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Abstract

In light of the inherent entailment relations be-
tween images and text, embedding point vec-
tors in hyperbolic space has been employed
to leverage its hierarchical modeling advan-
tages for visual semantic representation learn-
ing. However, point vector embeddings strug-
gle to address semantic uncertainty, where an
image may have multiple interpretations, and
text may correspond to different images—a
challenge especially prevalent in the medi-
cal domain. Therefor, we propose HYDEN,
a novel hyperbolic density embedding based
image-text representation learning approach
tailored specifically for medical domain data.
This method integrates text-aware local fea-
tures with global features from images, map-
ping image-text features to density features in
the hyperbolic space using hyperbolic pseudo-
Gaussian distributions. An encapsulation loss
function is employed to model the partial order
relations between image-text density distribu-
tions. Experimental results demonstrate the
interpretability of our approach and its superior
performance compared to the baseline methods
across various zero-shot tasks and fine-tuning
tasks on different datasets.

1 Introduction

In recent years, cross-modal text-image representa-
tion learning has made tremendous advancements
and drawn widespread attention in many tasks such
as zero-shot learning and image-text retrieval. This
success is largely due to the use of large volumes
of image-text pair data to enhance vision-language
representation learning (Radford et al., 2021). In
medical imaging, cross-modal representation learn-
ing tailored to this specific domain data, such as
chest radiographs and their associated radiology
reports, can yield robust and powerful foundation
models in specialized areas (Zhang and Metaxas,
2023; Zhang et al., 2024; Stevens et al., 2024).

Figure 1: Representation of medical data embeddings
transitioning from Euclidean to hyperbolic space to
effectively capture and represent the density partial
ordering, while maintaining the integrity of relative

density relationships.
As the proverb goes, ‘A picture is worth a thou-

sand words.’ This suggests that an image inherently
contains more information than a textual descrip-
tion of it, which can be seen as merely a simpli-
fied abbreviation of the image. This relationship,
where the text may serve as an entailment of the
image, can be considered as visual-semantic hier-
archy (Vendrov et al., 2016). Consequently, it is
a plausible hypothesis that incorporating such in-
ductive biases of visual semantic hierarchies into
cross-modal alignment tasks could enhance the gen-
eralizability of representations and improve the in-
terpretability of learned representations. Vendrov
et al. (2016) introduced an order embedding strat-
egy considering these hierarchical semantic during
the text-image alignment process. However, numer-
ous studies (Nickel and Kiela, 2017, 2018; Xu et al.,
2022, 2023; Fu et al., 2023) have demonstrated that
modeling data with inherent hierarchical features in
non-Euclidean hyperbolic spaces can provide supe-
rior representations. By leveraging the advantages
of hyperbolic space in modeling hierarchical struc-
tures and the generalization capabilities of cross-
modal contrastive learning in zero-shot scenarios,
(Desai et al., 2023) has proposed cross-modal hy-
perbolic representation learning. This approach
employs the Lorentz manifold to map both image
and text features into a hyperbolic space, utilizing
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angular constraints based on entailment to learn the
hierarchical order between text and images. How-
ever, representing image-text with point vectors
has an intrinsic limitation: it cannot express seman-
tic uncertainty (Vilnis and McCallum, 2014; Qian
et al., 2021; Wu et al., 2023), meaning that a single
image can generate different descriptions from var-
ious perspectives, and similarly, a single textual de-
scription can describe different but related images.
This phenomenon is particularly evident in med-
ical imaging and radiology reports. For instance,
consider a patient with a rib fracture suspected of
having right-sided pneumothorax. In the radiology
report for this patient, the physician describes the
imaging findings related to pneumothorax, high-
lighting the presence of a white line around the vis-
ceral pleural edge. Clinically, numerous pulmonary
diseases, such as tuberculosis, cystic fibrosis, and
pneumocystis jiroveci pneumonia, predispose in-
dividuals to pneumothorax. In domains such as
document embedding (Zhu et al., 2023) and graph
embedding (Gourru et al., 2022), the utilization of
probability density embedding to represent objects
as distributions within the target space effectively
addresses this semantic uncertainty, resulting in
significantly improved performance compared to
point vector embedding.

Based on the motivation outlined above, which
indicates on the hierarchical visual semantic fea-
tures and inherent semantic uncertainty in medi-
cal imaging, we propose HYDEN, a hyperbolic
density representation for medical images and re-
ports. This approach leverages the advantages of
the hyperbolic space for capturing visual-semantic
hierarchy, while incorporating a probability density
embedding strategy to model semantic uncertainty.
The main contributions are as follows:

• To the best of our knowledge, this is the first
work that introduces the hyperbolic space to
cross-modal representation learning for medi-
cal image-text data.

• We introduce a text-aware image local fea-
ture extraction method that focuses on local
regions, enhancing the granularity of analy-
sis; moreover, we employ encapsulation con-
straints to model the density order between
images and text, fostering a deeper semantic
connection.

• Extensive experiments demonstrate the supe-
rior capabilities of our approach in achieving
semantic alignment.

2 Related Work

Image-text representation learning has gained in-
terest for its potential to improve visual represen-
tation. Traditional methods, like CLIP (Radford
et al., 2021), primarily use contrastive learning in
Euclidean space and have been applied across gen-
eral domains. In the medical field, domain-specific
challenges arise due to the complex prior knowl-
edge in medical image-text data. Several studies
have explored representation learning tailored to
medical contexts (Wang et al., 2024; Müller et al.,
2022a; Cheng et al., 2023a; Huang et al., 2021),
but these methods still operate in Euclidean space.
The hierarchical semantics in medical data suggest
that hyperbolic space, with its ability to model hi-
erarchies, could be more effective.

The MERU framework introduced hyperbolic
image-text embeddings (Desai et al., 2023), depart-
ing from Euclidean methods. However, MERU
and similar approaches still use point embeddings,
which fail to capture semantic uncertainty—where
one image maps to multiple descriptions and vice
versa. To address this, we propose integrating den-
sity embeddings in hyperbolic space to capture
semantic uncertainty. Unlike point embeddings,
density embeddings represent objects as probability
distributions, modeling semantic variation. While
density embeddings have been used for uncertainty
and entailment in Euclidean space (Vilnis and Mc-
Callum, 2014; Qian et al., 2021; Bojchevski and
Günnemann), our method is the first to extend this
concept into hyperbolic space for image-text repre-
sentation learning.

3 Preliminaries

Hyperbolic Geometry Hyperbolic geometry is
a non-Euclidean geometry with a constant nega-
tive curvature, and it can be visualized as the for-
ward sheet of the two-sheeted hyperboloid. In this
study, we will use the Lorentz model on the up-
per half of a two-sheeted hyperboloid, as claimed
in (Nickel and Kiela, 2018), comes with a sim-
pler closed form of the geodesics and does not
suffer from the numerical instabilities in approxi-
mating the distance. Lorentz model Hn processing
a constant curvature −c can be represented as a
set of points z ∈ Rn+1. Lets z, z′ ∈ Hn, the
Lorentzian product ⟨z, z′⟩L = −z0z

′
0 +

∑n
i=1 ziz

′
i.

And, Hn = {z ∈ Rn+1 : ⟨z, z⟩L = −1/c, c > 0}.
The distance between z and z′ is given by

dℓ(z, z
′) = arccosh(−

〈
z, z′

〉
L) (1)
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Figure 2: Framework of HYDEN: The contrastive loss function utilizes the negative Lorentzian distance as a metric
for similarity. Additionally, an encapsulation loss is employed to enforce the density partial ordering of image and

text embeddings within the representation space.

which is also the length of the geodesic that con-
nects z and z′. We will refer to the one-hot vector
µ0 = [1/

√
c, 0, 0, 0...0] ∈ Hn ⊂ Rn+1 as the ori-

gin of the hyperbolic space.
Tangent Space of Hyperbolic Space The tan-

gent space at a point µ ∈ Hn is a Euclidean
space composed of vectors. Denoted by TµHn,
this tangent space represents the set of vectors in
the same ambient space Rn+1 where Hn is em-
bedded. The vectors in TµHn satisfy an orthogo-
nality condition relative to the Lorentzian prod-
uct, defined as TµHn := {u : ⟨µ, u⟩L = 0}.
This set can be visualized as the tangent space
at the point µ on the forward hyperboloid sheet.
Specifically, at the origin µ0 of Hn, the tangent
space Tµ0Hn consists of vectors v ∈ Rn+1 . The
norm ∥v∥L, given by the Lorentzian inner product,
simplifies to the Euclidean norm ∥v∥2, defined as
∥v∥L :=

√
⟨v, v⟩L = ∥v∥2.

Exponential Map The exponential map pro-
vides a method for mapping a vector from a tangent
space to its corresponding point on the surface of
the hyperbolic space. For every u ∈ TµHn, the
exponential map expµ(u) : TµHn → Hn allows
us to project a vector u in TµHn onto Hn such that
the distance from µ to the destination point of the
map coincides with the Lorentzian norm ∥u∥L of u.
In the context of hyperbolic space, the exponential
map is given by the equation:

z = expµ(u) = cosh(∥u∥L)µ+ sinh(∥u∥L)
u

∥u∥L
(2)

In this paper, we specifically consider exponen-

tial maps where µ represents the origin of the hy-
perboloid (O = [

√
1/c, 0]).

4 Method

In this section, we present a comprehensive in-
troduction to the HYDEN model. Drawing on
the foundation laid by the MERU model (De-
sai et al., 2023) and the widely acclaimed, user-
friendly CLIP framework (Radford et al., 2021),
our model adapts and extends these frameworks
to address specific challenges in medical image-
text representation learning. Figure 2 depicts the
overall architecture of our model.

4.1 Image-Text Feature Embedding

In our model, the features [f̂v, f t] are derived
from respective image and text encoders. For text
data, we employ BioClinicalBERT (Alsentzer et al.,
2019), a model that has been pre-trained on the
MIMIC III dataset (Shen, 2016), to generate token-
level embeddings. Consistent with practices out-
lined in (Cheng et al., 2023b), the output of the
[CLS] token is used as the medical text feature f t,
encapsulating the overall semantic content of the
input text.

For image encoding, we utilize the widely-used
Vision Transformer (ViT) architecture (Mu et al.,
2022). We assume the output of the [CLS] is con-

sidered as global feature ˙̂
fv, and the rest of the out-

puts from the image encoder is denotes as f̂v. Rec-
ognizing that pathological symptoms often occupy
only a portion of a medical image, relying solely on
global representations may not adequately capture
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essential local semantic features. Thus, similar to
approaches in (Huang et al., 2021; Cheng et al.,
2023b; Müller et al., 2022b), we also extract local
features besides global features. Specifically, we
implement a Self-attention module (Vaswani et al.,
2017), widely used in cross-modal feature extrac-
tion. In this setup, f̂v acts as both the keys (K)
and values (V ), while the text embedding f t func-
tions as the query (Q). This configuration allows us
to derive a text-aware image local representation,
denoted as ¯̂

fv.

4.2 Hyperbolic Density Embedding
Our objective is to transform image-text features
into density representations within a hyperbolic
space. Previous studies such as (Nagano et al.)
and (Mathieu et al.) proposed methods like the
pseudo-hyperbolic Gaussian distribution based on
the Lorentz manifold. Due to the computational de-
mands and numerical instabilities of the Poincaré-
disk model, we opt for the more stable pseudo-
hyperbolic Gaussian distribution for our hyperbolic
density embedding. The tangent space TµHn of hy-
perbolic space Hn is a Euclidean space, and in
Tµ0Hn, vectors v satisfy v = {v0, v1, ..., vn} ∈
Rn+1 where v0 = 0, aligning with the dimensional
properties.

To begin, we introduce separate deep nonlin-
ear network blocks, Bdensity, for processing image
and text features respectively. These blocks do not
share parameters, ensuring distinct representations
for each modality. As in Figure 2, for text features,
µ̂t and β́t are the outputs of Bdensity(f

t).
Instead of generating covariance matrices di-

rectly, which can introduce numerical instability,
we use matrices based on diagonal or spherical
assumptions. These are known for their computa-
tional efficiency and effectiveness in embedding
tasks, particularly in the context of word distribu-
tion embedding where spherical covariance ma-
trices have been shown to better model distribu-
tional partial order relationships (Vilnis and McCal-
lum, 2014). We thus employ a covariance matrix
based on the spherical assumption: Σt = β́t · I ∈
R(n+1)×(n+1).

To ensure that our covariance matrix is positively
definite, necessary for the stability of the pseudo-
hyperbolic Gaussian distribution, we modify βt

using the expression βt = exp(β́t) referring to so-
lution in VAE(Kingma and Welling, 2019). This
adjustment is crucial for maintaining the mathemat-
ical integrity of our model when dealing with real-

world data. For the embedding vector µ̂t ∈ Rn,
our aim is to project this vector onto hyperboloid
space, which is achieved by mapping it through the
exponential function as detailed in Equation 2.

The vector µt
tan = [0, µ̂t] resides in Rn+1 and

belongs to the tangent space Tµ0Hn at the origin
of the hyperboloid, O. The norm ||µt

tan||L, which
equals ||µ̂t||2, ensures that the mapping preserves
the distances inherent to the model’s geometric
structure. Upon applying the exponential map, we
derive the expectation of the hyperbolic density
representation:

µt = expµ0
(µt

tan)

=

(√
1/c× cosh(

√
c||µ̂t||2),

sinh(
√
c||µ̂t||2)√

c||µ̂t||2
µ̂t

)
(3)

The detailed procedure is shown in Appendix A.
This projection results in the hyperbolic den-

sity representation Gt(µt, βt · I). Following
a similar procedure, we also separately derive
GvL(µvL , βvL · I) and GvG(µvG , βvG · I) for the lo-

cal image features ¯̂
fv and global image features ˙̂

fv,
thereby ensuring a uniform approach to handling
different modalities within our framework.

4.3 Loss Function Based on Density
Embedding

Traditional point vector embedding often utilizes
entailment angle constraints to define relationships
between entities (Desai et al., 2023). However,
when dealing with probability densities, the notion
of partial order can be more complexly captured
through the concept of encapsulation. Specifically,
a density f is considered more specific than an-
other density g if f is entirely encompassed by g,
formally expressed as f ⪯ g ⇔ {x : f(x) >
η} ⊆ {x : g(x) > η}, for any η ≥ 0, where η
indicates the degree of encapsulation necessary for
one distribution to entail another.

Imposing such partial order constraints on dis-
tributions brings up significant challenges. Draw-
ing inspiration from (Athiwaratkun and Wilson),
we employ asymmetric divergence measures be-
tween probability densities to address this. We
introduce a simple penalty function, dγ(f, g) =
max(0, D(f ∥ g)−γ), which serves as a violation
penalty rather than as a strict constraint of encap-
sulation. Here, D(∥) represents the divergence
measure used to quantify the extent of difference
between distributions, and γ is a threshold defining
the acceptable range of difference.
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Among the choices for divergence measures, α-
divergence provides a more flexible and general-
ized asymmetric measure (Renyi, 1961), allowing
for adjustments in the zero-force penalty. This
flexibility means that higher α values can enforce
stricter encapsulation conditions f ⪯ g. The gen-
eral form of α-divergence, for α ̸= 0, 1, is given b
Dα(f ∥ g) = 1

α(α−1) log
(∫ f(x)α

g(x)α−1 dx
)

.
This equation not only quantifies the differences

between distributions but also facilitates a deeper
understanding of the encapsulation relationships
critical for effective density embedding.

We observe that as α approaches 0 or 1, it gov-
erns the degree of zero forcing, where minimiz-
ing Dα(f ∥ g) for high α values results in f be-
coming more concentrated in regions of g with
high density. Conversely, for low α values, f
tends to be mass-covering, encompassing regions
of g even including those with low density. No-
tably, there exists a mathematical relationship be-
tween KL divergence and α-divergence, as indi-
cated by: limα→1Dα(f ∥ g) = DKL(f ∥ g) and
limα→0Dα(f ∥ g) = DKL(g ∥ f) (Pardo, 2006).
Therefore, in our model, we opt for the more flexi-
ble and robust α-divergence as our metric.

For image-text embedded density GvL(µvL , βvL ·
I) and Gt(µt, βt · I), the encapsulation loss can be
expressed as follows:

dγ(GvL ,Gt) = max(0,− 1

2α(α− 1)
log
[
α
(βvL

βt

)α(n+1)
+

(1− α)
( βt

βvL

)α(n+1)
]
+

(µvL − µt)T (µvL − µt)

α(βt)n+1 + (1− α)(βvL)n+1
− γ)

(4)

The detailed procedure is shown in Appendix A.
The loss function here only models the local rep-
resentation density of the image, without impos-
ing constraints on the global representation density.
This is mainly because local representations are
image features strongly correlated with text seman-
tics, and they exhibit a visual-semantic hierarchy
with text representations; however, global represen-
tations represent the features of the entire image,
which may contain information not described in
the current text due to the missed diagnoses or bi-
ases. Directly incorporating global features into
the model may introduce semantic confusion. The
constraints on global representations are involved
in the contrastive loss function.

Given the batch sample B = {BP ,BN}, where
BP denotes the positive image-text sample set, and
BN represents the negative set, we define the en-
capsulation loss function as follows:

Lorder =
∑

(Gt,GvL )∈BP

dγ(Gt,GvL)

+
∑

(Gt,GvL )∈BN

max{0,m− dγ(Gt,GvL)}
(5)

For the positive samples, a definite partial order
relationship exists, enabling the direct application
of the density penalty dγ(). For the negative sam-
ples, we enforce the penalty to exceed a margin m
due to the absence of an order relationship.

Our goal is to enhance the similarity of semantic
distributions between image-text pairs. Therefore,
we also employ the classic CLIP contrastive solu-
tion (Radford et al., 2021) to compute the geodesic
distance between the expectation values of image
and text in hyperbolic densities as defined in Equa-
tion 1, applying Softmax normalization. We define
LL
con as the contrastive loss between the image lo-

cal representation and text, which is computed as
an average of the contrastive losses from both im-
age and text perspectives. Our goal is to ensure that
the distributions of image and text can be roughly
aligned within the same region. Therefor, for im-
age global representation, we define LG

con. The final
loss function is L = τLorder +0.5 ∗ (LL

con+LG
con)

where τ is the predefined variables.

5 Experiments

In this section, we aim to rigorously evaluate the
performance of our algorithm. We first introduce
the baseline model, followed by a description of the
medical image-text data and training details used
for model pre-training. Then, we discuss the advan-
tages of our proposed model in medical image-text
alignment from both quantitative and qualitative
perspectives.

A key innovation of our algorithm lies in the use
of density representations in hyperbolic space for
image-text alignment. To validate the superiority
of our approach, we compare it with three baseline
methods: CLIP (Radford et al., 2021), which aligns
image-text pairs in Euclidean space using point em-
beddings, Gloria (Huang et al., 2021) designing
a global&local representation extraction module
expanding CLIP to enhance the perception of local
features also in Euclidean space, and MERU (Desai
et al., 2023), which aligns image-text pairs in hy-
perbolic space using point embeddings. Gloria has
released the pretrained weights1. For model train-
ing of the rest baselines, we primarily utilize the
open-source code provided by the MERU project2.

1https://github.com/marshuang80/gloria
2https://github.com/facebookresearch/meru
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Tuberculosis RSNA SIIM

Methods Dataset Backbone AUC F1 ACC AUC F1 ACC AUC F1 ACC
Gloria CheXpert Resnet-50 0.701 0.393 0.608 0.714 0.490 0.729 0.534 0.382 0.405
CLIP MIMIC-CXR VIT-B 0.749 0.456 0.756 0.817 0.574 0.721 0.722 0.478 0.6306
MERU MIMIC-CXR VIT-B 0.765 0.442 0.675 0.792 0.545 0.671 0.725 0.477 0.649
HYDEN MIMIC-CXR Resnet-50 0.831 0.592 0.723 0.831 0.592 0.723 0.76 0.509 0.701
HYDEN MIMIC-CXR VIT-B 0.854 0.582 0.843 0.856 0.629 0.787 0.786 0.529 0.697

Table 1: Zero-shot image classification
Methods Dataset Backbone Prec@3 Prec@5 Prec@10 NDCG@3 NDCG@5 NDCG@10
Gloria CheXpert Resnet-50 26.67 30.67 28 0.316 0.374 0.438
CLIP MIMIC-CXR VIT-B 23.81 18.57 12.14 0.408 0.414 0.439
MERU MIMIC-CXR VIT-B 33.33 30.0 27.86 0.417 0.452 0.465
HYDEN MIMIC-CXR Resnet-50 30.95 32.86 29.29 0.571 0.620 0.645
HYDEN MIMIC-CXR VIT-B 38.1 37.14 35.71 0.624 0.656 0.677

Table 2: Zero-shot image retrieval

While some variations of CLIP have been success-
fully applied in the medical image-text alignment
domain, our primary focus is on comparing the dif-
ferences between alignment in Euclidean space and
hyperbolic space, as well as between point vector
embeddings and distribution embeddings.

5.1 Training Details
Datasets: We train our alignment model using the
MIMIC-CXR v2 dataset (Johnson et al., 2019),
comprising over 227,000 studies of paired image-
report data sourced from 65,379 patients undergo-
ing various scans. Each study may contain one
or two images, representing different scan views,
resulting in a total of 377,110 images. During train-
ing, we perform random cropping, flipping, rota-
tion, and other data augmentation techniques on
the images, while also resizing them to a [224,224]
dimension. Additionally, for the text data, we aug-
ment the reports by randomly adding medical entity
prefixes to enhance semantic information, such as
’event_list: report’.

Settings: We employ ViT-B (Mu et al., 2022)
with a patch size of 16 as the image encoder(Resnet-
50 is also an alternative), as it has demonstrated
competitive performance in hyperbolic space (De-
sai et al., 2023). Our initialization strategy for
image/text encoders follows a similar style to
MERU, with the exception of utilizing Clinical-
BERT (Alsentzer et al.) as the pre-trained text
encoder, which has been pre-trained on large-scale
medical text data. For HYDEN, we initialize the
learnable curvature parameter c to 1.0 and clamp
it within the range of [0.1, 10.0] to prevent train-
ing instability. All experiments were conducted
using three NVIDIA A40 GPU and the PyTorch
framework.

Optimization: We adopt the AdamW opti-
mizer with a weight decay of 0.2 and (β1, β2) =

(0.9, 0.98). Weight decay is disabled for all gains,
biases, and learnable scalars. Models are trained
for 32,000 iterations with a batch size of 384. The
maximum learning rate is set to 1× 10−5, linearly
increased for the first 500 iterations, followed by
cosine decay to zero. We leverage mixed precision
to expedite training, except when computing expo-
nential maps and losses, where FP32 precision is
used for numerical stability.

5.2 Quantitative Analysis
We evaluate all baselines and HYDEN on two cate-
gories of zero-shot downstream tasks(classification
and text-image retrieval), and downstream fine-
tuning classification task. We use five public
datasets for the evaluation, where Tuberculo-
sis(Rahman et al., 2020), RSNA Pneumonia (Shih
et al., 2019), SIIM-ACR Pneumothorax (Kaggle,
2019) and COVID-193 are used for classification
tasks, and ChestXray14(Wang et al., 2017a) is
used for zero-shot text-image retrieval task. For
the classification tasks, we report the Area Under
the Curve (AUC), F1 score and Accuracy(ACC).
For the retrieval task, Top-k Precision (abbrevi-
ated as Prec@k) and Tok-k Normalized Discounted
Cumulative Gain (abbreviated as NDCG@k) are
used to evaluate the retrieval performance. The
details about our evaluation tasks and datasets are
described in Appendix B.

Zero-shot Image Classification Table 1
presents the performance of the baselines and HY-
DEN across three classification datasets. The re-
sults indicate that HYDEN consistently demon-
strates robust transfer classification performance
in all classification tasks. Compared to CLIP,
both MERU and HYDEN achieved improved ac-
curacy. This suggests that using hyperbolic space

3https://www.kaggle.com/datasets/tawsifurrahman/covid19-
radiography-database
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RSNA SIIM COVID-19

Methods Dataset Backbone 1% 10% 100% 1% 10% 100% 1% 10% 100%
ConVIRT MIMIC-CXR Resnet-50 0.839 0.856 0.876 0.83 0.856 0.876 0.868 0.954 0.973
Gloria CheXpert Resnet-50 0.859 0.866 0.884 0.859 0.866 0.884 0.906 0.938 0.972
MERU MIMIC-CXR VIT-B 0.855 0.874 0.886 0.849 0.879 0.906 0.852 0.968 0.995
HYDEN MIMIC-CXR Resnet-50 0.886 0.899 0.907 0.866 0.901 0.926 0.914 0.989 0.997
HYDEN MIMIC-CXR VIT-B 0.878 0.894 0.901 0.850 0.881 0.927 0.924 0.988 0.999

Table 3: Fine-tuning image classification (AUC metric)
Text2Image@10 Tuberculosis RSNA SIIM
Prec NDCG AUC F1 AUC F1 AUC F1

HYDEN 35.71 0.677 0.871 0.621 0.856 0.629 0.786 0.529
1. w KL Divergence 35 0.645 0.842 0.533 0.841 0.607 0.781 0.523
2. w/o encapsulation loss 27.86 0.626 0.846 0.576 0.816 0.567 0.756 0.501
3. w/o local representation 23.57 0.652 0.856 0.638 0.796 0.547 0.749 0.496

Table 4: Ablation Study of HYDEN: This table presents the results of ablating three key design choices within the
HYDEN framework to evaluate their individual contributions.

for text-image representations, especially for med-
ical data characterized by a visual semantic hier-
archy, is more effective. Relative to MERU, HY-
DEN achieved the highest accuracy across almost
all of metrics, highlighting the advantages of den-
sity embedding-based representation methods over
point vector embedding, particularly in addressing
the challenges of semantic uncertainty.

Zero-shot Retrieval Table 2 displays the perfor-
mance of baseline models and HYDEN in "image-
to-text" retrieval tasks. The results demonstrate that
representation learning in hyperbolic space mostly
outperforms that in Euclidean space; Among the
methods, HYDEN exhibits the best retrieval per-
formance. Furthermore, we observed a significant
enhancement in the ranking quality of HYDEN’s
retrieval results compared to all baseline methods.
We hypothesize that this improvement is linked
to the method of density embedding. Similar to
findings in the recommendation systems domain
(Dos Santos et al., 2017), unlike point vector em-
beddings, density embeddings enable better han-
dling of uncertainties, information sparsity, ambi-
guity, and even contradictions, which are common
challenges in medical image-text data.

Fine-tuning Image Classification We further
evaluate HYDEN on a fine-tuning image classifi-
cation task where use different amounts of train-
ing data (1%, 10% or 100%) to evaluate the data-
efficiency of the global image representations. The
results are shown in Table 3. For the models
pretrained in euclidean space, we train a linear
classifier on top of the pretrained image encoder.
Both MERU and HYDEN are pretrained in hyper-
bolic space, and they cannot be directly applied
as a pre-trained model to downstream fine-tuning
tasks(Desai et al., 2023). Hence, we introduce

the multinomial logistic regression in the Lorentz
model(Lorentz MLP)(Bdeir et al., 2024) as the lin-
ear classifier on top of density embedding of global
image representation. The details are shown in Ap-
pendix A. Table 3 indicates that density representa-
tion based hyperbolic embedding can learn better
representations for label-efficient classification.

Ablation Studies In this section, we examine
the impact of different design choices using HY-
DEN. Specifically, we trained three ablation mod-
els with default hyperparameters, and the results
are presented in Table 4. From Table 4, we observe
that: (1) Using α-divergence in the loss function
instead of KL divergence better aligns with the en-
capsulation’s partial order properties of text-image
distribution embeddings. The experimental results
also indicate that replacing α-divergence with KL
divergence leads to performance degradation across
all tasks. (2) Omitting the encapsulation loss, i.e.,
not using Lorder as defined in Equation 5 and re-
lying primarily on Lcon, results in performance
degradation across all tasks. This is because not us-
ing encapsulation loss implies that the prior partial
order of text and image cannot be utilized in hyper-
bolic space, thus losing the benefits introduced by
hyperbolic geometry. (3) The model experiences a
performance drop across all tasks when not using
text-aware image representation. This is primarily
due to the nature of medical image-text features.
As discussed in the Introduction, most regions in
medical images may differ in texture and morphol-
ogy but not in clinical significance, while actual
pathological changes are localized. The results
also show that enhancing text-aware local features
is meaningful for medical image-text alignment.



6292

(a) CLIP (b) MERU (c) HYDEN
Figure 3: Distribution of embedding distances from [ROOT]: We embed 3858 testing images and text from the

MIMIC-CXR v2 dataset using pre-trained CLIP, MERU, and HYDEN models.

Figure 4: Image traversals using MERU and HYDEN. We perform text retrieval at multiple steps while traversing
from an image embedding to [ROOT] along the geodesic.

5.3 Qualitative Analysis

In this section, we explore the trained models to
deduce the characteristics of the model in captur-
ing the visual semantic hierarchy structure. The
concept of ’Embedding distances from [ROOT]’
was introduced by (Desai et al., 2023) to depict the
generality differences between text and image em-
beddings in hyperbolic space. This concept high-
lights that in a representation space that effectively
captures the visual semantic hierarchy, text em-
beddings are typically more general than image
embeddings and, therefore, should be closer to the
root node [ROOT].

Here, we visualize the differences in distance
distributions between text and image embeddings.
Given that our approach utilizes distribution em-
beddings, we specifically visualize the expectations
of the distance distributions of text and image den-
sity embeddings. Figure 3 demonstrates that the
distribution differences generated by our model lie
between those produced by MERU and CLIP, with
some overlapping distribution areas. This suggests
that our model is capable of capturing the visual
semantic hierarchy. Moreover, we perform text re-
trieval at multiple steps while traversing from an
image embedding to the [ROOT]. The results are
shown in Fig. 4. Compared with MERU, when we
traverse from [ROOT] to the event, the retrieved
texts remain relevant to the event but become pro-

gressively more specific and closely aligned with
the context of the image. We speculate that, unlike
the strong constraint imposed by entailment loss on
the image-text norm values, the encapsulation loss
between densities tends to make the density dis-
tributions of semantically similar image-text data
closer, which explains why our method exhibits a
wider span of norm distributions as in Figure 3.

6 Conclusion
In this paper, we propose a novel approach, HY-
DEN, for text-image representation learning based
on hyperbolic density embeddings. It is a visual
language representation learning method tailored
specifically for medical data. Experimental re-
sults demonstrate the interpretability of our method
and its superior performance compared to baseline
methods across various zero-shot tasks and differ-
ent datasets.

7 Limitations
Different from the entailment angle constraints
based on point embeddings, we adopt the encap-
sulation order constraints between densities. In
this paper, we use soft encapsulation loss via asym-
metric divergence to measure between probability
densities. For both the current Hyperbolic pseudo-
Gaussian and Gaussian distributions in Euclidean
space, introducing strict encapsulation losses re-
mains a challenge and we will attempt to solve it
in our future work.
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A Material

Hyberbolic Mapping The vector µt
tan = [0, µ̂t]

resides in Rn+1 and belongs to the tangent space
Tµ0Hn at the origin of the hyperboloid, O. The
norm ||µt

tan||L, which equals ||µ̂t||2, ensures that
the mapping preserves the distances inherent to the
model’s geometric structure. We apply the expo-
nential map function (Eq. 2) to µt

tan, decomposing
the transformation into two parts:

cosh(
√
c||µt

tan||L)O = [
√

1/c× cosh(
√
c||µt

tan||L), 0]

= [
√

1/c× cosh(
√
c||µ̂t||2), 0]

(6)

sinh(
√
c||µt

tan||L)√
c||µt

tan||L
vtan = [0,

sinh(
√
c||µt

tan||L)√
c||µt

tan||L
µ̂t]

= [0,
sinh(

√
c||µ̂t||2)√

c||µ̂t||2
µ̂t]

(7)

Combine the above two equations, we can get

µt = expµ0
(µt

tan)

=

(√
1/c× cosh(

√
c||µ̂t||2),

sinh(
√
c||µ̂t||2)√

c||µ̂t||2
µ̂t

)
(8)

Rényi α-Divergence is a general family of di-
vergences that introduce varying degrees of zero-
forcing penalty. The general form of the α-
divergence for α ̸= 0, 1 is described as below,

Dα(f ||g) =
1

α(α− 1)
log

(∫
f(x)α

g(x)α−1
, dx

)
(9)

It is notable that as α approaches 0 or 1, the α-
divergence converges to the KL divergence and the
reverse KL divergence, respectively. For two multi-
variate Gaussians f and g, the Rényi α-Divergence
can be expressed as:

Dα(f ||g) =− 1

2α(α− 1)
log

det(αΣg + (1− α)Σf )

(det(Σf )1−α · det(Σg)α)

+ (µf − µg)
T (αΣg + (1− α)Σf )

−1(µf − µg)
(10)

Here, the parameter α modulates the extent of zero
forcing: minimizing Dα(f ||g) for high α values
results in f being concentrated towards the high-
density regions of g. Conversely, for low α, f
tends to have broader support, covering regions of
g including those with low density.
MLR in the Lorentz model Given parameters
ac ∈ R and zc ∈ Rn, the Lorentz MLR’s out-
put logit corresponding to class c and input x =
[xt, xs] ∈ Hn is given by

vzc,ac =
1√
−K

sign(α)β|sinh−1(
√
−K

α

β
)|,

where α = cosh(
√
−Kac) < zc, xs > −sinh(

√
−Kac)

and β =

√
||cosh(

√
−Kac)zc||2 − (sinh(

√
−Kac||zc||))2

(11)
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where K denotes the pre-defined varibale, and
zc, ac represent classifier weight parameter. We
can consider the expection value of image global
desify embedding as x in above equation to derive
the hyperbolic logit output of input image.

B Evaluation Tasks & Data

Image Classification: We evaluate the pre-trained
model on three representative medical image clas-
sification tasks:

• RSNA Pneumonia Dataset(Shih et al., 2019):
Comprising over 260,000 frontal chest radio-
graphs collected by the Radiological Society
of North America (RSNA). These images can
be classified into a binary classification task:
pneumonia vs. normal. For evaluation pur-
poses, we randomly sample 4003 images for
evaluation.

• SIIM-ACR Pneumothorax Dataset(Kaggle,
2019): Contains more than 12,000 frontal
chest radiographs collected by the Society
for Imaging Informatics in Medicine and the
American College of Radiology (SIIM-ACR).
Similar to the RSNA Pneumonia dataset, it is
used for a binary classification task to deter-
mine the presence or absence of pneumotho-
rax. We use all 10,675 images for evaluation.

• Tuberculosis Chest X-ray Dataset(Rahman
et al., 2020): Tuberculosis is a chronic lung
disease that occurs due to bacterial infection
and is one of the top 10 leading causes of
death. This dataset Comprise 700 infected
and 3500 normal chest X-ray images. These
images can be classified into a binary classi-
fication task: Tuberculosis vs. Normal. For
evaluation purposes, we all of 4200 images
for evaluation.

• COVID-19 chest x-ray dataset4: This
dataset contains 21,165 images, and it consists
of 3,616 COVID-19 positive cases, 10,192
normal cases, 6,012 Lung Opacity (Non-
COVID lung infection) cases and 1,345 Vi-
ral Pneumonia images. , where 3,616. These
images can be classified into a binary classifi-
cation task: Covid vs. Non-Covid.

• ChestXray14 Dataset(Wang et al., 2017a):
NIH ChestXray14 has 112,120 chest X-ray

4https://www.kaggle.com/datasets/tawsifurrahman/covid19-
radiography-database

images with 14 disease labels from 30,805
unique patients. The official test set released
by the NIH, comprising 22,433 images, are
distinctively annotated by board certified radi-
ologists. For multi-label evaluation, we only
test on the official test set.

For the zero-shot classification task, we use all of
data to evaluate the performance for each dataset.
For the fine-tuning classification task, we split each
datasets into 0.7/0.2/0.1 for train/valid/test.

Zero-shot Text-Image Retrieval: For pre-
training methods akin to CLIP, text-image retrieval
tests are standard practice. Following the practices
of CLIP (Radford et al., 2021) and MERU (De-
sai et al., 2023), we also introduce downstream
tasks for text-image retrieval. In medical imaging
reports, the same diagnosis often has varied tex-
tual descriptions, making retrieval from image to
text impractical. Thus, we do not use images to
query text; instead, we use text to retrieve specific
categories of images as described in (Zhang et al.,
2022). For this purpose, we first construct a text-
image retrieval evaluation dataset. As described
in the multi-label classification task, ChestXray14
(Wang et al., 2017b) encompasses 14 different dis-
ease classes and one ’normal’ class, totaling 15 cat-
egories. Based on these class labels, we randomly
extract 100 images for each class (exclusive), form-
ing the ChestXray14x100 dataset, which consists
of 1,500 images. We then write representative text
prompts for each of the 15 categories. During test-
ing, for each query, we encode its text using the
learned text encoder, then retrieve from the candi-
date images in a similar manner. This evaluation
assesses not only the quality of the learned image
representations but also the consistency between
text and image representations.

Prompts Design:
To create the textual queries for each category on
each evaluation task, we consulted a board-certified
radiologist to draft at least five distinct sentences
describing each abnormality as it would appear
in radiology reports. Drawing inspiration from
ConVIRT(Zhang et al., 2022), we established the
following criteria: 1) The sentences must clearly
describe the specific category without ambiguity
and should not reference other categories. 2) The
sentences must be varied and distinct from one
another. 3) The sentences should avoid mentioning
highly specific anatomical locations or rare clinical
findings.
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Disease Category Prompts for Text to Image Retrieval & Classification Tasks
Atelectasis There is a linear opacity consistent with atelectasis.
Cardiomegaly The cardiac silhouette is prominently enlarged, pointing to possible cardiomegaly.
Effusion There is fluid accumulating in the pleural space indicative of pleural effusion.
Infiltration The chest x-ray shows widespread ground-glass appearance.
Mass A well-defined mass is present in the lung.
Nodule A solitary pulmonary nodule is observed on the imaging.
Pneumonia Airspace disease with lobar distribution points to possible pneumonia.
Pneumothorax The presence of free air in the pleural space suggests a pneumothorax.
Consolidation Dense pulmonary lesions consistent with consolidation.
Edema The radiographic appearance is consistent with pulmonary edema.
Emphysema The lungs appear overinflated, consistent with emphysema.
Fibrosis The presence of traction bronchiectasis indicates lung fibrosis.
Pleural_Thickening The pleura appears thickened, indicating pleural thickening.
Hernia There is evidence of a diaphragmatic hernia.

Table 5: Example prompts for each categories in the evaluation tasks.

ChestXray Multilabel

Methods Backbone AUC F1 ACC
Gloria Resnet-50 0.655 0.214 0.681
CLIP VIT-B 0.631 0.177 0.674
MERU VIT-B 0.636 0.196 0.673
HYDEN Resnet-50 0.661 0.194 0.704
HYDEN VIT-B 0.677 0.208 0.718

Table 6: Zero-shot image classification

Finally, we aggregated the results and selected
the best textual queries for each abnormality cate-
gory. For reference, examples of the textual queries
are presented in Table 5.

C Supplementary Experiments

In the main text, we present the overall perfor-
mance of our proposed method and various base-
line methods on binary classification tasks. Tab. 6
furthermore shows the performance of the mod-
els in the zero-shot multi-label classification task.
Here, we use offcial test set of ChestXray14
Dataset comporising 22,433 images with labels.
The results indicate that HYDEN consistently de-
mon strates robust transfer classification perfor-
mance as in binary classification evaluation.

In the main body of this paper, we have demon-
strated image traversal results. Here, we add text
traversal results which means the retrieval paths
from input text to the root node using both MERU
and HYDEN. We observe that, compared to MERU,
our model retrieves more relevant terms, and more-
over semantic evolves or drifts in a semantically
continuous manner alongside traversal path.

Figure 5: Text traversals using MERU and HYDEN.
We perform text retrieval at multiple steps while travers-
ing from input text embedding to [ROOT] along the
geodesic.
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