-64

0 0.05 0.1 0.15

Radius

0 %

20 %

40 %

60 %

80 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(e) Yelp LSTM-32

0 0.05 0.1 0.15

Radius

0 %

20 %

40 %

60 %

80 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(f) Yelp LSTM-64

0 0.05 0.1 0.15

Radius

0 %

20 %

40 %

60 %

80 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(g) Yelp GRU-32

0 0.05 0.1 0.15

Radius

0 %

20 %

40 %

60 %

80 %

C
e
rt

if
ie

d
 R

o
b
u
s
t
A

c
c
u
ra

c
y

Cert-RNN

DROWN

(h) Yelp GRU-64

Figure 10: Certified robust accuracy of the four models on the RT and Yelp dataset at different εe computed using
the baseline method (Cert-RNN) and DROWN.

6229

F Evaluations of Extending DROWN to
Zonotope-based Methods on RNNs
with Tanh Activation

In this subsection, we present results of our early
research on extending DROWN to zonotope-based
methods, which is evaluated on RNNs with tanh
activation rather than ReLU. Zonotope-based meth-
ods formulate the adversarial space S(x0) as a
zonotope and propagate it through the model to
derive lower and upper bounds for each score.

We briefly introduce our relaxation for tanh and
zonotopes. In contrast to those for LiRPA-based
methods, relaxations for zonotopes require paral-
lel bounds, i.e, the slopes of the lower and upper
bounds need to be identical. As shown in Fig. 8,
the first pair of linear bounds are the lower and
upper edges of smallest box containing the tanh
curve (i.e., the box-style relaxation used in IBP)
and the second pair of linear bounds are the lower
and upper edges of smallest parallelogram contain-
ing the curve (i.e., the parallelogram-style relax-
ation used in Cert-RNN). The intersection of the
relaxation areas of the above relaxations is smaller,
which indicates combining the two relaxations can
tighten tanh’s relaxation. We also provide an intu-
itive example in Fig. 9. Given an input set I0, we
denote the exact image of I0 under tanh as O0. We
calculate an over-approximation of O0 using the
box-style relaxation (denoted as O1) and another
over-approximation of O0 using the parallelogram-
style relaxation (denoted as O2). As shown in Fig.
9, the refined relaxation area O1

⋂
O2 is tighter.

We evaluate the precision and efficiency of the
baseline method Cert-RNN (Du et al., 2021) and
ours against the worst-case adversarial attack where
all words in the sentence can be perturbed (under
the ℓ∞ norm). We report the results in Tab. 6 and
Fig. 10.

Precision. As shown in Tab. 6, DROWN
achieves higher certified robust accuracy. For ex-
ample, for the LSTM-32 model on the RT dataset,
the baseline proves that 6.80% samples are robust
while DROWN proves that 14.81% samples are ro-
bust. We further report the certified robust accuracy
within ℓp-balls with different radius ε in Fig. 10.
Both of them show that the certified robust accuracy
computed by DROWN is higher than the baseline,
which indicates that the intersection-based relax-
ation is more precise than the classic one. More-
over, we observe that the precision improvement
of DROWN is more obvious in LSTM models than

in GRU models. This is because LSTM models
involve more variables and use more non-linear
functions and the advantage of DROWN comes
from the relaxation of non-linear functions. Thus,
DROWN is more precise, especially on complex
models with more non-linear functions.

Efficiency. In addition to state-of-the-art certi-
fied robust accuracy achieved by DROWN, we can
see from Tab. 6 that the running times of DROWN
are close to those of the baseline. The reason is that
the computational cost of the box-style relaxation is
negligible compared to those of the parallelogram-
style relaxation. For example, for the LSTM-64
model on the RT dataset, DROWN takes 73.5 sec-
onds to certify the robustness of all test samples
while the baseline takes 73.6 seconds. Though
DROWN is slower, we argue that it is acceptable
because the gap between the two methods is far
smaller than the running times of the baseline.

In conclusion, we believe that DROWN is a bet-
ter choice for certifying the robustness of RNN
models due to its superiority in precision and ade-
quate efficiency.

	Introduction
	Related Work
	Preliminaries
	Adversarial Robustness
	Robustness Certification
	LiRPA Solution

	Methodology
	The Proposed Algorithm: DROWN
	Discussion

	Experiments
	Setup
	CNN Results
	Transformer Results
	Beyond Norm-bounded Attacks
	Beyond ReLU Activations

	Conclusion
	Limitations
	A Simple Example of DROWN
	Additional Discussions
	Extension to More Activations
	RNNs for Text Classification
	Additional Experiment Setup
	Evaluations of Extending DROWN to Zonotope-based Methods on RNNs with Tanh Activation

