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Abstract

In this paper, we investigate the role of atten-
tion heads in Context-aware Machine Trans-
lation models for pronoun disambiguation in
the English-to-German and English-to-French
language directions. We analyze their influ-
ence by both observing and modifying the at-
tention scores corresponding to the plausible
relations that could impact a pronoun predic-
tion. Our findings reveal that while some heads
do attend the relations of interest, not all of
them influence the models’ ability to disam-
biguate pronouns. We show that certain heads
are underutilized by the models, suggesting
that model performance could be improved if
only the heads would attend one of the relations
more strongly. Furthermore, we fine-tune the
most promising heads and observe the increase
in pronoun disambiguation accuracy of up to 5
percentage points which demonstrates that the
improvements in performance can be solidified
into the models’ parameters.

1 Introduction

In Context-Aware Machine Translation (MT), the
context sentences are available to the system and
can be used to maintain coherence of the translation
and to resolve ambiguities (Agrawal et al., 2018;
Bawden et al., 2018; Müller et al., 2018; Voita
et al., 2019b). Both the source-side (sentences in
the source language) and target-side context (the
previously translated sentences) can be used as
context. Although many novel architectures have
been proposed to tackle the task of Context-aware
MT (Tu et al., 2017; Bawden et al., 2018; Miculi-
cich et al., 2018; Maruf et al., 2019; Huo et al.,
2020; Zheng et al., 2021), we limit our investiga-
tion to the standard Transformer (Vaswani et al.,
2017) architecture (often referred to as the single-
encoder architecture), because of its simplicity and
demonstrated high performance (Sun et al., 2022;
Majumde et al., 2022; Gete et al., 2023; Post and

Figure 1: The types of relations we investigate. SP

and TP mark a context-dependent word (e.g., pronoun)
on the source- and target-side respectively, and SC and
TC mark the source- and target-side context cue (e.g.,
antecedent). For the target side, the words represent
tokens predicted by the model, and TC+1 is the token
corresponding to the antecedent as the input. Colors of
arrows designate self-attention (blue), cross-attention
(yellow), and decoder-attention (decoder self-attention,
green).

Junczys-Dowmunt, 2023; Mohammed and Niculae,
2024).

For the Transformer model to be successful in
the task of Context-aware MT, it has to integrate
the contextual information and utilize it to produce
the translation autoregressively. During inference,
the contextual information has to come through
the mechanism of multi-head attention. Motivated
by the findings that attention heads can learn to
perform seemingly specific functions (Clark et al.,
2019; Voita et al., 2019c; Jo and Myaeng, 2020;
Olsson et al., 2022), we hypothesize that certain
heads in a model can be crucial for the context
utilization. We study the case of pronoun disam-
biguation, where the selection of the correct pro-
noun is dependent on the antecedent (contextual
cue), which can be present in the previous (con-
text) sentences. Therefore, we analyze the transla-
tion models through the lens of the attention given
by the attention heads to the plausible relations
that could influence the prediction of a pronoun:
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pronoun-antecedent on the source and target sides,
and pronoun-pronoun and pronoun-antecedent be-
tween target and source sides. Figure 1 illustrates
the relations we consider.

Our analysis starts with measuring the attention
scores given by each head to the relations we con-
sider when evaluated on the contrastive datasets -
ContraPro (Bawden et al., 2018) for the English-
to-German direction and Large Contrastive Pro-
noun Testset (LCPT; Lopes et al. (2020)) for the
English-to-French direction. In these datasets, the
model is presented with the task of ranking several
translations of the same source sentence with the
same context. The provided translations differ only
partially, and the provided context is required to
choose the correct translation. Next, we correlate
the scores with the model being correct when eval-
uated on the contrastive example. Furthermore, we
artificially modify the attention scores of the heads
and measure the difference in the accuracy on these
datasets. Lastly, we fine-tune the selected heads to
attend the relations more strongly.

2 Related Work

2.1 Context-aware Machine Translation

A direct approach to include previous sentences
as context in MT is to concatenate them with the
current sentence. This method is often called the
single-encoder architecture, as the basic encoder-
decoder architecture is used (Tiedemann and Scher-
rer, 2017; Ma et al., 2020; Zhang et al., 2020).
The multi-encoder approach is to encode the con-
text sentences by a separate encoder (Jean et al.,
2017; Miculicich et al., 2018; Maruf et al., 2019;
Huo et al., 2020; Zheng et al., 2021). Existing
studies also investigated more exotic architectures
(Miculicich et al., 2018; Bao et al., 2021; Chen
et al., 2022; Maka et al., 2024), post-processing
translation (Voita et al., 2019b,a), and employing
a memory mechanism (Feng et al., 2022; Bulatov
et al., 2022). Yin et al. (2021) applies attention reg-
ularization that concentrates on the context phrases
marked as important by human translators which
is similar to Head Tuning method in our work.

In recent years, the single-encoder architecture
has seen increased prominence in the literature
because of its simplicity and robust performance
(Majumde et al., 2022; Gete et al., 2023; Post and
Junczys-Dowmunt, 2023; Mohammed and Niculae,
2024), even on long context sizes (of up to 2000 to-
kens) when data augmentation was used (Sun et al.,

2022). For this reason, this paper focuses on this
architecture.

Studies have shown that the sentence-level met-
rics (such as BLEU (Papineni et al., 2002)) are
not well suited to measure the translation quality
with respect to context usage (Hardmeier, 2012;
Wong and Kit, 2012). To address this issue, re-
searchers introduced new metrics (Fernandes et al.,
2021, 2023) and context-sensitive datasets (Wicks
and Post, 2023; Fernandes et al., 2023), including
contrastive datasets (Müller et al., 2018; Bawden
et al., 2018; Voita et al., 2019b; Lopes et al., 2020).
In this study we employ two of them: ContraPro
(Müller et al., 2018) and Large Contrastive Pronoun
Testset (LCPT; Lopes et al. (2020)).

2.2 Explaining Models
Explaining models’ decisions or behaviors is an
important issue from the safety and ethical consid-
erations (Madsen et al., 2022). Additionally, we
argue that they can also be valuable from the en-
gineering perspective, where the shortcomings of
the models can potentially be addressed when they
are brought to light. Numerous methods explaining
Natural Language Processing models have been
proposed (Bau et al., 2018; Toneva and Wehbe,
2019; Ferrando et al., 2022; Langedijk et al., 2024;
Meng et al., 2024).

Even though some works have argued against
using raw attention scores as explanations them-
selves (Jain and Wallace, 2019) the attention mech-
anism is an important part of the Transformer
and many researchers concentrated their efforts to
understand its influence on the model’s behavior
(Wiegreffe and Pinter, 2019; Abnar and Zuidema,
2020; Kobayashi et al., 2020, 2021; Bogoychev,
2021; Gheini et al., 2021; Mohebbi et al., 2023).
Our work is motivated by the findings suggesting
that some heads have specific roles or functions
(Clark et al., 2019; Voita et al., 2019c; Olsson et al.,
2022) that can be linked to linguistic relations (Vig
and Belinkov, 2019; Tenney et al., 2019; Jo and
Myaeng, 2020).

Several works have investigated the models in
MT (Goindani and Shrivastava, 2021; Voita et al.,
2021; Sarti et al., 2023; Mohammed and Niculae,
2024). In contrast, our work focuses on identifying
where in the model’s architecture the contextual
information is integrated. We also investigate the
influence of the alterations to the model (i.e., mod-
ifying the attention scores corresponding to the
plausible relations) on the context usage.
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3 Methods

We denote the tokenized source and target sen-
tences of example d in the dataset as Sd and T d

respectively. We define the sets containing the
indices of contextually important tokens (context
cues) on the source SC and target side TC , and the
sets containing the indices of contextually depen-
dent tokens on the source SP and target side TP .
On the target side, the token indices denote the pre-
dicted tokens, rather than the input tokens, which
are shifted right during training and contrastive
evaluation. This way we analyze the model dur-
ing the inference step when the context-dependent
tokens TP are being predicted. Consequently, the
context cue tokens on the target side YC also mark
the steps where those tokens are being generated
by the model. Because the input tokens have been
found to retain their identity throughout the layers
of the Transformer (Brunner et al., 2020), we add
the set TC+1 referring to the contextually important
tokens on the input. In the case of ambiguous pro-
nouns, the context cues tokens are the antecedents
and the contextually dependent tokens are the pro-
nouns, both on the source and target side.

We investigate the relations between the follow-
ing token sets (see Figure 1 for an example):

• from source dependent to source important to-
kens (SP → SC) - in the encoder’s self-attention;

• from target dependent to source important to-
kens (TP → SC) - in the decoder’s cross-attention;

• from target dependent to source dependent to-
kens (TP → SP ) - in the decoder’s cross-attention;

• from target dependent to target important tokens
(TP → TC) - in the decoder’s self-attention;

• from target dependent to target important tokens
on the input (TP → TC+1) - in the decoder’s self-
attention.

We examine the models through three methods.
Attention Scores (Section 3.1) and Score-Accuracy
Correlation (Section 3.2) are based on observing
the model’s behavior during the task of contrastive
disambiguation. The method Modifying Heads
(Section 3.3) introduce a form of disturbance into
the functioning of an attention head.

3.1 Attention Scores

To find the heads that learned to pay high attention
to the relations of interest we measure and average
the attention scores Z l,h of each head h in every
layer l for all relations of interest. For the contex-

tually important and dependent phrases that span
over multiple tokens, we take the maximum score.

3.2 Score-Accuracy Correlation

The fact that a particular attention head - on average
- pays attention to the relation of interest does not
necessarily mean that the head is crucial or helpful
for disambiguation. Therefore, we want to mea-
sure how the head’s attention scores of a relation
correspond to the model correctly disambiguating
a particular example. We define a variable I as
follows:

Id =

{
1, if correctly scored,
0, otherwise,

(1)

where d is an example from the contrastive dataset
D. We calculate the point-biserial correlation coef-
ficient between attention scores given by each head
Z l,h and the variable I . The accuracy on the whole
dataset can be calculated as

∑
d∈D Id/|D|.

3.3 Modifying Heads

The goal of Modifying Heads is to adjust the behav-
ior of the head in a controlled manner. It modifies
attention scores from a particular token ensuring
that the total attention score given to a target subset
of tokens equals a desired value C while preserv-
ing the pre-softmax attention scores H for all other
target tokens. Modifying Heads allows us to exper-
imentally test the behavior of the model if one (or
more) of its heads were better or worse at the func-
tion of attending to the context-informative tokens.
For simplicity, we jointly label the attending tokens
(left-hand-side of the arrow →) as Y and attended
tokens (right-hand-side of the arrow →) as X . Con-
sequently, Y → X can represent all investigated
relations inside the corresponding attention module.
Modifying Heads can be formulated as follows:

H̃ l,h,d
i,j = log

( C

|X d|(1− C)

∑
k∈Xd\X d

exp
(
H l,h,d

i,k

))
∀i ∈ Yd, j ∈ X d,

(2)
where H̃ represent the updated pre-softmax atten-
tion scores, H are the original pre-softmax scores,
k ∈ Xd \ X d are the attended tokens not present
in the subset of interest X d. The derivation of the
formula can be found in Appendix A.
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4 Experiments

All our experiments are implemented1 in Hugging-
face transformers framework (Wolf et al., 2020).

4.1 Models

In this study, we use pre-trained single-encoder
models for two reasons: to assess how models’
abilities learned on intra-sentential phenomena will
translate into the inter-sentential regime, and to
analyze the robustly trained and widely tested mod-
els instead of training models from random ini-
tialization. The first model we experiment with
is OPUS-MT en-de2 (Tiedemann and Thottingal,
2020; Tiedemann et al., 2023). It is a relatively
small (6 layers, 8 heads) encoder-decoder Trans-
former model trained on English-to-German trans-
lation. The second model is No Language Left
Behind (NLLB-200) (NLLB Team et al., 2022),
which is a multilingual MT model. We use the
small distilled version with approximately 600 mil-
lion parameters 3, which consists of 12 encoder and
decoder layers and 16 heads.

4.2 Context-aware Fine-tuning

We fine-tuned both models for Context-aware MT
by concatenating the previous sentences with the
current sentence on both the source and target side.
Each sentence is separated by the [SEP] token (be-
fore fine-tuning, we expanded the vocabulary of
the OpusMT en-de model with this token). We
trained two versions of the OpusMT en-de model
with maximum context sizes - the number of con-
text sentences - of one and three (refered to as
context-aware-1 and context-aware-3 models), and
one version of NLLB-600M with the maximum
context size of one. We train the models with all
the context sizes from zero to the maximum context
size while keeping the context size the same on the
source and target side for each example. During
inference, we provide the models with the number
of sentences equal to the maximum context size it
was trained with.

For Opus-MT en-de, we used the train subset of
the IWSLT 2017 (Cettolo et al., 2017) English-
to-German dataset, and interleaved English-to-

1The code for this paper can be found
on Github https://github.com/Pawel-M/
context-mt-attention-analysis.

2https://huggingface.co/Helsinki-NLP/
opus-mt-en-de

3https://huggingface.co/facebook/
nllb-200-distilled-600M

German and English-to-French train subsets for
NLLB-200. IWSLT 2017 is a document-level
dataset (the details of the datasets are presented
in Appendix C). Further details and the hyper-
parameters of the fine-tuning process are presented
in Appendix D.

4.3 Contrastive Datasets

We used two contrastive datasets: ContraPro
(Müller et al., 2018) for the English-to-German
direction, and the Large Contrastive Pronoun Test-
set (LCPT; Lopes et al. (2020)) for the English-to-
French direction. Both are based on the OpenSub-
titles 2018 dataset (Lison et al., 2018), and consist
of the source sentence, the source- and target-side
context with several translations differing only in a
pronoun that requires context to be correctly trans-
lated. The details of the contrastive datasets are
presented in Appendix C.

For each model, we first calculated the average
attention scores assigned by each of the model’s
heads to the relations of interest (as described in
Section 3.1) for the examples from the contrastive
datasets and calculated the point-biserial correla-
tion between the measured attention scores given
by each head to the relations of interest and the
model correctly disambiguating a particular exam-
ple (see Section 3.2). Next, we applied Modifying
Heads method (see Section 3.3) to each head of the
models. We used the following values of C (eq.2)
[0.01, 0.25, 0.5, 0.75, 0.99] (uniformly probing the
available range) for OpusMT en-de models, and
[0.01, 0.99] for other models after observing that
the relation between model’s ContraPro accuracy
and modified value was mostly monotonic for all
heads (see Appendix G for the detailed results).
Additionally, we disabled each head by assigning
the same probability to all tokens (see Appendix B
for the detailed formulation) but we found that the
results match the results for modifying the head to
0.01 without distinguishing the relation of interest.

5 Results

The base results in terms of accuracy and BLEU
(Papineni et al., 2002) on contrastive datasets and
BLEU on test subset of the IWSLT 2017 dataset are
presented in Table 1. Since sentence-level models
receive only the current sentence as input, we eval-
uate them by extracting examples from contrastive
datasets where the antecedent is in the same sen-
tence as the pronoun. This way we ensure that the

https://github.com/Pawel-M/context-mt-attention-analysis
https://github.com/Pawel-M/context-mt-attention-analysis
https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/facebook/nllb-200-distilled-600M
https://huggingface.co/facebook/nllb-200-distilled-600M
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Model Con-
text

ContraPro
Accuracy

ContraPro
BLEU

IWSLT
en-de

LCPT
Accuracy

LCPT
BLEU

IWSLT
en-fr

Opus MT en-de 0 ♢81.46% ♢30.24 32.42 - - -
1 78.35% 31.00 34.40 - - -
3 79.08% 31.35 34.59 - - -

NLLB-200 0 ♢80.88% ♢29.46 32.31 ♢95.02% ♢33.64 43.34
1 77.95% 29.18 34.01 91.89% 31.49 43.86

Table 1: The results of the unmodified models. For the sentence-level models (with the context size of zero) we
report accuracy and BLEU on contrastive datasets with the "antecedent distance" of zero (marked with ♢; meaning
that the antecedent is located in the current sentence.

sentence-level models are tested exclusively on ex-
amples that they are capable to disambiguate. We
do not filter the examples for context-aware models
to allow the comparison between the tested models
(as well as the results in the literature).

We analyzed the results in terms of average at-
tention scores (Section 3.1), correlations between
attention scores and correctly disambiguating an
example (Section 3.2), and modifying heads (Sec-
tion 3.3) to 0.01 and 0.99. The correlation is only
partially corresponding to the changes in accuracy
when modifying the attention scores, meaning that
we find heads that demonstrate low correlation but
have a high impact on the model’s performance
when modified. We ignore the losses in accuracy
when modified to 0.99 as possibly resulting from
the decreased attention scores for other token-to-
token relations, not investigated in this work. Sim-
ilarly, we discard the increases in accuracy when
modified to 0.01. We broadly categorized heads’
behavior for a particular relation into the following
groups (note that the same head can be in different
groups for different relations of interest):

• irrelevant - those heads do not attend the rela-
tion of interest and do not respond to the modifica-
tions;

• attending and fully responsive - those heads
do attend the relation, the model’s accuracy de-
creases when modified to 0.01, and increases when
modified to 0.99;

• attending and negatively responsive - the
heads do attend the relation, and respond negatively
to modifying to 0.01 but do not show improvement
when modified to 0.99; we interpret those heads
as already at the peak of their ability to help the
model with pronoun disambiguation;

• attending and positively responsive - similar
to the previous category but with only the posi-
tive response to modifying to 0.99; we hypothesize
that the heads in this category do not attend the

relation to a sufficient degree for some examples
and the correctly disambiguated examples are also
supported by other heads in the model;

• attending and non-responsive - those heads
do attend the relation but are not responsive to
any modification; our interpretation is that those
heads are important for other tasks than pronoun
disambiguation;

• non-attending and positively responsive - the
heads in this category are not attending the relation
but positively influence the model’s accuracy when
modified to 0.99.

In the following sections, we identify the heads
by a-l-h, where a marks the attention module
and can take values from {e, c, d} meaning
the encoder-, cross-, and decoder-attention respec-
tively, l and h mark the layer and head number.
For example, d-2-11 identifies the head number 11
in the self-attention module in the second decoder
layer.

5.1 OpusMT en-de

We performed the analysis of the models based
on OpusMT en-de (sentence-level, context-aware-
1, and context-aware-3) on the ContraPro dataset.
The sentence-level model was evaluated only on
the examples where the antecedent was located in
the current sentence. For the context-aware mod-
els, we employed the full dataset. We present the
results for all three models in Figure 2, where for
each head we show the metrics introduced in Sec-
tion 3 (correlations, accuracy when modified to
0.01, and modified to 0.99) in relation to the av-
eraged attention scores. The expanded results can
be found in Appendix G. Additionally, to give a
sense of the distribution of the results, we show
histograms of the observed values of the metrics
with annotated values corresponding to prominent
heads in Appendix I.

Most heads do not pay - on average - a large at-
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Figure 2: Results in terms of calculated metrics (correlations, difference in accuracy when modified to 0.01, and
modified to 0.99; as columns) in relation to the averaged attention scores for the three models based on OpusMT
en-de (sentence-level, context-aware-1, and context-aware-3; as rows).

tention to any of the relations of interest. Only a sin-
gle encoder head (e-6-1) was found to assign high
attention scores to the SP → SC relation. It was
negatively responsive for all models and positively
responsive for the context-aware-3 model (increas-
ing the accuracy by 1.6 percentage points). Head
e-2-8 was non-attending and positively responsive
(improvement of up to 2 percentage points).

For cross-attention, we found that the TP → SP

relation is attended by several heads (most promi-
nently heads c-6-1, c-5-3, c-5-2, c-5-1, c-5-4, and
c-3-3). Out of them only heads c-5-1 and c-5-2
(to a lesser extent) are responsive. While no head
put large attention to the TP → SC relation, head
c-5-8 was positively responsive.

The most responsive heads in the whole model
are located in the decoder’s attention. Two heads
are attending and are responsive to the TP → TC

relation. The d-6-4 head shows the highest correla-
tion (above 0.3 for all models) and responsiveness
(accuracy difference of below −10 and above 5
percentage points for modifying to 0.01 and 0.99
respectively). The d-6-6 head also shows rela-

tively high correlation and responsiveness but not
to the same extent. For the TP → TC+1 relation,
the d-6-7 head is attending and responsive with
high correlation. The negative responsiveness is
higher for context-aware models compared to the
sentence-level model. This indicates that attending
the context-informative token on the input can be
beneficial but is not crucial to the sentence-level
model. The context-aware models learn to rely on
this relation more heavily. Additionally, heads d-
4-1 and d-5-1 are non-attentive and only positively
responsive.

5.2 NLLB-200

The results of the analysis of the NLLB-200
context-aware models are presented in Figure 3.
The expanded results, including the sentence-level
model, can be found in Appendix H. The his-
tograms of the results are presented in Appendix I.

5.2.1 English-to-German
For the English-to-German direction, only a single
encoder head - e-12-4 - was found to attend the
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Figure 3: Results in terms of calculated metrics (correlations, difference in accuracy when modified to 0.01, and
modified to 0.99; as columns) in relation to the averaged attention scores for the English-to-German and English-to-
French directions (as rows) for the context-aware model based on NLLB-200.

SP → SC relation but was non-responsive. In the
cross-attention modules, the TP → SP relation is
attended by several heads in both models (most
notably by c-7-3, c-8-3, c-6-16, c-10-13, and c-5-
3 for context-aware model only) but showed low
correlation and responsiveness. For the context-
aware model, two heads visibly changed their be-
havior - head c-9-1 moderately attends the relation
but does respond to modifying, and head c-8-15 is
non-attentive and only positively responsive. The
TP → SC relation was weakly attended by a sin-
gle head (c-8-9) which showed only the modest
positive response.

Similar to OpusMT models, the most attentive
and responsive heads are located in the decoder
attention. Head d-10-3 is moderately attending the
TP → TC relation, have relatively high correlation,
and is highly responsive (improving the accuracy
by almost 3 percentage points). Surprisingly, when
this head is modified to 0.99 for the TP → TC+1 re-
lation it improves the accuracy of the context-aware
model. The d-9-9 head attends TP → TC+1 rela-
tion and exhibits the highest correlation among all
heads of the model and responds negatively. Sev-
eral heads are non-attentive but positively respon-
sive. Most notably, head d-10-6 improves accuracy
by 2 and 3 percentage points for sentence-level and
context-aware models respectively, and head d-9-
10 by approximately 2 percentage points for both
models. Interestingly, head d-9-12 seems to pay
attention to both relations and responds strongly

to modifying to 0.01. While it improves the ac-
curacy for both relations when modified to 0.99,
the improvement is larger (by 3 percentage points
in both models) for the TP → TC relation than
for the TP → TC+1 relation with larger gains for
context-aware model. Another head that pays atten-
tion to both relations is d-8-5 but it shows moderate
correlation and responsiveness.

5.2.2 English-to-French
For the English-to-French direction, the accuracy
of the unmodified models on LCPT reaches 95%
for the sentence-level model4 and almost 92% for
the context-aware model, which is considerably
higher than on ContraPro. This could explain the
lower ranges of responses to modifying heads and
correlation coefficients observed in the results.

In contrast to the English-to-German direction,
we observed a higher number encoder heads at-
tending the SP → SC relation (e.g., e-12-4, e-8-4,
e-6-13, and e-12-8). Nevertheless, none of them
responded to modifying. Similarly, several heads
(c-6-16, c-8-3, c-5-3, c-7-11) were attending but
non-responsive to the TP → SP relation. For the
TP → SC relation, head c-8-6 was non-attending
and positively responsive. This behavior was ex-
hibited by two decoder heads - d-10-3 and d-10-6 -
for the TP → TC relation. The TP → TC+1 rela-
tion was attended by three heads - d-8-5 and d-9-12

4For the sentence-level model we only consider examples
where the antecedent is in the current sentence.
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Figure 4: The difference in accuracy on ContraPro of the models based on OpusMT en-de (sentence-level, context-
aware-1, and context-aware-3) for modifying and tuning selected heads.

heads also responding to modification, and d-9-
9 head being non-responsive. Additionally, head
d-10-3 was non-attending and positively respon-
sive. Notice that this head is also responding to the
TP → TC relation, albeit to a lesser extent.

Several heads show similar behavior in both lan-
guage directions. Those include: e-12-4 in encoder-
attention, c-8-3, c-6-16, c-5-3, and c-8-9 in cross-
attention, and d-9-12, d-8-5, and d-10-3 in decoder-
attention.

5.3 Discussion

Taking into account the results for all models we
make the following observations.

• Some heads appear to have a function iden-
tifiable through analysis. This is confirmed by
previous research (Clark et al., 2019; Voita et al.,
2019c; Tenney et al., 2019; Jo and Myaeng, 2020;
Olsson et al., 2022), however we additionally
demonstrate that adjustments to the functioning
of heads (whether improved or diminished) leads
to noticeable changes in models’ performance (in
terms of the accuracy of pronoun disambiguation).

• The decoder-attention (corresponding to the
target-side context) has the highest impact on
the pronoun disambiguation accuracy. Note that
we used the gold context (provided with the exam-
ples). In a real-world system, the context would
come from the model’s predictions. It is interesting
to note that the most relevant heads are located in
higher layers. Our intuition is that in the decoder
the output token is presumably decided in the lay-
ers closer to the output and only with this informa-
tion can heads attempt to find the corresponding
antecedent.

• In the decoder-attention, the important con-
text tokens are the tokens corresponding to both
the antecedent being predicted (the TP → TC

relation) and being passed to the model as input
(the TP → TC+1 relation) with most heads spe-

cializing in attending one of the two and only some
heads being able to utilize both.

• Attending to the relation by a head does not
necessarily imply it has an impact on the pro-
noun disambiguation accuracy. The most respon-
sive heads already attend the relations of interest,
but there exist heads that are not utilized by the
model that could improve the performance if were
attending the relations.

Moreover, in the multi-lingual NLLB-200 model,
we found several cross-lingual heads, exhibiting the
same behavior for both tested language directions.
Finally, we quantified the overlap of the improve-
ment coming from modifying pairs of heads simul-
taneously to be lower than 30% for all models (see
Appendix E).

6 Tuning Heads

After identifying the most responsive heads, we
fine-tuned them to assess to what extent the aug-
mented behavior of the heads can be solidified
into the models’ parameters without compromis-
ing overall translation quality. To obtain the dataset
containing the pronoun-antecedent pairs we applied
the CTXPRO toolset (Wicks and Post, 2023) to
the IWSLT 2017 en-de dataset (unrelated to the
ContraPro dataset). The details can be found in
Appendix F.

We tuned selected heads of the OpusMT en-de
models. The results are shown in Figure 4. The
models exhibit higher accuracy for each tuned head
without reducing the translation quality (see Ap-
pendix F for the extended results). The improve-
ment is the highest for the sentence-level model and
reduces with increased context size. The low num-
ber of examples with antecedent distance of two
or more in the training dataset could explain the
reduction in improvement for the context-aware-
3 model. Alternatively, the representations of the
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tokens that are passed to the tuned head are insuffi-
cient for the head to attend the relation. We leave
further investigation of this phenomenon and the
exploration of the most efficient methods to tune
the heads for future research.

7 Conclusions

In this paper, we researched the influence of the
attention heads in the Context-aware MT models on
the task of pronoun disambiguation in English-to-
German and English-to-French language directions.
We measured and modified the attention scores
corresponding to the relations that could influence
the prediction of a pronoun: pronoun-antecedent on
the source and target sides, pronoun-pronoun, and
pronoun-antecedent between the target and source
sides.

We found that some heads do attend the rela-
tions of interest but not all of them influence the
pronoun disambiguation capabilities of the models.
We showed that some heads are underutilized by
the models - the models’ performance could im-
prove if they attended the relations. We confirmed
that the target-side context is more impactful than
the source-side context. Additionally, we note that
the target-side context cue tokens can be useful to
the model both when passed to the model (as the
input of the decoder) as well as when they are pre-
dicted (as the output of the decoder). Lastly, we
showed that the heads can be fine-tuned to attend
the relations improving the models.

8 Limitations

We only investigated the pre-trained models that
we fine-tune for the Context-aware MT. The atten-
tion heads could behave differently if the models
were trained from the random initialization. Addi-
tionally, we employed the contrastive datasets to
analyze the models. The behavior of the models
can differ from the generative setting. We also used
the gold target context. In the real-world scenario,
the models would base its predictions on the pre-
viously generated target context. Lastly, we only
considered the pronoun disambiguation task and
only two language directions: English-to-German
and English-to-French.
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A Derivation of Modifying Heads
Formula

In this section, we will provide a short derivation
of the Modifying Heads equation (eq. 2) (see Sec-
tion 3.3). Let us consider the i-th token in the left-
hand side set Y of the relation of interest Y → X
for the example d from the dataset. For a selected
layer l and head h, the goal is to find the values of
pre-softmax attention scores H̃ l,h,d

i,j for all tokens
j from the right-hand side set X of the relation of
interest such that the sum of the resulting atten-
tion scores (post-softmax) Z̃ l,h,d

i,j would be equal
to a desired value C. We also assume that the at-
tention scores would be spread equally among the
tokens from the right-hand side set X . This can be
formulated as:

C =
∑

j′∈X d

Z̃ l,h,d
i,j′ = |X d|Z̃ l,h,d

i,j

∀i ∈ Yd, j ∈ X d,

(3)

The attention scores are calculated using the fol-
lowing equation:

Z l,h,d
i,k =

exp(H l,h,d
i,k )∑

k′∈Xd exp(H
l,h,d
i,k′ )

∀i ∈ Yd, k ∈ Xd,

(4)

where Xd are the tokens from which the the right-
hand side set X are selected. We expand eq.3 using
eq.4 and split the sum in the denominator into two

parts - inside X d and outside k ∈ Xd \ X d:

C =|X d|Z̃ l,h,d
i,j

=
|X d| exp(H̃ l,h,d

i,j )

|X d| exp(H̃ l,h,d
i,j ) +

∑
k∈Xd\X d exp(H

l,h,d
i,k )

∀i ∈ Yd, j ∈ X d.
(5)

This equation can be reformulated as:

exp(H̃ l,h,d
i,j ) =

C

(1− C)|X d|
∑

k∈Xd\X d

exp(H l,h,d
i,k )

∀i ∈ Yd, j ∈ X d,
(6)

Finally, we apply the logarithm to both sides of
eq.6 and come to the equation for Modifying Heads
from Section 3.3:

H̃ l,h,d
i,j = log

( C

|X d|(1− C)

∑
k∈Xd\X d

exp(H l,h,d
i,k )

)
∀i ∈ Yd, j ∈ X d.

(7)

B Disabling Heads Method

In addition to the methods described in Section 3
we disabled heads of the models. Disabling heads
means that we assign equal attention score to all
key K tokens, thus they cannot function as before.
It can be done for all query Q tokens or only for the
selected ones. To minimize the disturbance to the
model, we only disable heads for the Q tokens in
the Y set. This allows the head to function normally
for all other tokens but prevents it from attending
to the contextually informative tokens from the
contextually dependent tokens. Regardless, it still
does not distinguish between relations of interest.
For example, disabling a head in the cross-attention
prevents it from attending both TP → SP and
TP → SC relations reducing the granularity of the
analysis.

For an example d from the dataset, disabling
heads is defined as:

Z̃ l,h,d
i,k =

1

|Xd|
∀i ∈ Yd, k ∈ Xd,

(8)

where Z̃ are the updated attention scores (after soft-
max is applied), Xd is the whole set of attended
tokens, including the attended tokens-of-interest
X d. Implementation-wise, we set pre-softmax at-
tention scores H to zero and rely on the softmax

https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2020.emnlp-main.81
https://doi.org/10.18653/v1/2020.emnlp-main.81
https://doi.org/10.18653/v1/2020.emnlp-main.81


6361

function to spread attention equally among the to-
kens.

C Details of the Datasets

In this section, we present the details of the datasets
used in our investigation. The number of doc-
uments, sentences, and tokens in the subsets of
the IWSLT 2017 (Cettolo et al., 2017) dataset for
English-to-German and English-to-French direc-
tions can be seen in Table 2.

Dataset Docs Sent/Doc Tok/Sent
En-De Train 1698 121.4 21.9
En-De Valid 62 87.6 20.6
En-De Test 12 90.0 20.8
En-Fr Train 1914 121.6 22.0
En-Fr Valid 66 88.2 20.9
En-Fr Test 12 100.8 21.4

Table 2: The details of the IWSLT 2017 datasets.

The number of examples in the ContraPro and
LCPT contrastive datasets for the different dis-
tances of the antecedent are presented in Table 3.

Antecedent
Distance ContraPro LCPT
0 2400 5986
1 7075 4566
2 1510 1629
3 573 880
>3 442 939
All 12000 14000

Table 3: The number of examples in the ContraPro
and LCPT datasets with different distances of the an-
tecedent.

D Details of Context-aware Fine-tuning

We trained the models with Adafactor optimizer
(Shazeer and Stern, 2018) on a single GPU
(NVIDIA GeForce RTX 3090 24GB) for 10 epochs
and select the checkpoint with the highest BLEU
(Papineni et al., 2002) on the ContraPro dataset
(Müller et al., 2018) (translating the sentences
with the provided target context). The models ac-
quired the highest BLEU score after two epochs
for OpusMT en-de with a context window of one,
and only after one epoch for OpusMT en-de with
a context window of three and NLLB-200 (with a
context window of one).

The hyper-parameters are presented in Table 4.
For OpisMT en-de with the context size of three,
we decreased the batch size to 16 and increased the
gradient accumulation steps to 16. For NLLB-200,
we decreased the batch size further to 8 and in-
creased the gradient accumulation steps to 32. This
was done to reduce the memory requirements dur-
ing training. We trained for 10 epochs and selected
the checkpoint with the highest BLEU score on
the ContraPro dataset. We tuned learning rate on
OpusMT en-de model for context size of one and
tried the following values: 2e-6, 5e-6, 1e-5, 2e-5,
5e-5. We chose the value of 1e-5 for learning rate
as leading to the highest BLEU on the ContraPro
dataset (when generating translations). We used
this value for the fine-tuning of all models.

Hyper-parameter Value
Optimizer Adafactor
Learning Rate 1e-5
LR Scheduler Linear
LR Warmup Ratio 0
Weight Decay 0.01
Max Gradient Norm 1.0
Batch Size 32*

Gradient Accumulation Steps 8*

Num Epoch 10

Table 4: The hyper-parameters of the Context-aware
fine-tuning of the tested models.
* For Opus MT en-de with the context size of three and
NLLB-200, we decreased the batch size to 16 and 8,
and increased the gradient accumulation steps to 16 and
32 respectively.

E Modifying Multiple Heads

For all investigated models, we found that several
heads are improving the accuracy of the model
when modified to attend the relations of interest.
To asses to what extent the improvement of differ-
ent heads is overlapping we selected several heads
with highest improvement in accuracy when mod-
ified to 0.99 and modified each pair of heads to-
gether to 0.99 for the relations they responded. We
experimented with two models: OpusMT en-de
with context size of three (we selected 8 heads),
and context-aware NLLB-200 model on English-
to-German and English-to-French directions (we
selected 7 and 5 heads respectively). We report
the percentage overlap of the accuracy improve-
ment of modifying both heads against the sum of
improvements of modifying each head separately,
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calculated as:

OM =

∑
(l,h)∈M(Al,h −AB)− (AM −AB)∑

(l,h)∈M(Al,h −AB)
,

(9)
where M is the list of heads being simultaneously
modified, AB is the base accuracy of the model,
AM is the accuracy observed when all heads are
modified to 0.99, and Al,h is the accuracy of the
model with a single h-th head in l-th layer being
modified to 0.99.

Figure 5: The percentage overlap of the improvement in
accuracy on the ContraPro dataset for selected heads of
the context-aware-1 model based on OpusMT en-de.

Figure 6: The percentage overlap of the improvement
in accuracy on the ContraPro dataset (English-to-
German) for selected heads of the context-aware model
based on NLLB-200.

We present the results for the OpusMT en-de
model in Figure 5. The corresponding results for
NLLB-200 model can be found in in Figures 6 and
7 for English-to-German and English-to-French di-
rections respectively. We do not report the result for
the cases where the same head was selected based

Figure 7: The percentage overlap of the improvement
in accuracy on the LCPT dataset (English-to-French)
for selected heads of the context-aware model based on
NLLB-200.

on two different relations (e.g., head d-9-12 for the
TP → TC and TP → TC+1 relations). It can be
seen that some overlap is present for most of the
heads but it is typically lower than 20% for English-
to-German direction in both models and slightly
higher (from 15% to 26%) for English-to-French
direction in NLLB-200. This means that heads per-
form complementary (to an extent) functions in the
models, and the redundancy of the function they
perform is limited. Furthermore, improving heads
in tandem could lead to the model with a better
performance.

F Details of Head Tuning

We trained the selected heads of a model to gen-
erate the attention scores matching the scores re-
sulting from modifying to 0.99. We froze all pa-
rameters of the model apart from the parameters
responsible for the Q and K transformation in a
targeted layer and updated only the parameters cor-
responding to the targeted head. Although we ex-
perimented with the calculation of the loss based
on post-softmax attention scores Z, we observed a
slight decrease in BLEU on the IWSLT 2017 test-
set. Therefore, we decided to use the pre-softmax
attention scores H to calculate the loss. We for-
mulate the target pre-softmax attention scores for a
token i ∈ Y as:

Ĥ l,h,d
i,j =

{
H̃ l,h,d

i,j , if j ∈ X ,

H̄ l,h,d
i,j , if j /∈ X ,

(10)

where H̃ is calculated according to eq. 2 (see Sec-
tion 3.3, and H̄ is the attention score obtained from
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the unmodified model. In order to obtain the values
of H̄ , at the start of training, we make a copy of
the model parameters and perform a forward pass
twice, first for the trained model and second for
the unmodified model. We calculate the MSE loss
between the model’s and target pre-softmax scores
and backpropagate it to the model’s parameters.

We obtain training examples by applying the
CTXPRO (Wicks and Post, 2023) toolset to the
training subset of the IWSLT 2017 en-de dataset.
The toolset applies predefined rules to find context-
related phenomena in the dataset. We extracted the
examples marked by the following rules:

• ACC.NEUT.SING,
• DAT.FEM.SING,
• NOM.FEM.SING,
• NOM.NEUT.SING,
• DAT.NEUT.SING,
• DAT.MASC.SING,
• NOM.MASC.SING,
• ACC.FEM.SING,
• ACC.MASC.SING.

The resulting number of examples with different
antecedent distances are presented in Table 5. The
hyper-parameters used in fine-tuning can be found
in Table 7.

Antecedent
Distance CTXPRO
0 3816
1 2883
2 845
3 355
>3 448
All 8347

Table 5: The number of examples in the CTXPRO
dataset.

G Expanded Results of the OpusMT
en-de Models

In this section, we present the expanded results
for the models based on OpusMT en-de (sentence-
level, context-aware-1, and context-aware-3). The
accuracy of the context-aware model with the con-
text size of one on the ContraPro contrastive dataset
when modifying heads to different values (from the
set [0.01, 0.25, 0.5, 0.75, 0.99]) for five relations of
interest can be seen in Figure 8. The results show
that the changes in accuracy are monotonic.

The raw results for all measured quantities (av-

erage attention scores, correlation between scores
and being correct on the contrastive dataset exam-
ples, the difference in accuracy when disabling
heads, and modifying head to 0.01 and 0.99)
for all relations of interest are presented in Fig-
ures 9, 10, and 11 for the three models (sentence-
level, context-aware-1, and context-aware-3) re-
spectively.

H Expanded Results of the NLLB-200
Models

Here, we show the expanded results for the two
multi-lingual models (sentence-level and context-
aware) based on NLLB-200. In Section 5.2 we
presented the measured metrics introduced in Sec-
tion 3 (correlations, accuracy when modified to
0.01, and modified to 0.99) in relation to the av-
eraged attention scores only for the context-aware
model. The results for both models and both lan-
guage directions can be seen in Figure 12.

We show the raw results for all relations of inter-
est in: Figure 13 for the sentence-level model on
ContraPro (English-to-German) dataset, Figure 14
for the context-aware model on ContraPro dataset,
Figure 15 for the sentence-level model on LCPT
(English-to-French) dataset, and Figure 16 for the
context-aware model on LCPT dataset.

I Histograms of the Results

For each model, we generated histograms of the
measured metrics and annotate with arrows the val-
ues for the most notable heads. Figures 17, 18, and
19 show the histograms for OpusMT en-de mod-
els (sentence-level, context-aware-1, and context-
aware-3 respectively). The histograms for sentence-
level NLLB-200 can be found in Figures 20 and 22
for the English-to-German and English-to-French
directions respectively. The corresponding his-
tograms of the context-aware NLLB-200 model
are presented in Figures 21 and 23 for English-to-
German and English-to-French respectively.
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Model Relation Tuned
Head

ContraPro
Accuracy

Modified
Accuracy

ContraPro
BLEU

IWSLT
BLEU

Sentence-level - - 81.46% - 30.24 32.42
TP → TC d-6-4 86.42% 87.17% 30.67 32.39
TP → TC d-6-6 84.08% 84.67% 30.40 32.37
TP → TC+1 d-6-7 84.25% 84.46% 30.40 32.38
TP → SP c-5-1 83.75% 84.21% 30.52 32.31

Context-aware-1 - - 78.35% - 31.00 34.40
TP → TC d-6-4 82.08% 83.53% 31.17 34.50
TP → TC d-6-6 80.01% 81.18% 31.06 34.55
TP → TC+1 d-6-7 80.69% 81.24% 31.02 34.47
TP → SP c-5-1 80.68% 80.78% 31.15 34.47

Context-aware-3 - - 79.08% - 31.35 34.59
TP → TC d-6-4 82.04% 86.28% 31.62 34.58
TP → TC d-6-6 80.18% 82.68% 31.41 34.56
TP → TC+1 d-6-7 80.94% 82.72% 31.40 34.58
TP → SP c-5-1 81.23% 81.64% 31.52 34.59

Table 6: The results of fine-tuning selected heads to attend the specified relation in terms of the accuracy and BLEU
on ContraPro (the Tuned Accuracy and ContraPro BLEU columns respectively), BLEU on IWSLT 2017 en-de
dataset (the IWSLT BLEU column) compared to the accuracy of the model with modifying the head to 0.99 (the
Modified Accuracy column). The first row for each model shows the results of the unmodified and not fine-tuned
model. The Accuracy and BLEU on the ContraPro dataset for the sentence-level models are calculated only on the
examples where the antecedent is in the current sentence.

Hyper-parameter Value
Optimizer Adafactor
Learning Rate 1e-3
LR Scheduler Linear
LR Warmup Ratio 0
Weight Decay 0.01
Max Gradient Norm 1.0
Batch Size 12
Gradient Accumulation Steps 8
Num Epoch 10

Table 7: The hyper-parameters of the fine-tuning of
selected heads.
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(a) SP → SC

(b) TP → SC (c) TP → SP

(d) TP → TC (e) TP → TC+1

Figure 8: The accuracy of the OpusMT en-de context-aware-1 model on the ContraPro dataset when modifying
each of the attention heads to different values (out of [0.01, 0.25, 0.5, 0.75, 0.99]) for the investigated relations of
interest.
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Figure 9: Measured average attention score, correlation between attention scores and accuracy on ContraPro dataset,
and the difference in accuracy for: Disabling Heads, Modifying Heads to 0.01, and Modifying Heads to 0.99 (as
columns) for each head of the sentence-level OpusMT en-de model for all relations of interest (as rows).
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Figure 10: Measured average attention score, correlation between attention scores and accuracy on ContraPro
dataset, and the difference in accuracy for: Disabling Heads, Modifying Heads to 0.01, and Modifying Heads to
0.99 (as columns) for each head of the context-aware OpusMT en-de model with the context size of one for all
relations of interest (as rows).
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Figure 11: Measured average attention score, correlation between attention scores and accuracy on ContraPro
dataset, and the difference in accuracy for: Disabling Heads, Modifying Heads to 0.01, and Modifying Heads to
0.99 (as columns) for each head of the context-aware OpusMT en-de model with the context size of three for all
relations of interest (as rows).
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Figure 12: Results in terms of calculated metrics (correlations, difference in accuracy when modified to 0.01,
and modified to 0.99; as columns) in relation to the averaged attention scores for the English-to-German and
English-to-French directions for both sentence-level and context-aware models (as rows) based on NLLB-200.



6370

Figure 13: Measured average attention score, correlation between attention scores and accuracy on ContraPro
(English-to-German) dataset, and the difference in accuracy for: Disabling Heads, Modifying Heads to 0.01, and
Modifying Heads to 0.99 (as columns) for each head of the sentence-level NLLB-200 model for all relations of
interest (as rows).
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Figure 14: Measured average attention score, correlation between attention scores and accuracy on ContraPro
(English-to-German) dataset, and the difference in for: Disabling Heads, Modifying Heads to 0.01, and Modifying
Heads to 0.99 (as columns) for each head of the context-aware NLLB-200 model for all relations of interest (as
rows).
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Figure 15: Measured average attention score, correlation between attention scores and accuracy on LCPT (English-
to-French) dataset, and the difference in accuracy for: Disabling Heads, Modifying Heads to 0.01, and Modifying
Heads to 0.99 (as columns) for each head of the sentence-level NLLB-200 model for all relations of interest (as
rows).
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Figure 16: Measured average attention score, correlation between attention scores and accuracy on LCPT (English-
to-French) dataset, and the difference in accuracy for: Disabling Heads, Modifying Heads to 0.01, and Modifying
Heads to 0.99 (as columns) for each head of the context-aware NLLB-200 model for all relations of interest (as
rows).
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Figure 17: Histograms of average attention scores, correlations between attention scores and accuracy on ContraPro
dataset, and the differences in accuracy for: Modifying Heads to 0.01 (excluding positive values) and Modifying
Heads to 0.99 (excluding negative values) of each head of the sentence-level OpusMT en-de model with the values
of noticeable heads annotated with arrows.

Figure 18: Histograms of average attention scores, correlations between attention scores and accuracy on ContraPro
dataset, and the differences in accuracy for: Modifying Heads to 0.01 (excluding positive values) and Modifying
Heads to 0.99 (excluding negative values) of each head of the context-aware OpusMT en-de model with the
context size of one with the values of noticeable heads annotated with arrows.
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Figure 19: Histograms of average attention scores, correlations between attention scores and accuracy on ContraPro
dataset, and the differences in accuracy for: Modifying Heads to 0.01 (excluding positive values) and Modifying
Heads to 0.99 (excluding negative values) of each head of the context-aware OpusMT en-de model with the
context size of three with the values of noticeable heads annotated with arrows.

Figure 20: Histograms of average attention scores, correlations between attention scores and accuracy on ContraPro
(English-to-German) dataset, and the differences in accuracy for: Modifying Heads to 0.01 (excluding positive
values) and Modifying Heads to 0.99 (excluding negative values) of each head of the sentence-level NLLB-200
model with the values of noticeable heads annotated with arrows.
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Figure 21: Histograms of average attention scores, correlations between attention scores and accuracy on ContraPro
(English-to-German) dataset, and the differences in accuracy for: Modifying Heads to 0.01 (excluding positive
values) and Modifying Heads to 0.99 (excluding negative values) of each head of the context-aware NLLB-200
model with the values of noticeable heads annotated with arrows.

Figure 22: Histograms of average attention scores, correlations between attention scores and accuracy on LCPT
(English-to-French) dataset, and the differences in accuracy for: Modifying Heads to 0.01 (excluding positive
values) and Modifying Heads to 0.99 (excluding negative values) of each head of the sentence-level NLLB-200
model with the values of noticeable heads annotated with arrows.
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Figure 23: Histograms of average attention scores, correlations between attention scores and accuracy on LCPT
(English-to-French) dataset, and the differences in accuracy for: Modifying Heads to 0.01 (excluding positive
values) and Modifying Heads to 0.99 (excluding negative values) of each head of the context-aware NLLB-200
model with the values of noticeable heads annotated with arrows.
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