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Abstract

Scientific English is currently undergoing rapid
change, with words like “delve,” “intricate,”
and “underscore” appearing far more frequently
than just a few years ago. It is widely assumed
that scientists’ use of large language models
(LLMs) is responsible for such trends. We de-
velop a formal, transferable method to char-
acterize these linguistic changes. Application
of our method yields 21 focal words whose
increased occurrence in scientific abstracts is
likely the result of LLM usage. We then pose
“the puzzle of lexical overrepresentation”: why
are such words overused by LLMs? We fail
to find evidence that lexical overrepresenta-
tion is caused by model architecture, algorithm
choices, or training data. To assess whether
reinforcement learning from human feedback
(RLHF) contributes to the overuse of focal
words, we undertake comparative model testing
and conduct an exploratory online study. While
the model testing is consistent with RLHF play-
ing a role, our experimental results suggest
that participants may be reacting differently to
“delve” than to other focal words. With LLMs
quickly becoming a driver of global language
change, investigating these potential sources
of lexical overrepresentation is important. We
note that while insights into the workings of
LLMs are within reach, a lack of transparency
surrounding model development remains an ob-
stacle to such research.

1 Introduction

Like all human language, Scientific English
has changed substantially over time (Degaetano-
Ortlieb and Teich, 2018; Degaetano-Ortlieb et al.,
2018; Bizzoni et al., 2020; Menzel, 2022). New dis-
coveries have fueled (and perhaps been fueled by)
the introduction of new lexical items into scientific
discourse (Degaetano-Ortlieb and Teich, 2018).

*Conceptually, both authors contributed equally to this
work. Tom wrote the code to the paper, which can be accessed
at github.com/tjuzek/delve.

Figure 1: We formalize a procedure for identifying
words whose increasing prevalence is likely the result
of LLM usage. Although our focus is Scientific En-
glish, the method can be applied across domains and
languages.

Changes in dominant methodological and explana-
tory frameworks – such as the rise of mechanical
philosophy, or the mathematization of scientific
fields – have been accompanied by changes in word
usage and syntactic structures as well (Degaetano-
Ortlieb and Teich, 2018; Krielke, 2024). Such
changes continue through the present (Banks, 2017;
Leong, 2020).

Over the last two years, however, Scientific En-
glish has witnessed increasing usage of certain lex-
ical items at a seemingly unprecedented pace. Dis-
cussions on social media (e.g., Koppenburg 2024;
Nguyen 2024; Shapira 2024) and in academic dis-
course (Gray, 2024; Kobak et al., 2024; Liang
et al., 2024b; Liu and Bu, 2024; Matsui, 2024)
have pointed out that words such as “delve,” “in-
tricate,” and “nuanced” have appeared far more
frequently in scientific abstracts from 2023 and
2024 compared to earlier years. Unlike many pre-
vious changes in Scientific English, these trends do
not seem to be explained by changes in the content
of science or in wider language use. Instead, it is

https://github.com/tjuzek/delve
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widely assumed that the sharp increase is due to
the use of large language models (LLMs) like Chat-
GPT for scientific writing. Evidence supporting
this hunch has recently emerged (e.g., Cheng et al.
2024; Liang et al. 2024a).

The goals of the present research were twofold.
First, we aimed to provide a systematic charac-
terization of this linguistic phenomenon. Some
existing work has relied on informal methods to
identify words observed to occur more frequently
in AI-generated writing (e.g., Matsui 2024). We
developed a method for extracting lexical items
of interest, described in Section 2, which is rigor-
ous, reproducible, and transferable to other data
and models. We identified 21 “focal words”: lex-
ical items that have recently spiked in Scientific
English and are overused by ChatGPT-3.5 in scien-
tific writing tasks, as illustrated in Figure 1.

Prior research has focused on quantifying such
focal words’ increasing prevalence and estimating
how much recent scientific writing has been pro-
duced with LLM assistance (e.g., Kobak et al. 2024;
Liang et al. 2024b). By contrast, our second goal
was to explore the factors that might contribute
to the phenomenon of lexical overrepresentation:
Why does ChatGPT use “delve” (and other focal
words) so frequently when generating scientific
text? We identified a set of possible factors, char-
acterized in Section 3, and began to assess them.
We did not find evidence that model architecture
or algorithmic decisions play a major role in the
overrepresentation of focal words (Section 5), nor
that lexical overrepresentation stems from training
or fine-tuning data (Section 4).

LLM training often involves reinforcement learn-
ing based on information about quality outputs
from human evaluators. We found mixed evidence
that reinforcement learning from human feedback
(RLHF) contributes to the overrepresentation of our
focal words in LLM-generated text. Positive evi-
dence comes from model testing on Meta’s Llama
LLM (Section 5). An exploratory experiment de-
scribed in Section 6 is inconclusive, although our
findings indicate that participants became wary of
the word “delve” in the first sentence of an abstract
(e.g., ’This article delves into ...’). Since the experi-
ment’s inconclusiveness stems partly from method-
ological issues, we believe a follow-up study is
warranted. Many important questions about the fu-
ture of LLM-driven language change remain (Sec-
tion 7).

2 Corpus Analysis: Identification of
Overrepresented Lexical Items

To probe recent changes in Scientific English, we
used PubMed’s publicly available repository of sci-
entific abstracts, which focuses on biomedical liter-
ature (National Library of Medicine, 2023) (down-
loaded through the PubMed API using a Python
script (Python Software Foundation, 2024); Snap-
shot: May 4, 2024; all code on our GitHub). Our
analysis includes more than 5.2 billion tokens (in-
flected forms) from 26.7 million abstracts. To track
changes in word usage over time, we measured
occurrences per million (opm) of a given token in
each year. Figure 2 illustrates the usage trajectories
of some baseline items over time. We focus on
the period from 1975 to May 2024 as data prior to
1975 are less extensive.

Figure 2: Selected lexical entries: change over time.

The goal of our corpus analysis was to identify
words whose recent overuse in scientific writing
is likely the result of LLM deployment. Our ap-
proach involved three steps. First, we determined
which words were more prevalent in abstracts from
2024 compared to 2020 (since LLMs were not
widespread pre-2021). We calculated the percent-
age increase in opm for each token in the database
between 2020 and 2024. Unsurprisingly, there was
a straightforward explanation for why some words
spiked in usage during that time. For example,
“omicron” and “metaverse” were two of the words
that showed the largest percentage increase (for
“omicron”, see Figure 2). We only considered in-
creases deemed significant by chi-square tests, of
which there were about 7300.

We were interested in isolating words whose
spike in usage was unexplained. The authors func-
tioned as annotators and independently reviewed
the list of words that had the highest percentage
change to exclude irrelevant tokens (like year num-
bers) and words whose spiking had an explanation
in terms of scientific advances or world events. In
cases of disagreement, we included the word on
our list. We stopped once we had 50 words whose
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usage spiked without any obvious explanation (see
incl.ods on GitHub). This list contained several of
the words that had been the focus of online conver-
sation, including “delve” and “intricate”.

However, a spike without an obvious explana-
tion is not necessarily LLM-induced. For exam-
ple, the usage of ’mash’ increased tenfold, but it
is not a word that ChatGPT is known to overuse.
The second step of our method involved identify-
ing words that are overrepresented in AI-generated
scientific abstracts compared to human-generated
abstracts. In producing AI-generated abstracts, our
aim was to imitate the process by which researchers
might have deployed an LLM in 2022-early 2024
(while paying attention to careful prompt formula-
tion (Wei et al., 2022; Zhou et al., 2022)). After
some exploration, we ended up with a two-stage
process: (1) We randomly sampled 10,000 abstracts
from papers published in 2020 from the PubMed
database. Via the API, ChatGPT-3.5 then summa-
rized the associated paper (Prompt: “The following
is an abstract of an article. Summarize it in a cou-
ple of sentences.”) (2) The ChatGPT-generated
summary was then used to ask ChatGPT-3.5 for a
corresponding scientific abstract. (Prompt: “Please
write an abstract for a scientific paper, about 200
words in length, based on the following notes.”)
We suspect that the most common way of using
an LLM to generate an abstract back when Chat-
GPT could not accept paper-length inputs involved
providing important fragments of a paper. We
used ChatGPT-3.5 for the entirety of our project
because if scientific abstracts in our dataset con-
tain AI-generated language, it is most likely from
ChatGPT-3 or ChatGPT-3.5 (Sarkar, 2023).

In total, from 10,000 human abstracts, we gen-
erated 9,953 AI abstracts. (For a small number,
ChatGPT would not provide a response, presum-
ably due to topic sensitivity.) We then compared
the word usage in the AI-generated abstracts with
word usage in the original abstracts. We only con-
sidered words for which a chi-square test indicated
a significant difference in opm between the human-
and AI-produced text. This gave us a list of items
overused by ChatGPT.

In the third step of our analysis, we returned to
the list of 50 spiking words to ask: Is the word
also on the ChatGPT-overuse list? If so, then it
became a “focal word” (Figure 3). This gave us a
list of 21 focal words (Figure 4 and Appendix A).1

1Since the part-of-speech category is not always clear for

Each focal word (a) shows a significant spike in
opm between 2020 and 2024, (b) its spike lacks
an obvious explanation, and (c) ChatGPT tends to
use it significantly more than humans when writing
scientific abstracts (Figure 1). Thus, a plausible
explanation for the increasing prevalence of each
focal word in Scientific English is the use of AI.

This systematic, three-step method for identi-
fying focal words is novel. It improves on more
informal ways of identifying AI-associated words,
and it can be applied to other corpora and LLMs
beyond ChatGPT-3.5. (Appendix B reports similar
results for ChatGPT-4.0(-mini).) Future research
can use the method to investigate whether the same
words are overrepresented in the outputs of differ-
ent models – or whether there are LLMs that do
not exhibit lexical overrepresentation at all.

3 The Puzzle of Lexical
Overrepresentation

A question now presents itself: Why are certain
words used so often in AI-generated scientific writ-
ing? We call this “the puzzle of lexical overrepre-
sentation.” There are a number of factors that might
be responsible for the overrepresentation of focal
words in scientific abstracts generated by ChatGPT.
Importantly, these potential explanations are not
mutually exclusive: multiple factors may (and prob-
ably do) contribute.

1. Initial Training Data Although the focal
words are overrepresented relative to human-
written abstracts, it is possible that they are not
overrepresented relative to the data on which
ChatGPT was trained to do next-word predic-
tion. Perhaps these words are actually being
used by LLMs with the same frequency as in
their training data.

2. Fine-Tuning Training Data After LLMs
have been trained on next-word prediction,
they are often fine-tuned. For instance, chat-
bots are presented with sample dialogues to
familiarize them with the structure of a con-
versation. It is possible that something about
ChatGPT’s fine-tuning data leads it to favor
certain words (e.g., if the focal words are over-
represented in the sample dialogues).

3. Architecture Another possibility is that there
is something about the architecture of LLMs,

a given token, the focal word list contains inflected forms
instead of lemmata.
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Figure 3: Our method for the systematic identification of focal words.

or perhaps ChatGPT in particular, that causes
them to overuse certain words. Maybe LLMs’
transformer architecture tends to privilege
some lexical items over others in an as-yet-
unrecognized way. (Even if this explanation
proves correct, the question remains why this
particular set of words is overrepresented.)

4. Choice of Algorithms LLM development in-
volves many different algorithms. Tokeniza-
tion algorithms, for example, segment an in-
put string into discrete lexical items. It is
possible that the choice of one algorithm over
others causes lexical overrepresentation. Why
the algorithm does so, and why these particu-
lar words are overused, would then be further
questions.

5. Context Priming A well-known strength of
LLMs is sensitivity to genre. Their outputs
are highly dependent on the domain and style
requested by the prompt. Perhaps there is
something about being asked to write scien-
tifically that causes ChatGPT to overuse the
focal words. That is, maybe ChatGPT as-
sociates scientific writing in particular with
words like “delve” and “intricate.” This expla-
nation, if correct, raises the further question

of why ChatGPT has this association.

6. Reinforcement Learning from Human
Feedback (RLHF) Human feedback is used
in later training stages to give LLMs informa-
tion about what a quality output looks like. A
human evaluator might rate several potential
responses, for example, with the model then
trained with reinforcement learning to pro-
duce responses similar to highly-rated exem-
plars. It is possible that this human feedback
encodes a preference for certain words. If re-
sponses containing “delve” and “intricate” are
rated more highly by evaluators, it would ex-
plain why there is overrepresentation of these
words in model outputs.

7. Other factors This list of potential explana-
tions is not exhaustive. Many other choices
– e.g., parameter settings, including tempera-
ture, Top K – might influence lexical overrep-
resentation in LLM outputs.

Apportioning responsibility for lexical overrepre-
sentation to these factors is not straightforward.
The puzzle of lexical overrepresentation arises in
part because LLMs are to some extent “black boxes”
(Knight, 2017; Sculley et al., 2015). Pending
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Figure 4: Occurrences per million words in PubMed abstracts for our 21 focal words.

further advances in LLM explainability or inter-
pretability (e.g., Templeton 2024), we may struggle
to understand many aspects of their behavior. An
additional obstacle, however, is that many aspects
of LLM construction are closely-guarded secrets.
Information that would help discriminate between
the potential explanations above is not public, even
for open source models. For instance, we do not
know exactly what data LLMs are trained on (rele-
vant to #1 above), which fine-tuning steps there are
(#2), what genres the models are exposed to during
training (#5), and who the human evaluators are
(#6). In the remaining sections we pursue several
indirect ways of probing potential explanations of
the puzzle of lexical overrepresentation.

4 Searching for Overrepresentation in
Possible Training Data

Our focal words are overrepresented in text gen-
erated by ChatGPT compared to earlier PubMed
abstracts. Other research indicates that such words
also appear less frequently in related datasets in the
pre-LLM era (Liang et al., 2024b,a; Gray, 2024).
Although we do not know exactly what data LLMs
have been trained on, these results cast doubt on
the hypothesis that ChatGPT is using words like
“delve” and “surpass” frequently because they oc-
cur frequently in its training data.

To further demonstrate that the focal words are
probably not overrepresented in the training data,
we analyzed several additional datasets, namely:

Arxiv abstracts (accessed 4 Aug 2024; contains
data from 1986 onwards, averaged over all years),
the Leipzig Corpus Collective (Goldhahn et al.
2012; the English LCC contains mostly news texts
and transcriptions, data from 2005 onwards; pre-
processed snapshot from a previous project), and
Wikipedia articles and discussions (Foundation
2024, accessed 4 Aug 2024). The results are pre-
sented in Appendix B. The opm of the focal words
in our ChatGPT-3.5-generated abstracts far exceeds
their opm in the four datasets examined.

Second, we conducted a similar analysis for var-
ious varieties of English using the International
Corpus of English (ICE; Kirk and Nelson 2018).
Although ICE is relatively small compared to the
other datasets (the subcorpora for most varieties
contain about one million words), we do not find
evidence that the focal words are especially preva-
lent in any particular variety of English (see Ap-
pendix G). This suggests that the overrepresenta-
tion of focal words in ChatGPT’s outputs is prob-
ably not due to an overrepresentation of a certain
variety of English in its training data. It has been hy-
pothesized that LLMs might frequently use words
like “delve” because they are more common in va-
rieties of English spoken by human evaluators who
provide fine-tuning data, such as Nigerian English
(Hern, 2024). Our initial analysis of ICE does not
support this hypothesis.
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5 Model Choices: Architecture and
Algorithms

Could choices about model architecture or algo-
rithms be responsible for the puzzle of lexical over-
representation? To probe this, we would ideally
build an LLM ourselves and test the impact of each
potential factor on the prevalence of focal words.
This requires vast resources, however, and is be-
yond most researchers’ capabilities, including our
own. A more feasible alternative would be to in-
vestigate a model that has several released variants
– e.g., different versions of the same model using
different optimization algorithms. Such a model
must also be queryable with respect to information-
theoretic measures like entropy (Shannon, 1948).
To our knowledge, no LLM offers such fine-grained
releases.

The closest we could find is the comparison be-
tween Llama 2-Base (Llama-2-7b-hf) and Llama
2-Chat (Llama-2-7b-chat-hf; Touvron et al. 2023).
We used the Llama 2 models because they are more
similar to ChatGPT-3.5 than Llama 3 (Chiang et al.
2024; but Llama 3 produces similar results; Ap-
pendix D). The main difference between these two
versions of Llama is that Llama 2-Chat includes
fine-tuning and RLHF, whereas Llama 2-Base does
not. Llama models can also be queried for per-word
entropy (Jurafsky and Martin, 2024).

Hp-w ent = − 1

L

n∑
i=1

p(xi) log p(xi) (1)

By comparing the two models’ per-word entropy
for human- and AI-generated abstracts, we could
assess which was more “surprised” by abstracts
with an overrepresentation of focal words. Any
difference between the models provides evidence
about the source of lexical overrepresentation. We
provided our sample of 10,000 human-written ab-
stracts to both versions of Llama 2, followed by the
abstracts rewritten by ChatGPT-3.5 (see Section 2).
The results are presented in Table 1.

Llama 2-Base Llama 2-Chat
Human 1.616 1.051
AI 1.633 0.886

Table 1: Per-word entropy for human abstracts com-
pared to ChatGPT-generated abstracts. Higher values of
entropy mean that the model is more “surprised.”

We observe that Llama 2-Base is slightly less
“surprised” by human-written text, while Llama

2-Chat is considerably less “surprised” by AI-
generated abstracts, in which the focal words are
overrepresented. This suggests the overuse of focal
words might be driven by some factor that differs
between the models. Given that model architec-
ture and many algorithms are held constant across
Llama 2-Base and Llama 2-Chat, our findings sug-
gest that these factors are not the primary causes of
lexical overrepresentation. Instead, they indicate
that fine-tuning and RLHF – which differ between
the models – might be important contributors.

These results are necessarily limited. We can-
not claim definitively that the observed difference
between the models is driven by the prevalence
of focal words rather than some other feature of
AI-generated text. Moreover, most of our paper is
concerned with ChatGPT rather than Llama. The
difficulty is that there are no models of ChatGPT
(v.3 or above) that can be queried in the described
fashion. We think Llama is a useful approximation.

6 RLHF: An Experimental Approach

Our model testing with Llama suggested that RLHF
might contribute to lexical overrepresentation. This
hypothesis has intuitive plausibility: when human
evaluators assess alternative answers to a query,
perhaps they are exhibiting a preference for an-
swers containing certain words. Since LLMs are
trained to align their answers with human prefer-
ences, they would learn to use those words more
frequently (Christiano et al., 2017; Ziegler et al.,
2019). To further investigate this potential explana-
tion, we conducted an exploratory online study in
which participants indicated whether they preferred
scientific abstracts that contained our focal words.

Materials. We randomly sampled shorter
PubMed abstracts (70-100 words) from the year
2020 and, with Python and using the OpenAI API,
used ChatGPT-3.5 to rewrite them with and with-
out focal words. (Shorter abstracts were used to
keep stimuli of a manageable length for partici-
pants.) For the focal-word abstracts, the prompt in-
cluded four randomly selected words from our list
of 21 focal words. An example prompt is: “Please
write a 100-word abstract for the following sci-
entific paper, using words such as ’delves,’ ’un-
derscores,’ ’surpasses,’ and ’emphasizing’: [SUM-
MARY].” (The summary was generated via the
procedure described in Section 2.) The script in-
structed ChatGPT to generate and revise an abstract
until it contained at least three focal words. For the
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no-focal-word abstracts, we used a similar prompt:
“Please write a 100-word abstract for the following
scientific paper, making sure not to use words such
as [list of blockwords]: [SUMMARY].” The block-
words included the 21 focal words plus another 21
words identified using the methodology described
in Section 2. The script prompted ChatGPT to gen-
erate and revise an abstract until it contained none
of the blockwords.

We created 200 items, each consisting of one
abstract with focal words and one without (for the
same paper). We manually filtered out a handful
of ungrammatical or nonsensical abstracts. Con-
siderably more than half of the abstracts with focal
words included “delve” in the first sentence; we
call items containing these abstracts “delve-initial”
items. To compile a bank of 30 critical items, we
selected the 15 delve-initial items and the 15 other
items with the smallest difference in length be-
tween the abstracts with and without focal words.
(We capped delve-initial items at 50% to prevent
participants from detecting the study’s purpose.)
We also constructed 30 pairs of distractor items
in the same manner as the critical items, except
both abstracts were generated using the no-focal-
word prompt. A full list of experimental items
can be found on Github, and two examples are in
Appendix G.

Participants. We used Prolific (prolific.com) to
recruit participants. Public information about the
human evaluators employed to provide feedback
in RLHF is limited (Ouyang et al., 2022; Perrigo,
2023), so we recruited 201 participants from In-
dia (140 male, 61 female). Average age was 31.3
years (stdev: 10.6). We also collected data on self-
assessed English proficiency and first languages
(see our GitHub). Participants were compensated
at an average rate of $15 per hour.

Task and Exclusions. The study began with
IRB information, followed by task instructions, and
then the items. An image of the interface can be
found in Appendix E. Participants evaluated 20
items in total, indicating which abstract they pre-
ferred out of the two presented. The first item was
a calibration item, followed by (in random order) 5
critical items, 10 distractor items, 2 items checking
language abilities, and 2 attention checks (“This
is not a real item, please click on the left button”
inserted in the middle of the text). Thus, the propor-
tion of critical items was 25%. Each time an item
was displayed, it was randomly determined which
abstract was displayed on the left vs. right. If a

participant failed one of the attention checks, their
data were disregarded. Participants were warned
if they were proceeding unrealistically fast (0.25
* (225 ms + 25ms * character length of an item)),
and items with excessively fast rating times were
excluded from our analysis (following the method-
ology from Häussler and Juzek 2017). We also
excluded data from participants who completed
less than 10 out of the 20 items. After exclusions,
we analyzed a total of 1822 ratings, with 1215 rat-
ings for distractor items and 607 ratings for critical
items, resulting in each critical item receiving an
average of 20.2 ratings (stdev: 3.4). Given the study
compensation, the high exclusion rate came as a
surprise.

Analysis. Our original plan was to test all 30 crit-
ical items together in a chi-square analysis against
the distractor items (an approximation of random
choices), to assess whether participants preferred
abstracts containing focal words. These results are
reported below. However, during the generation of
the abstracts, we noticed the aforementioned excess
of delves in the first sentence and split the critical
items into delve-initial items and other items. A
lower N per condition and a higher-than-expected
exclusion rate left us considerably below the origi-
nally estimated sample size from a pre-study power
analysis. Thus, we added an exploratory mixed-
effects logistic regression model, with rating as the
dependent variable and condition as the indepen-
dent variable, including items as a random effect
(rating condition + (1 | item_id)). Distractor items
served as the intercept condition. For delve-initial
items and other items, a preference for the focal-
word abstract was encoded with 0, and a preference
for the no-focal-word abstract with 1. For the dis-
tractor items, there are two no-focal-word abstracts,
randomly encoded as 0 or 1.

Results. Contrary to our expectations, when
all critical items are analyzed together, there is a
slight preference for the no-focal-word abstracts.
However, this overall difference between all criti-
cal items and distractor items is not significant in
a chi-square test (p = 0.174). The follow-up analy-
sis suggests that this outcome might be driven by
the delve-initial items, as Figure 5 illustrates. In
the logistic regression model, we observe that the
coefficient for the distractor items, represented by
the intercept condition, is 0.500 (rounded to the
third digit). This indicates that participants did
not exhibit a significant preference between the
distractor item abstracts, validating our methodol-

https://prolific.com
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ogy (Appendix F). The analysis also shows that
delve-initial items differed significantly from the
distractors (p = 0.023), with a coefficient of 0.082,
indicating that for the delve-initial items, partici-
pants preferred the abstracts without focal words.
Participants exhibited a slight but non-significant
preference for abstracts with focal words for the
other critical items (coefficient = -0.017; p = 0.651).
The group variance was small (0.003), indicating
that most of the variability in the ratings was due to
the fixed effects. The model converged successfully
(log-likelihood = -1324.9522, mean group size =
30.4). A Wald test to determine whether delve-
initial items and the other items differed from each
other was statistically significant (p = 0.03, Wald
Test Statistic: 4.77).

In looking at the responses for each individual
item, we consider a preference for the focal-word
or no-focal-word abstract of a given pair to be ro-
bust if a random outcome falls outside the margin
of error, and marginal otherwise (illustrated for the
distractors in Appendix F). This analysis shows a
slight difference between delve-initial items and
the other critical items: participants exhibit a pref-
erence for the no-focal-word abstract in more of
the delve-initial items, and a preference for the
focal-word abstract in more of the other items.

Figure 5: Experimental results: Preferences between
focal-word and non-focal-word abstracts in delve-initial
and other items.

What explains the difference between delve-
initial and the other critical items? We suspect that
some participants became or were already sensi-
tive to the occurrence of “delve.” Participants were
probably disproportionately young people with an
affinity for technology, and so more likely to be fa-
miliar with the discourse surrounding AI language
use. Wariness about the word “delve” might ex-

plain why participants preferred the abstracts with-
out focal words in the delve-initial items (which
coincides with a general downturn in sentiment
towards LLMs; cf. Leiter et al. 2024), though we
would like to see these results confirmed with a
larger sample.

Having split the critical items in two, a higher N
is needed to draw any conclusions about RLHF as
a source of lexical overrepresentation, particularly
given that we would expect a preference for focal-
word abstracts to be subtle. The study warrants
a follow-up. We believe that forcing ChatGPT to
use certain words when generating abstracts was
suboptimal. For example, if an abstract does not
initially convey anything about exceeding or out-
performing, then a rewritten abstract that includes
the focal word ’surpasses’ will naturally be worse
than the no-focal-word baseline. We suspect that
generating critical items in a different way would
yield clearer results.

7 Discussion and Concluding Remarks

It has been observed that LLMs overuse certain
lexical items, a fact even acknowledged by OpenAI
(OpenAI, 2024). Our work formalized this find-
ing and identified 21 focal words whose usage has
spiked in scientific abstracts and that are overused
by ChatGPT-3.5. These results provide additional
evidence that recent changes to Scientific English
are partly driven by LLMs. Our work also explored
possible explanations of the puzzle of lexical over-
representation. We failed to find evidence that train-
ing data, model architecture, or algorithm choices
play a role. However, model testing with Llama
was consistent with the hypothesis that RLHF con-
tributes to overuse of particular words by ChatGPT.
Our experimental results suggest that human evalu-
ators may treat “delve” differently from other focal
words.

Future research should further probe the impact
of each factor canvassed in Section 3 on lexical
overrepresentation. (This includes model choices
and training data; despite our negative results, we
suspect that these factors do influence the lexical
choices of LLMs.) We would especially like to
see further work on the role of RLHF. Unfortu-
nately, there are several obstacles to such research,
particularly the lack of procedural and data trans-
parency surrounding LLM development (Longpre
et al., 2024). Moreover, it seems that companies
building LLMs often solicit feedback from workers
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who are underpaid, stressed, and under time pres-
sure (Toxtli et al., 2021; Roberts, 2022; Novick,
2023). It is difficult to simulate these conditions
ethically in a research environment. Many online
recruitment platforms, including Prolific, rightly
require decent compensation.

Although it complicates further study, we think
this economic reality lends plausibility to RLHF as
a source of lexical overrepresentation. Rushed hu-
man evaluators might base their evaluations on the
presence of particular words rather than on content,
as the former is easier and quicker to evaluate than
the latter. If certain words are treated as a proxy for
quality, that could explain their overrepresentation
in LLM outputs. (We suspect, however, that Scien-
tific English in particular played a minor role in the
training of LLMs. It seems more likely that human
evaluators rated academic writing in general, with
their preferences shaping LLMs’ scientific writing
through overspill.) This mechanism coheres with
our impression that a major social consequence of
LLMs is the decoupling of form and content. Many
of us take fluency or style as a signal of quality
content (McNamara et al. 2010, and in an L2 con-
text Kim and Crossley 2018). Because LLMs are
masterful at generating fluid text in just about any
style, this heuristic is radically undermined by the
increasing ubiquity of LLM-generated text. The
irony is that, if our hypothesis about RLHF proves
correct, this heuristic has shaped model training as
well. LLMs may be undercutting the very same
heuristic that has shaped their own lexical prefer-
ences.

It would be interesting to apply our method
for identifying focal words to alternative datasets.
Although we drew abstracts exclusively from
PubMed, future work could examine whether the
same focal words have been spiking in scien-
tific disciplines besides biomedicine, in domains
beyond Scientific English, and in non-English-
language corpora. The method could also be used
to probe lexical overrepresentation in LLMs other
than ChatGPT. Our impression is that ChatGPT and
Llama overuse many of the same words, but a sys-
tematic investigation is needed. Finally, additional
work on the quirks of LLM-generated language
could look beyond the word level (Ortmann et al.,
2021). A virtue of our formalized approach to iden-
tifying focal words is that it can be extended in
these and any number of other ways to better un-
derstand how LLMs are driving linguistic change.

More generally, our research shows that despite

the opacity of LLMs, there are ways of probing
their behavior and internal workings. Understand-
ing LLMs’ linguistic behavior is complicated by
their complexity and by secrecy and other indus-
try practices, as mentioned above. Nevertheless,
our work indicates that the puzzle of lexical over-
representation is tractable. Indirect investigative
methods can help us explain LLMs’ linguistic be-
havior.

Such research is important because we need to
better understand how LLMs are changing lan-
guage. Almost all of our 21 focal words were al-
ready increasing in usage in the years leading up to
the release of ChatGPT, suggesting that LLMs may
accelerate language change (Matsui 2024; also see
Geng et al. 2024 and Yakura et al. 2024). With the
increasing prevalence of AI-generated text in many
areas of life, LLMs are arguably influencing the
language usage even of people who do not them-
selves interact with these models. Our findings also
show that lexical overrepresentation remains a fea-
ture of current iterations of ChatGPT (Appendix B),
indicating that the phenomenon is here to stay.

Still, it is difficult to predict just how AI will
shape language in the future. Discussions on so-
cial media and in academic discourse, plus our
exploratory findings for items with “delve,” indi-
cate that there is some public awareness of LLMs’
overuse of particular words. This awareness could
influence future rounds of RLHF, leading to a re-
alignment of AI and human preferences. At the
same time, the language of today – lexical over-
representations and all – will become the training
data for the models of tomorrow, raising concerns
about model degradation over time (Alemoham-
mad et al., 2023; Briesch et al., 2023; Hataya et al.,
2023; Shumailov et al., 2023).

One thing is certain: through LLMs, tech compa-
nies are having a global impact on language usage.
We believe this strengthens the case for broader so-
cietal debate about the power and responsibilities
of these companies. Moreover, our speculations
about how the feedback of rushed and underpaid
workers might contribute to lexical overrepresen-
tation compound ethical worries about the poor
working conditions of tech companies’ employees
in the Global South (Kwet, 2019; Gray, 2024; Ro-
hde et al., 2024). There are thus both moral and
non-moral reasons to apply greater scrutiny to how
human feedback is collected and used in the train-
ing of LLMs.
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A List Of Focal Words

Word opm opm Incr.
2020 2024 %

delves 0.21 14.38 6697.14
delved 0.12 2.90 2240.47
delving 0.12 2.38 1816.83
showcasing 0.59 8.79 1396.03
delve 0.58 8.50 1374.92
boasts 0.11 1.15 918.18
underscores 4.50 45.19 903.61
comprehending 0.56 5.58 898.95
intricacies 0.60 5.22 772.85
surpassing 1.37 10.50 667.48
intricate 6.22 44.22 611.24
underscoring 2.70 17.17 536.94
garnered 2.44 13.13 437.19
showcases 0.82 4.31 422.45
emphasizing 8.30 41.27 397.12
underscore 7.42 36.40 390.65
realm 2.25 10.85 381.10
surpasses 0.85 3.96 367.55
groundbreaking 0.87 3.75 330.42
advancements 12.49 47.17 277.59
aligns 1.55 5.68 266.97

Table 2: Our 21 focal words.

B Analysis Of Further Corpora and
GPT-4o

We used the same summaries from the sample of
10,000 abstracts and used a Python script to gener-
ate abstracts using GPT-4o-mini, which were then
analyzed as per Section 2. The system’s role was
set as ’You are a world-leading scientist.’ and the
prompt was the same as that used with GPT-3.5.
The results are very similar, with a few excep-
tions: ’boasts’ is no longer overused; ’delve’ is
still overused, but to a lesser extent; and the usage
of ’underscore’ has increased significantly. These
differences could be artifacts of the methodology
(the GPT-4-generated abstracts are based on the
same GPT-3.5 summaries used in Section 2), the
consequence of active intervention, RLHF workers
responding to overuse, and/or other factors. We
also conducted a spot-check with a prompt speci-
fying the role ’You are a helpful assistant.’ using
GPT-4o. For each role, we generated 500 abstracts
and analyzed them. There was no noticeable differ-
ence with GPT-4o-mini.
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Word ChatGPT ChatGPT Arxiv LCC Pubmed Wiki
3.5 4o-mini

of 45624.84 42622.65 42842.72 27363.47 38634.99 23116.18
and 38889.24 32537.79 26395.28 28488.53 39469.96 21149.63
the 63174.05 55111.23 72009.63 59324.62 52139.05 53379.32
data 978.91 1075.59 2484.20 418.29 1734.75 142.81
results 4074.64 3307.32 2352.13 244.52 1722.07 95.37
i 32.21 61.17 414.03 4715.42 214.82 8041.61
year 78.50 61.77 37.58 1076.29 217.25 397.61
patients 4416.82 3936.56 48.97 131.48 4775.73 23.04
advancements 319.37 407.59 22.54 2.56 15.53 1.11
aligns 6.71 19.99 6.68 1.32 1.89 0.90
boasts 5.37 0.61 0.43 14.11 0.16 1.48
comprehending 6.71 7.27 1.77 0.37 0.99 0.31
delve 19.46 18.17 4.07 2.23 0.98 1.21
delves 183.17 23.01 3.20 0.79 0.32 0.53
delved 6.71 0.61 0.30 0.61 0.18 0.38
delving 8.72 0.61 0.72 0.76 0.24 0.61
emphasizing 138.21 367.61 10.21 2.82 9.92 2.64
garnered 20.80 173.21 4.09 4.34 2.74 4.61
groundbreaking 38.92 17.56 2.47 5.91 1.02 2.26
intricate 163.04 316.14 17.87 4.79 6.22 2.13
intricacies 15.43 27.25 1.98 1.24 0.68 0.68
realm 10.74 54.51 11.53 9.22 2.27 8.46
showcases 28.85 4.24 3.19 4.65 1.05 1.46
showcasing 30.19 58.14 5.89 5.42 0.75 1.65
surpasses 4.03 4.24 11.16 1.14 1.04 0.40
surpassing 5.37 17.56 7.61 1.66 1.51 1.42
underscore 18.12 1365.08 5.17 1.53 7.91 0.72
underscores 60.39 1048.94 4.95 1.90 4.91 0.90
underscoring 10.06 313.71 2.57 0.66 3.15 0.20

Table 3: Occurrences per million for selected baseline words and our 21 focal words. Results are averaged across all
given years of the corpus.

C Examples Of Critical Items

C.1 A delve-initial item

Focal-word abstract: This study delves into the
impacts of maintaining mean arterial blood pres-
sure (MABP) at a specific level during the prehos-
pital and initial hospital phases of treatment for pa-
tients with traumatic spinal cord injury (TSCI). The
results show a strong correlation between maintain-
ing MABP at 80 mm Hg and improved long-term
neurological outcomes. Specifically, prehospital
and operating room levels had the greatest effect,
while maintaining MABP at 80 mm Hg during the
first 2 days in the neurointensive care unit (NICU)
was also beneficial. These findings surpass previ-
ous knowledge and highlight the advancements in
comprehending the relationship between MABP

and TSCI recovery.

No-focal-word abstract: This study explores
the impact of maintaining mean arterial blood pres-
sure (MABP) at 80mm Hg during prehospital and
initial hospital treatment on long-term neurological
outcomes in patients with TSCI. Results showed
a significant correlation between higher MABP
levels and improved outcomes, with the strongest
impact observed in the prehospital and operating
room phases. The benefits of maintaining MABP
at 80mm Hg were also observed in the first 2 days
in the NICU. These findings highlight the crucial
role of MABP management in minimizing neuro-
genic shock-induced damage and emphasize the
importance of maintaining adequate blood pressure
in TSCI patients.
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C.2 A non delve-initial item

Focal-word abstract: This paper showcases a
novel approach for targeting and disrupting c-di-
GMP signaling pathways in bacteria. By utiliz-
ing a c-di-GMP-sequestering peptide (CSP), the
researchers have developed a method to bind and
inhibit c-di-GMP, a key bacterial second messen-
ger. Through structure-based mutations, a more
powerful and compact variant of the CSP has been
created, effectively preventing biofilm formation
in Pseudomonas aeruginosa. This advancement
holds promise for controlling bacterial behaviors
mediated by c-di-GMP and could have implications
for the development of new antibacterial strategies.
The results of this study highlight the potential of
CSP as a tool for delving into the intricate mecha-
nisms of c-di-GMP signaling.

No-focal-word abstract: A novel approach
has been devised for blocking c-di-GMP signal-
ing pathways, a crucial mechanism in bacterial cell
functioning. The technique employs a c-di-GMP-
sequestering peptide (CSP) that exhibits strong
affinity for c-di-GMP and effectively inhibits its sig-
naling. Through targeted mutations, a potent, short-
ened variant of CSP has been developed, demon-
strating efficient inhibition of biofilm formation in
Pseudomonas aeruginosa. This innovative method
provides a highly promising strategy for targeting c-
di-GMP and holds potential for combating various
bacterial infections. Further studies could focus
on developing more potent and specific CSP vari-
ants to fully comprehend and utilize the role of
c-di-GMP in regulating bacterial functions.

D Per-word Entropy for various Llama
Models

We validate our results for various Llama models.
We use the latest versions available on 28 August
2024. We intend to extend our analysis to the larger,
70bn parameter models. However, due to quota
restrictions, we are unable to perform these calcula-
tions at this time. We expect that the results will be
similar and plan to include them once the account
limitations are resolved.

All models show a drop in average per-word en-
tropy for human input when comparing base mod-
els to chat models, with a more pronounced drop
observed for AI input. Most models show lower
entropy values for human text with the base model
compared to AI text. This pattern reverses in the
chat models, where AI text shows lower entropy

values than human text.

8b Llama 3-Base Llama 3-Chat
Human 1.862 1.174
AI 1.928 1.165

8b Llama 3.1-Base Llama 3.1-Chat
Human 1.854 1.731
AI 1.838 1.653

E The Rating Interface

Figure 6: The rating interface for our experiment.

F Ratings For The Distractor Items

Figure 7: The experimental results for individual dis-
tractor items.

G Analysis of the International Corpus of
English

An analysis of the Englishes of the world can be
found in Figure 8.
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Figure 8: Word frequencies for selected lexical items across various English variants.
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