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Abstract
While there has been considerable amount of
research on bias mitigation algorithms, two
properties: multi-community perspective and
fairness to all communities have not been given
sufficient attention. Focusing on these, we pro-
pose an obfuscation based data augmentation
debiasing approach. In it we add to the training
data obfuscated versions of all false positive
instances irrespective of source community. We
test our approach by debiasing toxicity classi-
fiers built using 5 neural models (multi layer
perceptron model and masked language mod-
els) and 3 datasets in a 4 communities setting.
We also explore 4 different obfuscators for de-
biasing. Results demonstrate the merits of our
approach: bias is reduced for almost all of our
runs without sacrificing false positive rates or
F1 scores for minority or majority communities.
In contrast, the 4 state of the art baselines typi-
cally make performance sacrifices (often large)
while reducing bias. Crucially, we demonstrate
that it is possible to debias while maintaining
standards for both minority and majority com-
munities.
Note: This paper contains examples of toxic
texts/posts.

1 Introduction
Even though deep learning based text classifiers
are popular, enthusiasm is tempered because of
their biases against particular communities. There
is now a definite expectation that these systems
should perform well on the whole as well as for
different groups; groups that may be defined using
sensitive attributes such as ethnicity (our focus),
gender, religion. Thus, bias assessment in text
classifiers and their mitigation (debiasing) is now
an active area of research. There are now four broad
categories of mitigation algorithms. These are pre-
processing - adjust the training data (Calmon et al.,
2017; Ball-Burack et al., 2021; Chakraborty et al.,
2021; Almuzaini et al., 2022); in-processing - adjust

model training (Zhang et al., 2018; Ball-Burack
et al., 2021; Yazdani-Jahromi et al., 2022; Kumar
et al., 2023); intra-processing - adjust through
model fine-tuning (Savani et al., 2020) and post-
processing - adjust predicted labels (Hardt et al.,
2016; Lohia et al., 2019; Qian et al., 2021). Our
algorithm is in the pre-processing category.

Limitations of prior debiasing algorithms: (1)
Prior debiasing algorithms largely consider a single
community (typically African American (AE)) as
minority and the rest as a single majority community.
While we do not question the merits of including
AE as minority we suggest that depending on model-
dataset combination, communities such as Hispanic
might also suffer biases. Moreover, datasets typi-
cally derive from social media platforms in which
many communities engage emphasizing the need
for a multi-community perspective. (2) While re-
ducing bias, these algorithms often make sacrifices
with regards to other communities including the
majority. We introduce a new and important defini-
tion of fairness which is that a debiasing algorithm
should remove biases while at least not degrading
performance for any community. Performance at
the community level is not a fungible commodity.

Overview of our proposed algorithm: We
propose a new debiasing algorithm in the pre-
processing category that addresses these limitations
and has the following innovations. (1) It operates in
a multi-community setting. (2) Minority and major-
ity communities are determined for each classifier:
model - dataset combination. When a classifier
results in an imbalance in false positive rates (FPR)
for a dataset there is bias; communities suffering
higher rates are considered as minority. (3) Our
algorithm is fair towards all communities because it
addresses all false positive errors made by the clas-
sifier irrespective of source community. In contrast,
competing algorithms (Kamiran and Calders, 2012;
Ball-Burack et al., 2021) involve complex criteria
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to adjust training data that rely on community iden-
tity. (4) Our algorithm is inspired by research on
text obfuscation algorithms. Specifically, we add
obfuscated versions of false positive instances to
the training data. This ensures that the synthetic
instance is as close as possible to the original while
increasing the likelihood of the classifier changing
its (false) positive decision to a (true) negative for
the instance. As a secondary objective we explore
the relative merits of different obfuscators in the
context of debiasing classifiers.

Contributions of our research:
1. We propose an obfuscation based debiasing ap-

proach designed to handle multiple communi-
ties1. It is fair in that it does not sacrifice perfor-
mance for the minority or majority communities.

2. We test our ideas through experiments on debi-
asing (for racial/ethnicity bias) in binary toxicity
classifiers built using combinations of 5 models
and 3 datasets. We also assess the relative merits
of 4 obfuscators used for debiasing. We compare
against four state-of-the-art pre-processing base-
line approaches: Preferential Sampling (Kami-
ran and Calders, 2012), Differential Tweetment
(Ball-Burack et al., 2021), SMOTE (Chawla
et al., 2002), and Counterfactual Data Augmen-
tation.
In summary, results indicate that our commu-

nity neutral algorithm successfully reduces bias
while simultaneously reducing FPR and at least
maintaining F1 scores for majority and minority
communities. Baselines make large sacrifices in
performance in order to reduce bias. Regardless of
obfuscating classifier, our approach almost always
debiases and meets our fairness requirement.

2 Desired properties of debiasing
algorithms

2.1 Multi-community perspective

Any given dataset or classifier model may be biased
against multiple communities simultaneously and
not just one. Thus, a multi-community perspective
is crucial. Unfortunately, extensions to existing de-
biasing algorithms for supporting a multiple com-
munity perspective are generally not obvious or
straightforward (Mozafari et al., 2020; Ball-Burack
et al., 2021; Halevy et al., 2021). Thus, there is a

1Our code is available at https://github.com/Ingro
jShrestha/debiasing-via-obfuscation-in-multi
community-settings

critical need for algorithms that are designed for
multi-community settings.

2.2 Definition of fairness

Our definition of fairness requires debiasing algo-
rithms to reduce bias without at least degrading
performance for any community. To illustrate, con-
sider the popular strategy of measuring bias by
false positive rate (FPR). We can think of several
approaches to reduce the FPR for a minority com-
munity. But those that involve increasing FPR for
other communities (including the majority) or that
decrease F1 scores for any community are not ap-
propriate. Moreover, by sacrificing the majority we
may also be sacrificing any ‘yet to be identified’
latent minority groups.

Unfortunately, most debiasing papers do not re-
port performance on the majority community. Typ-
ically, papers report bias measurements and model
performance for the whole dataset or/and the mi-
nority subset (Dixon et al., 2018; Park et al., 2018;
Savani et al., 2020; Xia et al., 2020; Ball-Burack
et al., 2021; Sen et al., 2022; Song et al., 2023;
Sobhani and Delany, 2024) with rare exceptions
(Mozafari et al., 2020; Halevy et al., 2021; Tang
et al., 2024). Thus, we cannot gauge if these are
fair as per our definition.

We hope to convince future researchers to con-
sider multiple communities simultaneously and also
that the fairness property we outline is the right one
to pursue. Our results in the context of debiasing
toxicity classifiers show that this is possible.

3 Debiasing Methodology

3.1 Overview of our approach

Figure 1: Overall architecture

https://github.com/IngrojShrestha/debiasing-via-obfuscation-in-multicommunity-settings
https://github.com/IngrojShrestha/debiasing-via-obfuscation-in-multicommunity-settings
https://github.com/IngrojShrestha/debiasing-via-obfuscation-in-multicommunity-settings
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Our approach is a pre-processing one as we adjust
training data. Minority/majority communities are
identified by FPR (Type-I error rate) as is common
in the literature (Sap et al., 2019; Xia et al., 2020;
Halevy et al., 2021; Mehrabi et al., 2021; Lwowski
et al., 2022; Spliethöver et al., 2024). Communities
with higher FPR are considered as minority and
the rest as majority (using a suitable threshold
described later). Here FP, which is in the context
of toxicity classifiers, represents a non-toxic text
falsely predicted as toxic. FPR is used instead
of false negative rate (FNR) since the punitive
impact of a false positive decision on the individual
outweighs the impact of a false negative decision on
the organization, especially with toxicity (Davani
et al., 2023).

We use methods inspired by obfuscation algo-
rithms to generate synthetic instances. Specifically,
each FP instance is modified until a target classifier
is tricked into changing its decision. The choice of
target classifier for use in obfuscation is indepen-
dent of the classifier being debiased. We minimize
confusion between the two by referring to the target
classifier henceforth as 007-classifier (for a bit of
fun and since obfuscation is typically adversarial
in nature). We explore alternate 007-classifiers
(Section 3.1.2).

We harvest FPs from validation data (instead
of training). Key to note, the validation datasets
provide fewer FPs than the training datasets. For the
3 datasets we investigate, the number of validation
set FPs is 1.4 to 3.5 times smaller than the number
of training set FPs. This may be a disadvantage
for our algorithm. However, it has the potential
advantage in that the FP examples from validation
data are ‘unseen’ by the model and hence might lead
to better generalization for our debiasing objective.

As shown in figure 1, we process the validation
dataset with the initial toxicity classifier, add ob-
fuscated versions of all FP instances to the training
data and retrain the classifier. We expect this to be
less biased without sacrificing performance.

3.1.1 Obfuscation: greedy select random
replace

Text obfuscation algorithms have been developed
for adversarial attacks against classifiers to force
them into making errors. A large body of research
explores obfuscation attacks against classifiers of
text attributes such as author, gender, and offensive-
ness (Mahmood et al., 2019; Rusert et al., 2022;
Tokpo and Calders, 2022; Xing et al., 2024). Instead

of adversarial attacks we plan to use obfuscators
in a novel manner for debiasing classifiers. Specif-
ically, we use obfuscators to generate synthetic
instances that are as close to the FP instances as
possible while raising the likelihood of the biased
classifier flipping its decision. Thus, in contrast
to using obfuscators adversarially, our application
of obfuscators to debiasing is novel in that it is
beneficial.

We follow a greedy-select random-replace ob-
fuscation strategy (see Figure 1) wherein we (1)
select an appropriate term in the instance and (2)
substitute it with a suitable replacement. If the
007-classifier alters its decision on this modified
instance then obfuscation concludes else we it-
erate back into the greedy-select random-replace
step. For step 1, the algorithm greedily selects the
one word whose removal has greatest impact on
007-classifier confidence. Step 2 iterates through
random selections for substitution from Glove Twit-
ter2. Random replacements are efficient since these
synthetic instances will never be viewed by humans.
The cycle continues until the obfuscation classifier
is tricked. The degenerate case of not tricking the
007-classifier never happens in our experiments.
Appendix Table 9 presents examples of FPs and
their obfuscated version (synthetic instances). We
emphasize that the substitutions are not intended to
be sensible - as these are random word choices.

3.1.2 Alternative 007-classifiers
A secondary goal of this study is to understand if
domain differences between the 007-classifiers and
the classifier being debiased matter.
1. The 007-classifier is identical to the classifier

being debiased (OBFTC). This reflects a white
box assumption wherein we have full access to
the classifier being debiased.

2. The 007-classifier is from a related domain. This
reflects a black box assumption in which we are
given a set of FPs and we only know what
kind of classifier is being debiasing. Since
this is a toxicity classifier, we explore MIDAS
(Mahata et al., 2019) and NULI (Liu et al.,
2019a), two state-of-the-art offense classifiers
from OffensEval 2019 Task 6 (Zampieri et al.,
2019) (OBFMIDAS, OBFNULI). NULI, a BERT
based classifier, was the top performing offense
classifier. MIDAS, the top performing non-
BERT offense classifier, is a BLSTM, BLSTM
+ BGRU, CNN ensemble.
2https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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3. The 007-classifier is from a different domain.
This is also black box in that we are given FP
instances but have no knowledge of the classi-
fier’s problem domain. Thus, we use a popular
classifier, i.e., a sentiment classifier as the 007-
classifier (OBFSC) (Barbieri et al., 2020).

3.2 Baselines
We use pre-processing bias mitigation methods that
adjust the training dataset as our baselines.

Preferential Sampling (PS) (Kamiran and Calders,
2012): They reduce bias by deleting or adding exact
copies of select instances. Selections are based on
instance rankings by toxic class membership prob-
abilities. As an illustration, a number (calculated
value) of top-ranked toxic instances are removed for
the minority group if it has more toxic comments
compared to the majority group. Details are in
Kamiran and Calders (2012).

The authors only consider African-American
(AE) as 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 and non-AE as 𝑚𝑎 𝑗𝑜𝑟𝑖𝑡𝑦. Thus,
as a simple extension we run experiments where
each minority community (which varies by model
- dataset combination) in turn forms the minority
group and the rest form the other group. These are
labeled as PSHispanic, PSAE, etc. These experiments
will alert us to differences in bias reduction from
different minority perspectives. The authors also
indicate that multiple groups may be combined such
that only two groups remain. Accordingly, for each
dataset, we combine communities with high false
positive rates into one minority group keeping the
rest as one majority group (PSallMin).

Differential Tweetment (DiffT) (Ball-Burack et al.,
2021): This strategy which derives from PS (Kami-
ran and Calders, 2012) also deletes or adds exact
copies of training instances after ranking. Instance
ranking is done based on both classifier confidence
and probability of belonging to the minority group.
Ranking and selection is iterative, with the top
1000 instances selected for processing (removal or
duplication). The classifier is re-trained. If bias is
below a threshold, the process terminates. Details
of our implementation are in the appendix A.13.

The authors consider bias measurement only
from AE perspective. Unlike the PS algorithm,
we do not find an intuitive way to extend DiffT
wherein multiple minority groups can be combined
into one group. Accordingly, we only consider

3We held discussions over email with the authors to clarify
specific steps in their algorithm.

debiasing from the perspective of each minority
group (labeled DiffTAsian, DiffTHispanic etc.).

SMOTE (Chawla et al., 2002): While SMOTE is
designed to handle class imbalance we are curious
to see if it can also be used to reduce bias. SMOTE
adds new synthetic instances as follows. Each
instance in the smaller class is paired with its closest
𝑘 ∈ [1, 5] instances from the same class in the
feature space. In our case, the classes are toxic and
non-toxic. A synthetic sample is generated — in
this feature space — along the line between each
pair using the equation:
𝑥
𝑗
𝑛𝑒𝑤 = 𝑥

𝑗

𝑖
+ rand(0, 1) ∗ (𝑥 𝑗

𝑖
− 𝑥

𝑗

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
)

Here 𝑥 𝑗

𝑖
refers to j-th feature of a sample 𝑥𝑖 ∈ R𝑛,

𝑗 ∈ [1, 𝑛]. 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 refers to one of the k-chosen
neighbors, and 𝑥𝑛𝑒𝑤 refers to a synthetic sample in
the line between 𝑥𝑖 and 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠.

Counterfactual Data Augmentation (CDA):
Aligned with our goal of adding obfuscated FPs, we
added the counterfactual of FPs from the validation
set to the training dataset. That is, we added the FP
text without modification but with the label ‘toxic’.

4 Experiment design

4.1 Toxicity classifier models

In the first set of experiments, we debias a multi-
layer perceptron (MLP) classifier and make detailed
comparisons with baseline debiasing algorithms
(Section 5). In the second set of experiments,
we extend our analysis to debiasing masked lan-
guage models (MLMs) classifiers: BERT (bert-
base-uncased, bert-large-uncased)(Devlin et al.,
2019), DistilBERT (Sanh et al., 2019), RoBERTa
(roberta-base) (Liu et al., 2019b) (Section 6). Model
configurations are in the appendix A.2.

4.2 Toxicity classifier datasets

We experiment with three datasets. As in Park et al.
(2018), Senarath and Purohit (2020) and Fortuna
et al. (2021), we formulate toxicity classification
as binary (toxic/non-toxic) instead of multi-class
and adjust the class definition accordingly in each
dataset. A toxic text contains hateful, abusive, or
offensive content4. Table 1 presents an overview
of datasets used. Each was randomly split into
training (65%), validation (15%) and testing (20%).

4For example, Are you f**king stupid, dude? is a toxic text
as it contains offensive language and demeaning phrases that
can be perceived as abusive towards an individual.
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(1) Davidson (DWMW17) (Davidson et al., 2017):
It contains approximately 25K tweets each anno-
tated by at least three CrowdFlower (CF) workers.
Tweets are labeled as one of hate speech, offensive
or none. We combined hate speech and offensive
as toxic and the rest as non-toxic.

(2) HatEval (HatEval19) (Basile et al., 2019): It
has about 13K English tweets with two labels:
offensive or not annotated using crowdsourcing
platform Figure Eight and two more experts. We
consider offensive as toxic and not as non-toxic.

(3) Founta (FDCL18) (Founta et al., 2018): It in-
cludes approximately 100K tweets, each annotated
by five crowdsource workers as hateful, abusive,
spam and none. We combine hateful and abusive
as toxic and spam and none as non-toxic.

Dataset Class Group Train Valid Test Total

DWMW17

toxic

AE 8178 1887 2463 12528
Hispanic 2128 456 693 3277
Asian 106 33 36 175
White 2946 707 918 4571

Total 13358 3083 4110 20551

non-
toxic

AE 425 97 125 647
Hispanic 241 59 71 371
Asian 152 25 47 224
White 1868 439 584 2891

Total 2286 620 827 4144

HatEval19

toxic

AE 714 171 215 1100
Hispanic 443 103 129 675
Asian 60 14 14 88
White 2328 531 733 3592

Total 3545 819 1091 5455

non-
toxic

AE 477 117 125 719
Hispanic 485 109 161 755
Asian 219 55 74 348
White 3681 841 1136 5658

Total 4862 1122 1496 7480

FDCL18

toxic

AE 5275 1206 1653 8134
Hispanic 5807 1373 1756 8936
Asian 384 61 110 555
White 9401 2175 2902 14478

Total 20867 4815 6421 32103

non-
toxic

AE 2032 455 655 3142
Hispanic 2416 563 734 3714
Asian 4188 978 1375 6541
White 35110 8100 10696 53906

Total 41714 10096 12805 67303

Table 1: Description of datasets.

Pre-processing: We replaced new line and extra
white space with a space. We removed URLs,
hashes, mentions (@user), and retweet mention
(RT) from the tweet, then lower case and stem text.

Dialect estimation: We use the model from Blod-
gett et al. (2016) to infer dialect5 on the pre-

5Blodgett et al. (2016) found strong correlations between
predicted and the actual census proportions for AE, Hispanic,
and White, and borderline weak to moderate for Asian, sug-
gesting our Asian texts may be blurred with the background.
Further linguistic study is needed to improve the estimation of

processed tweets. We take 𝑎𝑟𝑔𝑚𝑎𝑥 of the probabil-
ity distribution that it provides for: African Ameri-
can (AE; 𝑝AE), Hispanic(H; 𝑝Hispanic), Asian(AS;
𝑝Asian), and White (𝑝White) for group assignment.

Majority and minority categorization: Generally,
papers use a static, socially recognized demarcation
with disadvantaged group African Americans as
the minority and advantaged Whites as the majority.
Hispanics and Asians are generally less studied. In
contrast, we use classifier performance to assign
minority and majority groups. This assignment is
model - dataset specific based on the model’s FPR
values in the validation subset. Communities with
relatively higher FPR are regarded as minority and
the others majority. Using 50% of the largest FPR
value as threshold (𝑡), communities with FPR ≥ 𝑡

are regarded as minority and the rest as majority.
With very similar FPR values, e.g., 0.40, 0.35, 0.29,
0.27 then we could use a more stringent threshold
as for example 75% of highest FPR; this assigns
the top 2 FPR scores to minority communities and
the rest majority. For us 50% threshold separates
communities into two groups.

4.3 Performance measurement

Let 𝑆 = {𝐶1, 𝐶2, ..., 𝐶𝑛} be the set of communities
of interest. In our case, 𝑛 = 4 (AE, Hispanic (H),
Asian (AS), White). We use the commonly accepted
notion of community specified by race/ethnicity.
We measure average FPR across majority and across
minority communities and across all communities.
Bias (B) is given by FPRminority − FPRmajority. We
note that bias can be close to 0 with both FPRmajority
and FPRminority being high (undesired) or low (de-
sired). We also gauge performance with macro
F1 scores computing averages F1all, F1majority and
F1minority.

4.4 Viable debiasing run

Formally, we define a viable debiasing algorithm as
one that reduces bias by at least 4%6. Additionally,
FPRs (FPRmajority, FPRminority and FPRall) should
not increase. Lastly, F1 performance should not
decline. Since this is likely very challenging, we
adopt a soft criteria, considering a strategy viable if

Asian dialect. Key to note here is that our approach effectively
mitigates bias for this ‘group’, even if its Asian label is noisy.

6We looked to the literature to set a threshold. The lowest
FPR based bias reduction declared significant and successful
was 3.3% (Chuang et al., 2021; Liu et al., 2021). We round
up this value and consider 4% as the minimum threshold to
declare significant bias reduction.
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the drops in F1majority, F1minority and F1all are each
at most 5%. Larger drops are too high a sacrifice.

5 Results for debiasing MLP

Tables 2 to 4 present test set results as averages
over ten runs to accommodate any variations due
to the random initialization of the neural networks.
Minority and majority communities identified are
specified in table legends. Bias is dataset specific,
e.g., there is bias against Asian in DWMW17 but
not in the other two datasets. Of note, AE faces
the highest bias in all 3 datasets. The number
of baseline runs is determined by the number of
minority communities and hence these vary across
datasets. The "Original" row is for the original
(biased) model. Sacrifices records penalties paid.

Impact on bias: Across datasets, most of the 23
baseline runs reduce bias by 4% or more (indicated
by ). The 7 exceptions are marked with : e.g., PSH
in all datasets. More than half of the successful runs
reduce bias extremely well, by at least 10%, e.g.,
PSAE, PSallMin, and SMOTE across all datasets.

In contrast, all of our obfuscation based debias-
ing strategies reduce bias. These range from 6.3% -
11.3% (DWMW17), 8.6%-11.9% (FDCL18), and
11.9%-13.7% (HatEval19). More than half of these
reduce bias extremely well, i.e., by at least 10%. The
lowest was achieved by OBFNULI/OBFTC strategy
for DWMW17 and the highest by OBFTC for Hat-
Eval19. Considering bias reduction alone, 16/23
baseline runs and all of our 12 runs are potentially
viable. We limit further analysis to these runs.

Impact on FPR: Sacrifices in FPR are marked by
red diamonds (^: < 5% increase in FPR, ^: [5,10)%
increase, ♦: ≥ 10% increase) ordered by sacrifices
in FPRmajority, FPRminority, FPRall.

For DWMW17, all three FPRs become worse for
all baselines except SMOTE. In FDCL18 and Hat-
Eval19, except for DiffT, all baselines incur at least
one FPR penalty. Across datasets, 19/27 negative
impacts on FPR are high. For example, PSAE and
PSallMin in DWMW17 reduce bias extremely well
but with huge FPR penalty (e.g., FPRmajority penalty
is about 223% for PSAE). Likewise, SMOTE’s re-
duction of bias by 43.4% in FDCL18 pays a huge
FPR penalty7 of more than 200%.

In contrast, all our debiasing strategies reduce

7In preliminary experiments we found that Fair-SMOTE
(Chakraborty et al., 2021) also was not viable because of
performance drops. Moreover, their Tables 5-6 show sacrifices
in accuracy and FPR while reducing bias.

all FPRs. Approximately 50% of the drops are at
least 10%. All but one of the remaining drops are
in [5%, 10%). For example, OBFTC in FDCL18
drops FPRmajority by 19%, FPRminority by 10.4% and
FPRall by 11%. Average of all three FPRs reduc-
tions across 007-classifiers is largest for FDCL18
(14%) and (7%-8%) for the other two datasets.

In sum, 5 of the 17 baseline runs that reduce
bias stay potentially viable after considering FPR
changes. In contrast all of our 12 runs remain
potentially viable. We limit further analysis to
these runs.

Approach Majority Minority All Bias Sacrifices
FPR F1 FPR F1 FPR F1 (B) B F1 FPR

Original 0.095 0.887 0.207 0.876 0.179 0.879 0.112
PSAE +223 -7.7 +70.0 -7.4 +90.5 -7.5 -59.8 ♦ ♦ ♦

PSH +24.2 -0.2 +24.6 -3.0 +24.6 -2.3 +25.0 ♦ ♦ ♦

PSAS +6.3 0.0 +1.0 +0.3 +1.7 +0.2 -3.6 ^ ^ ^

PSallMin +178 -8.6 +7.2 -4.3 +29.6 -4.7 -138 ♦ ^ ♦

DiffTAE +28.4 -0.5 +9.2 -1.3 +11.7 -1.1 -7.1 ♦ ^ ♦

DiffTH +24.2 -0.3 +2.9 -0.7 +5.6 +0.1 -15.2 ♦ ^ ^

DiffTAS +4.2 0.0 +3.4 -0.7 +3.9 -0.6 +2.7 ^ ^ ^

SMOTE -8.4 -21.5 -39.6 -21.2 -35.2 -21.4 -66.1
CDA +16.8 -0.3 +2.9 +0.2 +5.0 0.0 -8.9 ♦ ^ ^

OBFTC -5.3 +0.2 -5.8 0.0 -5.6 0.0 -6.3
OBFMIDAS -9.5 +0.2 -10.5 +0.2 -10.4 +0.2 -11.3
OBFNULI -10.8 +0.3 -8.4 +0.2 -8.7 +0.3 -6.3
OBFSC -8.4 +0.3 -7.7 +0.2 -7.8 +0.2 -7.1

Table 2: DWMW17 test set results. Minority (Original
FPR): AE (0.239), Hispanic (H) (0.217), Asian (AS)
(0.166), Majority (Original FPR): White (0.095). Cell
values indicate percentage increase or decrease from
Original for all metrics. : bias reduction below 4%, :
bias reduction ≥ 4%, : F1 drop > 5%, ^: FPR penalty
below 5%, ^: FPR penalty in the range [5%,10%), ♦:
FPR penalty ≥10%. Penalties are ordered as Majority,
Minority then All. Bias reduction results in bold repre-
sent viable debiasing runs.

Approach Majority Minority All Bias Sacrifices
FPR F1 FPR F1 FPR F1 (B) B F1 FPR

Original 0.021 0.904 0.164 0.901 0.092 0.901 0.143
PSAE +81.0 -1.7 -0.6 -7.2 +8.7 -4.4 -12.6 ♦ ^

PSH +90.5 -2.5 +14.6 -5.3 +56.5 -3.9 +3.5 ♦ ♦ ♦

PSallMin +152 -4.3 -24.4 -12.7 -3.3 -8.4 -50.3 ♦

DiffTAE -52.4 -2.7 -45.1 -11.2 -45.7 -6.9 -44.1
DiffTH -61.9 -9.7 -56.1 -15.1 -56.5 -12.4 -54.5
SMOTE +2329 -43.9 +260 -19.4 +499 -31.7 -43.4 ♦ ♦ ♦

CDA +52.4 -1.0 +23.2 -0.6 +27.2 -0.8 +18.2 ♦ ♦ ♦

OBFTC -19.0 -0.7 -10.4 -0.6 -10.9 -0.6 -9.1
OBFMIDAS -19.0 -0.9 -12.2 -0.4 -12.6 -0.6 -11.2
OBFNULI -18.1 -0.9 -9.8 -0.5 -10.3 -0.6 -8.6
OBFSC -19.0 -0.9 -12.8 -0.4 -13.0 -0.7 -11.9

Table 3: FDCL18 test set results. Minority (Original
FPR): AE (0.180), Hispanic (0.147), Majority (Original
FPR): White (0.028), Asian (0.013). Please refer to
Table 2 for explanation of cell values and notation in
Sacrifices column.
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Approach Majority Minority All Bias Sacrifices
FPR F1 FPR F1 FPR F1 (B) B F1 FPR

Original 0.133 0.583 0.322 0.652 0.227 0.617 0.190
PSAE +19.5 +3.6 -4.0 -4.1 +3.1 -0.5 -21.1 ♦ ^

PSH +3.8 -0.2 +3.1 +0.9 +3.5 +0.5 +2.1 ^ ^ ^

PSallMin +15.0 +10.1 -15.5 -4.3 -6.6 +2.6 -36.8 ♦

DiffTAE -91.0 -15.4 -93.5 -37.9 -93.0 -27.2 -95.3
DiffTH -9.0 +0.3 -5.9 +0.3 -6.6 +0.3 -4.2
SMOTE +130 -3.3 +45.7 -1.1 +70.9 -2.1 -14.2 ♦ ♦ ♦

CDA +32.3 +7.7 +15.8 -3.1 +21.1 2+.1 +4.2 ♦ ♦ ♦

OBFTC -7.5 +3.8 -10.6 +0.3 -9.3 +2.1 -13.7
OBFMIDAS -2.0 +5.5 -7.7 -0.6 -5.9 +2.4 -12.2
OBFNULI -4.6 +3.2 -8.6 -0.5 -7.2 +1.3 -11.9
OBFSC -4.5 +5.5 -9.0 -0.3 -7.5 +2.4 -12.6

Table 4: HatEval19 test set results. Minority (Original
FPR): AE (0.389), Hispanic (0.255), Majority (Original
FPR): Asian (0.093), White (0.172). Please refer to
Table 2 for explanation of cell values and notation of
Sacrifices column.

Impact on F1: Runs decreasing F1 score by 5% or
more are depicted by under Sacrifices in the order
of F1majority, F1minority and F1all.

All but one of the remaining 5 baselines pay
large F1 penalties. E.g., SMOTE reduces all three
F1s by approximately 21% in DWMW17, while
DiffTAE reduce them by 15.4%-38% in HatEval19.
The only baseline run that remains viable when
considering bias reduction and losses in FPR and
F1 is DiffTH - limited to the HatEval19 dataset.

In contrast, all of our 12 obfuscation runs remain
viable even after considering F1 performance, with
drops of at most 0.9% across all three F1s. A small
point: F1 even improves in HatEval19; by 3.2% -
5.5% (F1majority) and by 1.3% - 2.4% (F1all).

5.1 Sensitivity Analysis

We now explore the effect of processing fewer
than all FP instances (our base strategy); we limit
analysis to the run with MLP as 007-classifier. We
explore bias reduction with random FP samples
of size (𝑠); start at 20 and increase in steps of 20
with 10 repetitions for each 𝑠 to account for sample
variations. Figures in appendix A.3 show a gradual
decrease in bias as more FP instances are processed.
This supports our approach of obfuscating all FPs.

Summary for MLP debiasing results: Most base-
line runs reduce bias effectively, but sacrifice F1
and/or FPR hindering their overall success. The
one exception: DiffTH for HatEval19 offers a small
reduction of bias (4.2%). Key to note, performance
varies depending on minority perspective (e.g., see
variations in the tables across the three single com-
munity perspectives with PS for DWMW17). De-
biasing with an AE perspective, dominant in prior

studies, sacrifices heavily in our multi-community
and fairness context. In contrast to baselines, all
of our obfuscation-based approaches are viable, re-
ducing bias by 6.3%-13.7% without compromising
F1 or FPR.

6 Results for debiasing MLMs

We now extend our research to debiasing MLMs
of varying size (results in Appendix Tables 6 to 8).
Unlike with MLP (5-18M parameters) where all
of our runs remain viable, with MLMs a few are
not. Also for all MLM - dataset combinations the
minority communities are AE and Hispanic and the
majority White and Asian (see Table 5).

Bias reduces the most for DistilBERT (66M) (4%-
13.8%) and all 12 runs are viable. The next most
effective bias reduction is for BERT-base (110M),
followed by RoBERTa-base (125M) - for both bias
reduces by 4%-13.3%. The 3 to 4 exceptions are due
to not meeting the bias reduction threshold or FPR
penalty. For example, OBFTC in RoBERTa-base
and OBFMIDAS in BERT-base penalize FPRmajority
by 4%-5%. Relatively speaking, bias mitigation is
least successful in BERT-large (340M), the largest
MLM analyzed. But even here, close to 60% of the
12 runs are viable with bias reduction in 4%-11.4%.
As examples of exceptions, OBFSC (FDCL18 and
HatEval19) and OBFNULI (FDCL18) do not reduce
bias sufficiently while in DWMW17 a couple of runs
incur FPR penalties. Possibly, relative to its size,
the number of FPs available for obfuscation with
BERT-large is insufficient. However, performance
in the last three MLMs varies only slightly.

Summary for MLP and MLM results: All our
runs are viable with MLP and DistilBERT. As
model size increases, bias mitigation is slightly
challenging. Interestingly, our debiasing strategy
never incurs F1 penalties. However, there are a few
instances where our strategies incur FPR penalties.

7 Additional analysis

7.1 Performance by 007-classifiers
Figure 2 shows that NULI as the 007-classifier is
the best, succeeding in all but two runs. With each
remaining 007-classifier, including one built from
the same model that is being debiased (OBFTC) and
the sentiment classifier (OBFSC), approximately
80% of runs are viable. The few failures are due
to insufficient bias reduction or/and FPR losses.
Interestingly, while OBFNULI and OBFMIDAS are
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both offense classifiers trained on the same data,
performance varies – possibly due to architectural
differences since MIDAS is an older non BERT en-
semble. Considering all viable runs (48/60) across
007-classifiers, average bias reduction is 8.2% (stan-
dard deviation, SD: 3.1). Average minimum bias
reduction is 4.2% (SD: 0.31), and average maximum
is 13.1% (SD: 0.70). The choice of 007-classifier
does not make a big difference.

(a) Using NULI as 007-classifier (OBFNULI)

(b) Using Sentiment Classifier as 007-classifier (OBFSC)

(c) Using model as 007-classifier (OBFTC)

(d) Using MIDAS as 007-classifier (OBFMIDAS)

Figure 2: Performance by 007-classifiers. Please refer
to Table 2 for explanation of notations.

(a) DWMW17

(b) FDCL18

(c) HatEval19

Figure 3: Performance by dataset. Please refer to Table
2 for explanation of notations.

7.2 Performance by dataset

As shown in Figure 3, FDCL18 yields the best
performance; bias reduces for all but 3 of the 20
runs with no penalties. In DWMW17 and HatE-
val19, most runs are viable. Exceptions are due to
insufficient bias reduction or/and sacrifice in FPR.

Average bias reduction across successful runs is
highest in HatEval19 (11.3%; SD: 2.08) and around
6.6% (SD: 2.2) for the other two. Not surprisingly,
HatEval19 is the most biased initially (e.g., BERT-
large has an initial bias value of 0.26 while it is 0.12
and 0.15 for DWMW17 and FDCL18, respectively).
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8 Related works

We briefly review pre-processing methods or debias-
ing text classifiers and their two desired properties.

Pre-processing debiasing The most common strat-
egy is replicate/remove instances, which includes
but is not limited to PS (Kamiran and Calders, 2012),
DiffT (Ball-Burack et al., 2021), Fair-SMOTE
(Chakraborty et al., 2021) and Counterfactual Data
Augmentation (Xie et al., 2023; Sobhani and De-
lany, 2024). Due to their importance in NLP remove
stereotypical bias in word embeddings (Bolukbasi
et al., 2016; Brunet et al., 2019) is another com-
mon approach. Other less common approaches
include relabel instances (Kamiran and Calders,
2009; Luong et al., 2011), re-weighting (Kamiran
and Calders, 2012; Almuzaini et al., 2022), and
shift distribution of unprotected attributes such that
sensitive attributes cannot be estimated (Feldman
et al., 2015). Our baselines are state-of-art strate-
gies closest to ours in spirit.

Multi-community perspective: Debiasing papers
focus exclusively on the AE minority community
(Xia et al., 2020; Ball-Burack et al., 2021; Halevy
et al., 2021; Spliethöver et al., 2024). Extension of
algorithms to the multi-community setting is not ob-
vious. E.g., Ball-Burack et al. (2021) rank instances
(before selecting ones for deletion/replication) on
the basis of a single community (𝑝𝐴𝐸). It is not
clear how to extend this ranking criteria for multiple
minority communities. In contrast, we are able to
make a reasonable extension to PS (Kamiran and
Calders, 2012) although it did not fare well. Overall,
the debiasing literature has not paid attention to this
important property.

Fairness to all communities: Most debiasing pa-
pers do not report measurements for both the ma-
jority and minority groups (Kamiran and Calders,
2012; Calmon et al., 2017; Park et al., 2018; Dixon
et al., 2018; Savani et al., 2020; Shrestha et al., 2022;
Ball-Burack et al., 2021; Cheng et al., 2022; Song
et al., 2023; Sobhani and Delany, 2024; Iskander
et al., 2024). Thus, we do not know whether these
satisfy our fairness property. Overall, it is clear
from the literature that our perspective on fairness
in performance has not been a concern.

9 Conclusion

We show that it is possible to debias toxicity clas-
sifiers in a multi-community setting without sacri-
ficing performance for either minority or majority

communities. We achieve this with a novel debias-
ing algorithm involving text obfuscators. Key to
note, we use obfuscators in a beneficial manner in
contrast to prior use of obfuscators to adversarially
attack classifiers. Our experiments with toxicity
classifiers built using combinations of 5 neural mod-
els and 3 datasets and debiased using 4 obfuscators
while considering 4 communities, yield excellent
results; the few failures occur when debiasing the
larger MLMs. In contrast, state-of-the-art baselines
and their variants perform poorly; these reduce bias
nicely but make large sacrifices in FPR and F1.
Overall, we conclude that it is possible to debias
via obfuscation while being fair to both minority
and majority communities. While we have shown
that it is possible to debias toxicity classifiers in
the context of race/ethnicity bias, debiasing these
classifiers for other dimensions, such as gender, is
left to future research.

10 Limitations

Our work is focused on a binary classification task:
toxic or not. Extending it to a multi-class setting
and exploring other domains is left for future work.
We also address bias only for race/ethnicity. Further
exploration is needed for other sensitive attributes,
such as gender and religion.

Another limitation is that, instead of the valida-
tion set as the source, we could use other similar
toxicity data to generate synthetic, non-toxic in-
stances. We leave this ‘distance learning’ inspired
extension to future work.

Additionally, we do not explore our bias miti-
gation approach in the context of large generative
language models like GPT-4 (Achiam et al., 2023),
Llama 3 (Dubey et al., 2024), and Mistral (Jiang
et al., 2023). These have different challenges due
to their very large architectures and their vast train-
ing corpus which are often underspecified. Hence
these are likely to require very different debiasing
strategies. We leave this exploration for the future.

11 Ethical consideration

Our work focuses on mitigating race/ethnicity bias
across four communities assessed in the context of
toxicity classification. We aim to address biases
faced by minority communities while also being
fair to the majority groups. Our research raises the
likelihood of classifiers operating more ethically.

While our approach successfully mitigates
race/ethnicity bias in the toxicity classifiers, we
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acknowledge that the classifiers may still exhibit
bias in other dimensions, such as gender and age,
or in intersectional dimensions (e.g., gender com-
bined with race/ethnicity). Our method specifically
address racial bias in MLP/MLM toxicity classi-
fiers; therefore, claims of bias mitigation should
not be interpreted as the complete removal of all bi-
ases. This underscores the necessity of addressing
all biases comprehensively before deploying these
classifiers.
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A Appendix

A.1 DiffT
Here, re-sampling candidacy (𝐶 (𝑥)) is com-
puted using 𝐶 (𝑥) ≡ |𝑎(𝑥) | − 𝑤𝑝𝑚(𝑥), where
𝑎(𝑥) is normalized 𝑝𝐴𝐸 rank (for example,
for 𝑝𝐴𝐸 ∈ {0.9, 0.8, 0.7, 0.6, 0.5}, 𝑎(𝑥) ∈
{1, 0.8, 0,−0.8,−1}. 𝑎(𝑥) = 0 for median (Q2)
of 𝑝𝐴𝐸 , 𝑎(𝑥) = 1 for tweet with highest 𝑝𝐴𝐸 ,
𝑎(𝑥) = −1 for tweet with lowest 𝑝𝐴𝐸 and 𝑤𝑝 ∈
{0.1, 0.32, 1, 3.2, 10}. The tweets are ranked based
on 𝐶 (𝑥) in descending order and is re-sampled
based on the following:

• 𝑝𝐴𝐸> Q2 and label = non-toxic, duplicate

• 𝑝𝐴𝐸 > Q2 and label = 𝑡𝑜𝑥𝑖𝑐, drop

• 𝑝𝐴𝐸 < Q2 and label = 𝑡𝑜𝑥𝑖𝑐, duplicate

• 𝑝𝐴𝐸 < Q2 and label = non-toxic, drop

We made the following changes to DiffT: We mea-
sure the bias as the difference of average false
positive rate (FPR) for minority minus average FPR
for majority. We also discarded the bias reduction
threshold T. Instead, we keep iterating until the bias
reduced. Also, we halt when the bias reduction
changes to opposite direction and pick the best
based on the closeness to 0. For example, we halt
when bias reduced from 0.80 to -0.10 and pick the
second trained model as the bias is closer to zero
(0). Lastly, 𝑚(𝑥) = |𝑝(𝑡𝑜𝑥𝑖𝑐) − 𝑝(non-toxic) |

A.2 Model Configurations
A.2.1 MLP
The MLP toxicity classifier consist of an input layer,
a hidden layer (size 128) and an output layer (size
2) with softmax function. It gives a binary predic-
tion of toxic (positive class)/ non-toxic (negative
class). The input text is stemmed using Porter Stem-
mer (Willett, 2006) and lower cased. Tokens8 are
converted to real valued vectors using pre-trained
Glove embedding of 300 dimension9. We randomly
initialize the word embedding for words not in the
embedding. The input is then post-padded or trun-
cated to a maximum length which is the largest text
length occurring at least 5 times in the dataset. We
use sigmoid activation on the hidden layer output
with a dropout of 0.5 in penultimate layer. The
model learns optimal parameters by minimizing
cross-entropy loss and the Adam optimizer with a
learning rate of 1e-4, batch size of 64 for 50 epochs
with early stopping (patience = 5). We also added
L1/L2 regularization to handle overfitting. We use
PyTorch for implementation using NVIDIA Tesla
P100 PCIE (16GB) GPU. # of parameters ranged
from 5 - 18 million depending on datasets. On
average it took 1.5 days (GPU hours) for the cycle
of training then debiasing the MLP per dataset.

A.2.2 MLMs
We fine-tuned pre-trained MLMs classifiers for
toxicity classification. This includes BERT (bert-
base-uncased, bert-large-uncased) (Devlin et al.,
2019), DistilBERT (distilbert-base-uncased) (Sanh
et al., 2019) and RoBERTa-base (roberta-base) (Liu
et al., 2019b). We use a batch size of 32, a maxi-
mum sequence length of 128, AdamW optimizer
with a learning rate of 2e-5, and tune the models
for ten epochs with early stopping (patience = 3).
These hyper-parameters values are taken from the
MLM papers. We implement these models using
SimpleTransformers (Rajapakse, 2019).

8https://www.tensorflow.org/api_docs/python
/tf/keras/preprocessing/text/Tokenizer

9https://nlp.stanford.edu/projects/glove/
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https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
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https://nlp.stanford.edu/projects/glove/
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A.3 Sensitivity Analysis

(a) DWMW17

(b) FDCL18

(c) HatEval19

Figure 4: Bias on varying number of false positive instances
(s) processed through obfuscation. Ten replications were done
for each s. Here we use a single fixed seed initialized toxicity
classifier network to explore the effect of varying 𝑠. Therefore,
original bias (i.e. for s=0) is different from the ones reported
in Tables 2-4 where we report averages over 10 runs. Vertical
bars represent standard deviation across the ten samples. (MLP
OBFTC)

.

Dataset MLMs
Minority Majority

AE Hispanic (H) White Asian (AS)

DWMW17

DistilBERT 0.214 0.173 0.053 0.094

BERT-base 0.197 0.180 0.054 0.062

RoBERTa-base 0.229 0.176 0.059 0.073

BERT-large 0.206 0.183 0.067 0.075

FDCL18

DistilBERT 0.198 0.166 0.031 0.016

BERT-base 0.195 0.170 0.032 0.016

RoBERTa-base 0.202 0.169 0.034 0.016

BERT-large 0.189 0.163 0.030 0.017

HatEval19

DistilBERT 0.464 0.321 0.166 0.053

BERT-base 0.435 0.346 0.175 0.060

RoBERTa-base 0.419 0.288 0.164 0.077

BERT-large 0.409 0.325 0.151 0.059

Table 5: Original FPR for minority and majority communities
(MLMs)
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MLMs Approach Majority Minority All Bias Sacrifices
FPR F1 FPR F1 FPR F1 Bias F1 FPR

DistilBERT

Original 0.073 0.934 0.194 0.898 0.134 0.916 0.121
OBFTC -12.1 0.6 -7.1 0.6 -8.5 0.6 -4.0
OBFMIDAS -30.4 0.9 -14.9 0.4 -19.1 0.7 -5.5
OBFNULI -25.8 0.8 -14.2 0.9 -17.4 0.9 -7.2
OBFSC -25.9 1.1 -12.7 1.0 -16.3 1.0 -4.7

BERT-base

Original 0.058 0.942 0.189 0.900 0.123 0.921 0.131
OBFTC -5.0 0.0 -2.4 0.1 -3.0 0.0 -1.2
OBFMIDAS 4.2 0.0 -3.0 0.0 -1.3 0.0 -6.2 ^

OBFNULI -13.5 0.3 -6.8 -0.1 -8.4 0.1 -4.0
OBFSC -2.9 0.3 -4.8 0.4 -4.3 0.4 -5.6

RoBERTa-base

Original 0.066 0.937 0.202 0.895 0.134 0.916 0.137
OBFTC 0.0 -0.4 -3.8 0.4 -2.9 0.0 -5.5
OBFMIDAS -5.0 -0.1 -3.9 0.5 -4.2 0.2 -3.4
OBFNULI 0.0 -0.1 -3.7 0.9 -2.5 0.4 -6.2
OBFSC -15.3 0.5 -10.2 0.3 -11.5 0.4 -7.8

BERT-large

Original 0.071 0.936 0.194 0.900 0.132 0.918 0.124
OBFTC 20.2 -0.6 2.5 -0.5 7.2 -0.5 -7.5 ♦ ^ ^

OBFMIDAS 6.2 -0.3 3.0 -0.6 3.9 -0.5 1.1 ^ ^ ^

OBFNULI -5.4 -0.1 -8.5 0.0 -7.7 0.0 -10.3
OBFSC 0.0 -0.3 -5.5 -0.2 -4.0 -0.3 -8.8

Table 6: (DWMW17 test set results). See Table 5 for Original FPR of each community and Table 2 for explanation of cell
values and notations of Sacrifices column.

MLMs Approach Majority Minority All Bias Sacrifices
FPR F1 FPR F1 FPR F1 Bias F1 FPR

DistilBERT

Original 0.023 0.912 0.182 0.912 0.103 0.912 0.159
OBFTC -4.8 -0.1 -4.9 0.2 -4.8 0.1 -4.9
OBFMIDAS -4.3 0.2 -5.8 0.2 -5.6 0.2 -6.1
OBFNULI -6.0 0.1 -5.7 0.1 -5.7 0.1 -5.6
OBFSC -9.0 0.0 -7.4 0.3 -7.6 0.2 -7.2

BERT-base

Original 0.024 0.912 0.183 0.911 0.103 0.911 0.158
OBFTC -8.2 0.1 -5.7 0.1 -6.0 0.1 -5.3
OBFMIDAS -6.8 0.1 -5.0 0.0 -5.2 0.0 -4.7
OBFNULI -12.1 0.1 -6.4 0.2 -7.1 0.1 -5.5
OBFSC -9.9 0.2 -6.0 0.2 -6.5 0.2 -5.4

RoBERTa-base

Original 0.025 0.913 0.185 0.912 0.105 0.913 0.161
OBFTC -9.4 0.1 -5.3 0.0 -5.8 0.0 -4.7
OBFMIDAS -7.2 -0.1 -4.5 0.0 -4.9 0.0 -4.1
OBFNULI -10.6 0.0 -4.4 0.1 -5.2 0.0 -3.5
OBFSC -7.6 -0.1 -6.1 0.2 -6.3 0.0 -5.9

BERT-large

Original 0.024 0.909 0.176 0.912 0.100 0.911 0.152
OBFTC -12.9 0.1 -6.7 0.1 -7.4 0.1 -5.7
OBFMIDAS -9.9 0.3 -4.8 0.0 -5.4 0.1 -4.0
OBFNULI 0.0 0.1 -0.9 0.0 -0.7 0.0 -1.1
OBFSC -6.1 0.2 -2.3 0.0 -2.7 0.1 -1.7

Table 7: (FDCL18 test set results). See Table 5 for Original FPR of each community and Table 2 for explanation of cell values
and notations of Sacrifices column.

MLMs Approach Majority Minority All Bias Sacrifices
FPR F1 FPR F1 FPR F1 Bias F1 FPR

DistilBERT

Original 0.110 0.731 0.393 0.714 0.251 0.722 0.283
OBFTC -5.6 -0.1 -7.6 0.5 -7.1 0.2 -8.3
OBFMIDAS -1.3 1.8 -8.9 1.1 -7.2 1.5 -11.8
OBFNULI -13.6 1.4 -11.9 1.0 -12.3 1.2 -11.3
OBFSC -7.8 1.1 -12.1 0.8 -11.2 0.9 -13.8

BERT-base

Original 0.117 0.748 0.391 0.720 0.254 0.734 0.274
OBFTC -13.5 -1.5 -13.4 0.8 -13.4 -0.4 -13.3
OBFMIDAS 5.0 -0.7 -2.0 0.0 -0.3 -0.4 -5.0 ^

OBFNULI -11.8 -1.4 -12.3 0.7 -12.2 -0.4 -12.5
OBFSC -3.4 -1.6 -5.8 0.6 -5.2 -0.5 -6.8

RoBERTa-base

Original 0.121 0.743 0.353 0.727 0.237 0.735 0.233
OBFTC 4.2 1.1 -8.0 1.7 -4.9 1.4 -14.4 ^

OBFMIDAS 0.0 -2.1 -4.5 1.3 -3.2 -0.4 -7.1
OBFNULI -6.1 -1.7 -10.2 1.2 -9.2 -0.3 -12.4
OBFSC -6.7 0.6 -2.6 1.4 -3.6 1.0 -0.4

BERT-large

Original 0.105 0.738 0.367 0.720 0.236 0.729 0.262
OBFTC -3.7 -0.2 -8.9 0.5 -7.8 0.2 -11.0
OBFMIDAS 0.0 0.0 -7.7 1.0 -5.9 0.5 -10.9
OBFNULI -0.9 -1.6 -8.4 0.2 -6.7 -0.7 -11.4
OBFSC 0.0 -1.4 -1.7 0.6 -1.3 -0.4 -2.5

Table 8: (HatEval19 test set results). See Table 5 for Original FPR of each community and Table 2 for explanation of cell
values and notations of Sacrifices column.
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007-classifier Before obfuscation After obfuscation

OBFTC

why do y’all blame the woman for what she
wears when it comes to rape? that shit is wrong.

why do y’all blame the woman for what she wears
when it comes to rape? that envy is wrong.

f**king machines mass vibratiuons professional machines mass vibratiuons

OBFMIDAS
Drita is that nicca! lmao Drita is that trials! lmao

b**ch you got plans! with me hoe! redesigning you got plans! with me hoe!

OBFNULI

let me know how to contribute to your legal
counsel....sue their asses off for everything they
have

let me know how to contribute to your legal coun-
sel....sue their questionnaires off for everything
they have

I wanna be f**ked ! Find my name here I wanna be agonized ! Find my name here

OBFSC
What a f**king goal from Dele Alli What a officialise goal from Dele Alli

I can’t f**king believe it.. but I want Roman to
beat Taker.

I can’t pineapple believe it.. but I want Roman
to beat Taker.

Table 9: Text samples before and after obfuscation across datasets (BERT-base toxicity classifier). Random
replacements are made using our greedy-select random-replace in order to trip the 007-classifiers and potentially
produce a non-toxic instance for the toxicity classifier. We do not aim to maintain semantic coherence. Random
replacements are efficient, as humans will never view the synthetic instances.
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