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Abstract

Graph representation learning (GRL) in hy-
perbolic space has gradually emerged as a
promising approach. Meanwhile, masking and
reconstruction-based (MR-based) methods lead
to state-of-the-art self-supervised graph repre-
sentation. However, existing MR-based meth-
ods do not fully consider deep node and struc-
tural information. Inspired by the recent ac-
tive and emerging field of self-supervised learn-
ing, we propose a novel node and edge dual-
masked self-supervised graph representation
learning framework in hyperbolic space, named
HDM-GAE. We have designed a graph dual-
masked module and a hyperbolic structural self-
attention encoder module to mask nodes or
edges and perform node aggregation within hy-
perbolic space, respectively. Comprehensive
experiments and ablation studies on real-world
multi-category datasets, demonstrate the supe-
riority of our method in downstream tasks such
as node classification and link prediction.

1 Introduction

Previous research on graph representation learning
(GRL) has primarily focused on methods within
Euclidean space. These methods include tradi-
tional graph representation techniques based on
matrix factorization and random walks. Subse-
quently, the introduction of graph convolutional
neural networks (GCNs) significantly advanced
graph representation learning. These GCNs meth-
ods (Kipf and Welling, 2017; Hamilton et al., 2017;
Hu et al., 2021) are based on message-passing
mechanisms and demonstrate powerful representa-
tional capabilities. However, despite the impressive
performance of these Euclidean space-based graph
representation methods in many tasks, they may
face challenges (Papadopoulos et al., 2012) when
dealing with complex graph structures and high-
dimensional data.
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Embedding graphs into hyperbolic space (Sala
et al., 2018; Nickel and Kiela, 2017, 2018) offers
advantages in terms of metrics or distances, par-
ticularly for hierarchical data. Despite its repre-
sentational strength, designing and training neural
networks in hyperbolic space remains a challenge.
Traditional hyperbolic convolution and attention
mechanisms, which follow the manifold-tangent
space-manifold approach, may distort the global
structure of the hyperbolic manifold (Huang et al.,
2017). Integrating masking mechanisms into re-
search within hyperbolic space holds significant
feasibility. Masking mechanisms can be utilized
for self-supervised learning by obscuring parts of
the graph structure or node features to generate
self-supervised tasks, thereby forcing the model to
learn more meaningful representations. Introduc-
ing this mechanism into hyperbolic space can fully
leverage the geometric advantages of hyperbolic
space, further enhancing the effectiveness of graph
representation learning.

Therefore, combining masking mechanisms with
hyperbolic space in research is not only theo-
retically novel but also holds broad application
prospects. In summary, the main contributions of
this paper are as follows:

• We developed a hyperbolic dual-masking self-
supervised learning architecture for graph rep-
resentation learning, which fully utilizes the
geometric advantages of hyperbolic space and
the masking mechanism in self-supervised
learning. To the best of our knowledge, this is
the first study in the field of graph representa-
tion learning based on hyperbolic representa-
tion and dual-masking mechanisms.

• We designed several new modules: A graph
dual-masking module that simultaneously
masks and reconstructs both nodes and edges.
Additionally, we proposed a hyperbolic struc-
tural self-attention encoding module. The at-
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tention coefficients are derived from the hy-
perbolic distances between node embeddings.
Through this module, node representations
can be directly aggregated in hyperbolic space,
ensuring the preservation of manifold charac-
teristics and minimizing distortion.

• Our experimental results validate the effec-
tiveness of the proposed method in graph rep-
resentation learning. Specifically, we con-
ducted experiments on six real-world datasets,
demonstrating the superiority of our approach
in downstream node classification and link
prediction tasks. Further ablation studies pro-
vided in-depth explanations of how each pro-
posed component contributes to the model’s
success.

2 Preliminaries

In this section, we first discuss the formal defini-
tions of problems related to graph representation
learning. Then, we introduce some key fundamen-
tal concepts of hyperbolic geometry.

2.1 Problem Definition
Graph representation learning (GRL) is the process
of automatically discovering representations for the
nodes, edges, or entire graphs in a low-dimensional
space while preserving the graph’s inherent struc-
tural and semantic properties. Formally, relevant
descriptions can be defined as follows.

Consider a graph G = (V,E), where V repre-
sents the set of nodes and E ⊆ V×V represents the
set of edges. Additionally, let A ∈ {0, 1}|V |×|V | be
the adjacency matrix of G, where Aij = 1 if there
is an edge between nodes vi and vj , and Aij = 0
otherwise. Furthermore, let X ∈ R|V |×dx be the
node attribute matrix, where each row Xi corre-
sponds to a dx-dimensional feature vector of node
vi.

Node classification (NC) is a task where each
node vi ∈ V is assigned a label from a predefined
set of classes Y . Formally, given a graph G =
(V,E), and a subset of nodes VL ⊆ V with known
labels {yi | vi ∈ VL}, the objective is to learn a
function g : V → Y that can predict the labels for
the unlabeled nodes VU = V \ VL. Link prediction
(LP) involves predicting the existence of an edge
between two nodes in a graph. Given a graph G =
(V,E), its adjacency matrix A, and node attribute
matrix X , the task is to determine the likelihood of
an edge (vi, vj) ∈ V × V existing in G.

2.2 Hyperbolic Spaces

A manifold is a generalized description of high-
dimensional surfaces. An n-dimensional Rieman-
nian manifold (M, g) is a differentiable manifold
M equipped with a metric g. After defining a dif-
ferential structure on a topological manifold, it can
be locally approximated by a linear space near each
point, allowing the definition of the tangent space
of TpM the manifold M at point p.

Hyperbolic space Hn,K is defined as a smooth
Riemannian manifold with constant negative cur-
vature −K(K > 0). Lorentz Model The n-
dimensional Lorentz Model Ln,K (also known
as the hyperboloid model) is an n-dimensional
Riemannian manifold with negative curvature
−K(K > 0) . It is defined as:

Ln,K = {x = (x0, . . . , xn) ∈ Rn+1 | ⟨x,x⟩L = −1,

x0 > 0}
(1)

, where ⟨·, ·⟩L is the Lorentzian inner product.
For any x,y ∈ Rn+1, the Lorentzian inner product
is defined as: ⟨x,y⟩L = −x0y0 +

∑n
i=1 xiyi

Exponential and logarithmic mappings Map-
pings between hyperbolic space and its tangent
space can be defined through the exponential and
logarithmic maps. Given x,y ∈ Ln,K and a vector
v ∈ TxLn,K in the tangent space, where v ̸= 0
and y ̸= x , the exponential map expx : TxL → L
and the logarithmic map logx : L → TxL can be
defined as follows:

expK
x (v) = cosh

(√
K∥v∥L

)
x+v

sinh
(√

K∥v∥L
)

√
K∥v∥L

(2)

logKx (y) = dKL (x,y)
y +K⟨x,y⟩Lx

∥y +K⟨x,y⟩Lx∥L
(3)

, where ∥v∥L =
√

⟨v,v⟩L is the norm of v ∈
TxLn,K .

Isometric isomorphism In addition to the afore-
mentioned Lorentz model L, there are various hy-
perbolic models (Peng et al., 2021), such as the
Klein model K, the Poincaré ball model B, the
hemisphere model J , and the Poincaré half-space
model P . It is important to note that different
hyperbolic space models have their unique defi-
nitions, metrics, exponential and logarithmic map-
ping methods, but they are mathematically isomet-
ric.

Given a point x = (x0, x1, . . . , xn),x ∈
Ln+1,K , and its corresponding point y =
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(y0, y1, . . . , yn−1),y ∈ Kn,K, the bijection be-
tween them can be defined as:

πK
L→K(x) =

√
K

(x1, · · · , xn)
x0

,

πK
K→L(y) =

K√
K − ∥y∥2

(
√
K,y)

(4)

Similarly, given a point x = (x0, x1, . . . , xn),
x ∈ Ln+1,K, and its corresponding point b =
(b0, b1, . . . , bn−1),b ∈ Bn,K, the bijection be-
tween them can be defined as:

πK
L→B(x) =

[x1, · · · , xn]
x0 +

√
K

,

πK
B→L(b) =

((1 +K∥b∥2)
√
K, 2Kb)

1−K∥b∥2

(5)

These bijections illustrate the relationship between
the Lorentz model L and the Klein model K, as
well as the Lorentz model aLnd the Poincaré ball
model B, respectively.

In the method proposed later in this paper, for
numerical stability and to reduce distortion (Nickel
and Kiela, 2018), we primarily use the Lorentz (hy-
perboloid) model L for embedding the network,
and the Klein model K for aggregating node em-
beddings.

3 Methods

We propose a hyperbolic dual-masking self-
supervised learning architecture for graph repre-
sentation learning, leveraging the geometric ad-
vantages of hyperbolic space and the masked au-
toencoding mechanism in self-supervised learning.
Figure 1 illustrates the block diagram of the entire
architecture.

Figure 1: Overview of the proposed HDM-GAE frame-
work, which utilizes hyperbolic space and the dual-
masked mechanism to perform masked graph modeling.

3.1 Feature Mapping from Euclidean to
Hyperbolic Space

In existing graph datasets, input features are typi-
cally located in Euclidean space and are often one-
hot encoded or n-dimensional vectors. Before per-
forming subsequent masking and encoding opera-
tions for embedding, it is necessary to map these
features to a hyperbolic space using the exponential
map.

Specifically, let xEi ∈ Rd−1 be the Euclidean
space feature of node vi, where d−1 represents the
input dimension. Define the origin in hyperbolic
space L as o := {

√
K, 0, . . . , 0} ∈ Ld,K, which

serves as the reference point for tangent space op-
erations. Since ⟨(0, xEi ), o⟩ = 0, the input feature
(0, xEi ) can be considered as a point in the tangent
space ToLd,K at the origin o. Then, we use the
exponential map to generate hyperbolic node rep-
resentations in the Lorentz model:

xL
i = expK

o ((0, xE
i ))

=

cosh
(√

K∥xE
i ∥L

)
√
K

,xE
i

sinh
(√

K∥xE
i ∥L

)
√
K∥xE

i ∥L


(6)

3.2 Graph Dual-Mask

In the fields of computer vision and natural lan-
guage processing, the masking mechanism is very
common (Kenton and Toutanova, 2019; Xie et al.,
2022). In recent works on graph representation
learning, such as GraphMAE (Hou et al., 2022),
advanced levels in self-supervised graph represen-
tation learning have been achieved by masking
and reconstructing graph nodes. However, simply
applying masking operations to nodes like pixels
in images is flawed because nodes not only have
their attribute features but, more importantly, the
relationships between nodes, i.e., edges, provide
critical information for subsequent tasks in graph
representation learning. Therefore, when masking
and reconstructing graphs, it is crucial not to ig-
nore both edges and nodes. Our method proposes
a dual-masking mechanism for graphs, applying
both node masking and edge masking to the graph
G.

The input graph with |V | nodes consists of an
adjacency matrix A and a hyperbolic node feature
matrix XL, denoted as G = (A,XL). We perform
two masking operations on the graph G.

First, we select a node feature masking ratio
p1. With probability p1, we mask the node fea-
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ture matrix XL, setting the masked parts to 0, re-
sulting in the masked graph G1

mask = (A,XL′).
Simultaneously, we select an edge masking ratio
p2. With probability p2, we choose the edges to
be masked, setting the corresponding entries in the
adjacency matrix A to 0, resulting in the masked
graph G2

mask = (A′, XL). The hyperparameters p1
and p2 control the proportion of node features and
edges being masked, respectively, and have a cru-
cial impact on the training process and performance
of the model.

3.3 Hyperbolic Structural Self-Attention
Encoder (HSSE)

The hyperbolic representation of the graph is
then encoded using a structure-based self-attention
mechanism. The architecture is shown in Fig-
ure 1(b). During the training process, the two
masked graphs G1

mask and G2
mask are used as in-

put to the entire encoding layer, HSSE. After being
processed by the encoding layer, the corresponding
graph feature representations H1 and H2 are ob-
tained. This encoding layer can be formally defined
as follows: H∗ = HSSE(G∗

mask).
Three fundamental modules have been designed

for hyperbolic space. These modules are versatile
and can be applied to graph representation learn-
ing, similar to how linear layers, convolutional lay-
ers, and activation layers are stacked in neural net-
works.

Hyperbolic linear transformation To perform
operations in hyperbolic space, we first project hy-
perbolic vectors to the tangent space, where vec-
tor multiplication can be performed. This is done
because the tangent space retains local Euclidean
properties, allowing us to apply Euclidean opera-
tions. After performing the necessary operations in
the tangent space, we map the vectors back to the
hyperbolic space. The specific operation is defined
as:

W ⊗K xL
i := expKo (W logKo (xL

i )) (7)

, where W is a weight matrix.
For bias addition, we use parallel transport to

move a vector b ∈ Rd from the tangent space at
the origin ToH to the tangent space at a point TxH.
We then map this transported vector back to the
hyperbolic space:

xL
i ⊕K b := expKx (Po→x(b)) (8)

, where Po→x denotes the parallel transport from o
to x.

Hyperbolic structural attention aggregation
Computing weighted means is essential in neural
network architectures, evident in the pooling lay-
ers of CNNs and the message-passing mechanisms
of GCNs. However, unlike Euclidean space, hy-
perbolic vectors cannot be simply averaged since
this may yield results outside the manifold. As
discussed previously, our method utilizes hyper-
bolic distance to correlate self-attention coeffi-
cients, avoiding the use of hyperbolic MLPs. This
is because the hyperbolic distance effectively pre-
serves the intrinsic properties of the graph data.

Given a node mL
i and the representation of its

neighbor mL
j , the attention weight αij is calculated

as follows: αij =
exp(eij)∑

v∈N (i) exp(eiv)
, where eij =

−dKL (mL
i ,m

L
j ) .

The representation m̃L
i for node vi is obtained by

aggregating the hyperbolic embeddings of its neigh-
bors, weighted by the computed attention coeffi-
cients. We use the Einstein gyromidpoint method
for this aggregation, ensuring that the process is
both translation and rotation invariant. The compu-
tation steps are:

mK
i = πK

L→K(m
L
i ),

m̃L
i = πK

K→L

(∑
j∈N̂ (i)

αijγjm
K
j∑

j∈N̂ (i)
αijγj

)
(9)

, where γj = K√
K−∥mK

j ∥2L
are Lorentz factors.

N̂ (i) is the set of nodes consisting of the i-th node
and its neighbor nodes. Therefore, the hyperbolic
structure attention aggregation mechanism applies
self-attention aggregation of neighboring nodes to
the hyperbolic embeddings of nodes, which can be
seen as selectively transmitting messages between
nodes.

Hyperbolic activation mechanism Nonlinear
activation functions play an important role in
GCNs, preventing multi-layer networks from col-
lapsing into single-layer networks. However, di-
rectly applying commonly used nonlinear activa-
tion functions, such as ReLU, to Lorentzian rep-
resentations can break the manifold constraints of
the Lorentz model. It is known that nonlinear acti-
vation functions applied in the Poincaré ball model
B can preserve manifold properties: for any b ∈ B,
σ(b) ∈ B. Inspired by this, we project the hyper-
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bolic aggregation m̃L
i to the Poincaré ball model

to apply the nonlinear activation function, and then
project the result back to the Lorentz model:

h̃L
i = πK

B→L

(
σ
(
πK
L→B(m̃

L
i )
))

(10)

After the model is trained, an unmasked graph G
is input into the encoder, and the graph representa-
tion can be obtained as follows: H = HSSE(G).
The representation produced by this layer can be
applied to specific downstream tasks.

3.4 Hyperbolic Structural Self-Attention
Decoder (HSSD)

The decoder aims to map the latent representations
obtained from the encoder back to the input, and
its design depends on the semantic level (He et al.,
2022) of the target input. In graphs, the decoder
reconstructs multi-dimensional node features with
relatively less informational content. Traditional
graph autoencoder methods (GAEs) either do not
use a neural decoder or use a simple MLP for de-
coding, but their expressive capacity is relatively
limited. This often leads to the latent representa-
tions learned by the encoder being almost identical
to the input features. However, learning such trivial
latent representations is of no value, as the goal
of encoding is to embed the input features into
meaningful compressed knowledge.

Meanwhile, because the HSSE stage involves
encoding graphs with masked nodes and graphs
with masked edges, the latent embeddings in-
evitably contain noise, especially when the hy-
perparameters p1, p2 are large. Therefore, the
proposed method uses a more expressive GCN
as the decoder and takes the encoder outputs H1

and H2 of G1
mask and G2

mask as inputs to two
separate decoders, respectively, to learn differ-
ent decoder parameters. This addresses the is-
sues mentioned above and enhances reconstruc-
tion capabilities. The formulas are defined as
follows: Ĥ1 = σ

(
D̃− 1

2 ÃD̃− 1
2H1W1

)
, Ĥ2 =

σ
(
D̃− 1

2 Ã′D̃− 1
2H2W2

)
, where Ã = A+I , D̃ii =∑

j Ãi,j , I is a unit matrix, and Wi are learnable
weight matrices. σ represents an activation func-
tion.

Please note that the decoders are only used dur-
ing the self-supervised training phase to perform
the task of graph feature reconstruction. Thus, the
decoder architecture is not inherently tied to the
encoder and can utilize any type of GNN.

3.5 Loss

For the above graph representation Ĥ1 obtained
from the decoder HSSD, we expect its error from
the hyperbolic node feature matrix XL of the orig-
inal graph G to be as small as possible. To get
better results, we utilize the scaled cosine error
as the evaluation criterion for reconstructing node
features. The formula is given by Equation(11):

Lsce =
1

|Vmask|
∑

vi∈Vmask

(
1−

x̂T
1,ix

L
i

∥x̂1,i∥ · ∥xL
i ∥

)γ

,

γ ≥ 1

(11)

, where Vmask denotes the set of masked nodes,
and the scaling factor γ is a hyperparameter that
can be tuned on different datasets. For high-
confidence predictions, the corresponding cosine
error is typically less than 1 and decays to zero
faster when the scaling factor γ > 1.

For the graph representation Ĥ2 obtained from
the decoder HSSD, the connection probability be-
tween node embeddings is first calculated using the
Fermi-Dirac decoder (Krioukov et al., 2010), given
by the formula:

pfd(x̂2,i, x̂2,j) := [exp ((dL(x̂2,i, x̂2,j)− u) /t)]−1

(12)
, where u and t are hyper-parameters.

For clarity, the subscript ∗2 of the referring graph
representation Ĥ2 is omitted in the subsequent for-
mulas. Our goal is to reconstruct the adjacency
matrix A of the original graph G. Therefore, the
cross-entropy loss Lce is used to maximize the
probability of linked nodes in the original graph
G, while minimizing the probability of unlinked
nodes:

Lce =
1

|V |
∑
eij=1

− log (pfd(x̂i, x̂j))

− 1

|V |
∑
eij=0

(1− log (pfd(x̂i, x̂j)))

(13)

, where eij denotes the value of the correspond-
ing position of the neighbor matrix A in the original
graph, and eij = 1 represents the existence of an
edge between nodes vi and vj , otherwise it rep-
resents the nonexistence of an edge. Due to the
sparsity of real-world graph data and considering
the training cost, we use negative sampling as an
approximation to improve the training efficiency.
In the actual training, the same number of edges
are sampled for both positive and negative edges.
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According to the above argument, the final loss
of the overall architecture is the weighted sum of
the feature loss Lsce and the structural loss Lce, as
defined in equation:L = Lsce + αLce, where α is
a non-negative hyperparameter used to control the
balance between the two losses. This combined
loss ensures that the model learns both accurate
node features and graph structures, enhancing the
overall performance of the graph representation
learning.

4 Experiments and Analysis

To validate the effectiveness of HDM-GAE, this
study compares HDM-GAE with state-of-the-art
(SOTA) methods in link prediction and node classi-
fication tasks and further ablation experiments.

4.1 Link Prediction
The link prediction task aims to predict the exis-
tence of edges between nodes in a given network.
This task has applications in various fields of criti-
cal importance. The goal is to utilize the structural
information of the network to accurately infer miss-
ing or future links.

Dataset PPI Blog. Flickr PubMed WikiCS CiteSeer
Nodes 17598 5196 7575 19717 11701 3327
Edges 5429 173468 242146 44338 297110 4732

Features 17 8189 12047 500 300 3703
Classes 4 6 9 3 10 6

Table 1: Summary of the datasets

Datasets In our experiments, we utilize three
widely used datasets for link prediction. PPI
(Protein-Protein Interaction) is a dataset of the hu-
man PPI network. BlogCatalog represents the so-
cial network of bloggers listed on the BlogCatalog
website (Tan et al., 2023). Flickr represents the so-
cial network of users on the photo-sharing platform
Flickr (Tan et al., 2023). Table 1 provides detailed
statistics for these datasets.

Baselines To evaluate the effectiveness of our
proposed method, we compare it with the follow-
ing state-of-the-art methods. (1) several Euclidean
graph embedding methods (Kipf and Welling,
2017; Velickovic et al., 2017; Hamilton et al.,
2017), i.e., GCN, GAT, and GraphSage; (2) several
hyperbolic graph embedding methods, i.e., HGCN
and HGAT; (3) some masked self-supervised
graph learning methods, namely GraphMAE and
MaskGAE; (4) other SOTA methods, GIC (Mavro-
matis and Karypis, 2021), BGRL (Thakoor et al.,
2021), and S2GAE (Tan et al., 2023). For these

AUC AP
Dataset Blog. Flickr PPI Blog. Flickr PPI A.R.
GCN 76.44±0.75 86.26±0.63 79.02±0.47 75.56±0.23 81.44±0.31 79.29±0.37 9.67
GAT 79.38±0.67 87.34±0.53 78.74±0.36 76.13±0.31 80.98±0.62 78.72±0.46 9.33

GraphSage 76.42±0.82 85.39±0.44 78.20±0.27 75.22±0.49 81.78±0.51 79.71±0.27 10.17
HGCN 79.84±0.41 88.63±0.72 80.84±0.41 76,81±0.35 81.26±0.39 80.18±0.40 7.50
HGAT 80.84±0.39 89.72±0.52 81.78±0.37 77.31±0.24 82.41±0.54 81.44±0.27 5.50

GraphMAE 77.30±0.78 88.69±0.44 81.31±0.43 78.10±0.56 83.19±0.29 81.19±0.36 6.33
MaskGAE 81.43±0.87 91.64±0.35 83.94±0.31 78.41±0.34 84.28±0.32 83.23±0.42 2.67

GIC 76.57±0.78 89.01±0.83 83.47±0.27 76.29±0.42 83.91±0.53 81.54±0.51 6.00
BGRL 77.62±0.79 88.30±0.49 83.53±0.38 77.46±0.36 83.47±0.45 83.62±0.23 5.17
S2GAE 83.62±0.64 90.14±0.38 84.61± 0.61 78.73±0.29 85.43± 0.30 82.35±0.34 2.17
Prop. 82.31±0.72 92.19±0.53 85.36±0.42 78.28±0.41 86.28±0.47 84.75±0.30 1.50

Table 2: Results of the link prediction task. In each
column, bold scores indicate the best results and under-
lined scores indicate the second best results. A.R. is the
abbreviation for average rank and denotes the average
rank of methods.

methods in the comparison, the same experimental
setup is followed if the methods have been used
for evaluating this task. For methods that have not
been formally tested on the link prediction task, we
apply them to this task by training an MLP-based
decoder, also known as fine-tuning.

Evaluation Metrics and Setup After training,
our proposed model can generate node representa-
tions for different downstream tasks by feeding the
original graph, without masking, through the en-
coder HSSE and the corresponding decoder HSSD.
For link prediction, given an unseen edge, we es-
timate the probability of its existence by further
feeding the representations of its end nodes into
the Fermi-Dirac decoder. We use the Area Un-
der the ROC Curve (AUC) and Average Preci-
sion (AP) as evaluation metrics. For each dataset,
85%/5%/10% of the edges are randomly allocated
for training/validation/testing. Since the encod-
ing and decoding operations are mainly performed
in hyperbolic space, the Riemannian Adam opti-
mizer (Kochurov et al., 2020) is chosen for opti-
mization of the parameters. Some baseline results
are cited from (Li et al., 2023; Tan et al., 2022;
Thakoor et al., 2021; Jin et al., 2020). To avoid ran-
domness, we repeat the experiments 10 times and
report the average results and standard deviations.

Results and Analysis The experimental results
are shown in Table 2. HDM-GAE outperforms all
baselines on the AUC metrics for the Flickr and PPI
datasets and is close to the top method on the Blog-
Catalog dataset. The method also performs well on
the AP metrics, leading on two datasets and being
only 0.45% behind the optimal method on Blog-
Catalog. These results demonstrate the effective-
ness of our framework. The proposed method out-
performs previous hyperbolic geometry-based and
mask-based self-coding methods on all datasets and
metrics. One possible explanation is that the archi-
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tecture of double-masking and feature reconstruc-
tion for node features and edge structure features
plays an important role in the superior performance
of link prediction. The performance gap between
HDM-GAE and other methods suggests a signifi-
cant advantage of hyperbolic geometry embedding.
To further demonstrate generalizability, we com-
pute and compare the average rankings based on
the AUC and AP scores. HDM-GAE shows a sig-
nificant overall advantage with a leading average
ranking, validating its graph representation learn-
ing capability and generalization to the link predic-
tion task.

4.2 Node Classification
The node classification task involves assigning la-
bels to nodes in a network based on their character-
istics and structural properties.

Datasets We utilize three widely used datasets
for node classification. PUBMED (Yang et al.,
2016) is a standard benchmark for describing ci-
tation networks. CiteSeer includes scientific pub-
lications from the CiteSeer Digital Library. Wi-
kiCS (Tang et al., 2024) consists of Wikipedia
pages related to computer science. Table 1 pro-
vides more details about these datasets.

Baselines The selected Baselines are identical
to Section 4.1. For these methods in the compari-
son, the same experimental setup is followed if the
methods have been used for evaluating this task.
For methods that have not been formally tested on
a node classification task, we obtain node repre-
sentations by training a baseline task. The node
representations are then used to train and test a sim-
ple L2 regularized logistic regression classifier for
evaluating the performance of the node classifica-
tion task.

Evaluation Metrics and Setup We use the accu-
racy (ACC) metric to evaluate the performance of
the node classification method. Accuracy measures
the proportion of correctly classified nodes to the
total number of nodes. After training, our proposed
model can be applied to downstream tasks by gen-
erating node representations by feeding the original
graph through the encoder HSSE without masking.
Specifically, for classification, we directly use the
learned node representations to train and test simple
l2 regularized logistic regression classifiers to eval-
uate node-level classification. Public segmentation
is used for Citeseer, PubMed, and WikiCS datasets.
Some baseline results are quoted from (Tan et al.,
2023; Li et al., 2023; Thakoor et al., 2021; Xiao

et al., 2022). To avoid randomness, we report the
average accuracy with a standard deviation of 10
random initializations.

ACC
Dataset CiteSeer PUBMED WikiCS Avg,
GCN 70.75±0.38 78.94±0.57 77.21±0.14 75.63
GAT 71.92±0.62 78.22 ±0.82 78.71±0.36 76.28

GraphSage 70.20±1.15 77.96±0.54 76.93±0.42 75.03
HGCN 72.18±0.32 80.27±0.53 78.64±0.37 77.03
HGAT 73.06±0.45 79.94±0.35 79.36±0.43 77.45

GraphMAE 72.49±0.65 81.54±0.22 78.61±0.51 77.55
MaskGAE 75.21±0.46 81.26±0.36 80.12±0.41 78.86

GIC 76.94±0.22 80.87±0.13 79.91±0.26 79.24
BGRL 72.92±0.34 79.62±0.18 79.41±0.48 77.32
S2GAE 74.23±0.14 81.68±0.24 80.26±0.31 78.72
Prop. 75.68±0.51 82.18±0.37 81.85±0.29 79.90

Table 3: Results of the node classification task. Avg.
is the abbreviation for average and denotes the average
performance.

Results and Analysis The results of the experi-
ment are shown in Table 3. Our method achieves
state-of-the-art performance on the PUBMED and
WikiCS datasets and outperforms all benchmark
methods except GIC on the CiteSeer dataset. It
shows that our proposed architecture can effec-
tively combine the properties of hyperbolic geome-
try and the reconstruction properties of mask self-
coding to enhance the model’s ability of node at-
tribute feature extraction. The mean value of the
scores of each method on all datasets is calculated
in the last column of Table 3. It can be seen that our
proposed method scores the highest among all the
baselines. This indicates the method consistently
performs well when dealing with different types of
datasets and is indeed an effective architecture for
GRL.

4.3 Ablation Study

To verify the effectiveness of the main modules in
HDM-GAE, we further conducted the following
ablation study.

4.3.1 Effect of Hyperbolic and Edge-Mask
We conducted ablation studies to validate the effec-
tiveness of our main modules. We independently
removed the hyperbolic geometry and edge mask
modules to create simpler architectures. The DM-
GAE model implies the removal of the hyperbolic
geometry transformation from the overall HDM-
GAE architecture, with both attention and aggrega-
tion operations running on Euclidean space. The
HNM-GAE model removes the edge masks, leav-
ing only node masking and reconstruction. The rest
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follows the same experimental setup. For both link
prediction and node classification tasks, we display
experimental results for a total of four datasets, as
shown in Table 4.

AUC for Link Prediction ACC for Node Class
Dataset Flickr PPI PUBMED WikiCS

DM-GAE 89.26±0.42 82.53±0.22 79.38±0.33 80.15±0.19
HNM-GAE 86.74±0.38 80.62±0.28 81.48±0.29 80.87±0.24
HDM-GAE 92.19±0.53 85.36±0.42 82.18±0.37 81.85±0.29

Table 4: Results of ablation studies performed for hy-
perbolic module and edge mask module.

The ablation experiments demonstrate that the
HDM-GAE model outperforms the comparison
methods on all datasets, validating the effective-
ness of our proposed method. That is, the removal
of any module leads to performance degradation.
The effect of edge mask removal is particularly
significant in the link prediction task, with HNM-
GAE performance decreasing by 5.45% on Flickr
and 4.74% on PPI. This shows that edge mask-
ing and reconstruction are key to capturing struc-
tural information and filtering noise, thus improv-
ing link prediction. The DM-GAE model without
hyperbolic geometry shows a performance degrada-
tion of about 1.7-2.9%, particularly on the PubMed
dataset for node classification, likely due to its hier-
archical structure. These results clarify the role and
importance of each module and verify the design
concept of HDM-GAE.

Figure 2: Ablation studies of mask ratio

4.3.2 Effect of Mask Ratio
Given the strategy of the mask is crucial for our
training task, we further investigate how the mask-
ing ratio improves or degrades the model perfor-
mance. The left and right plots in Fig. 2 show the
effect of mask ratio on model performance on the
link prediction and node classification tasks, re-
spectively. In most cases, lower mask ratios (e.g.,
p1 and p2 less than 0.5) are not sufficient to learn
useful features, and model performance shows a
similar trend of improvement when p1 and p2 are

increased within a certain range. The optimal ra-
tio varies from chart to chart. On the PPI dataset,
model performance is optimal at the mask ratio
of 0.6, and continuing to increase the mask ratio
decreases performance. For the dataset PUBMED,
model performance is optimal at the mask ratio
near 0.7. For the WikiCS dataset and the Flickr
dataset, the performance is optimal at the mask ra-
tio of 0.8. We analyze that this difference exhibited
by the mask ratio should be able to be linked to
the information redundancy in the graph dataset.
Large node degrees may lead to information redun-
dancy when only a few nodes and edges are needed
to approximately recover the node features. On
the contrary, in less redundant datasets, a higher
masking rate will not recover the features, thus
reducing the performance. In summary, the best
performance is achieved when p1 or p2 reaches the
interval range of 0.6 to 0.8. Parameters too large or
too small may lead to poor performance.

5 Conclusions

In this work, we propose a novel self-supervised
graph representation learning architecture, named
HDM-GAE, for static graph representation learn-
ing in hyperbolic spaces. In HDM-GAE, we first
map graphs onto hyperbolic spaces, as the geomet-
ric advantages of hyperbolic spaces are taken into
account. Further, our model forces the model to
learn both node features and structure features by
jointly performing masking and reconstruction op-
erations on nodes and edges. It fully utilizes the
geometric advantage of the hyperbolic space and
the masking mechanism in self-supervised learn-
ing, which, to the best of our knowledge, is the
first study in the field of graph representation learn-
ing based on hyperbolic representation and double-
masked self-coding mechanism. In addition, the
architecture proposes a new graph bi-masking mod-
ule, a self-attentive coding module for hyperbolic
structures with node aggregation directly in hyper-
bolic space, and so on. Experimental results on six
real-world datasets demonstrate the effectiveness
of HDM-GAE in graph representation learning and
its superiority in downstream node classification
and link prediction tasks. For future work, we hope
our work will inspire further development of graph
embedding and graph mask self-coding techniques
in hyperbolic space.
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