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Abstract

In this paper, we present the IRUEX dataset,
a novel multiple-choice educational resource
specifically designed to evaluate the perfor-
mance of Large Language Models (LLMs)
across seven distinct categories. The dataset
contains 868 Iran university entrance exam
questions (Konkour) and 36,485 additional
questions. Each additional question is accom-
panied by detailed solutions, and the dataset
also includes relevant high school textbooks,
providing comprehensive study material. A
key feature of IRUEX is its focus on under-
represented languages, particularly assessing
problem-solving skills, language proficiency,
and reasoning. Our evaluation shows that GPT-
4o outperforms the other LLMs tested on the
IRUEX dataset. Techniques such as few-shot
learning and retrieval-augmented generation
(RAG) display varied effects across different
categories, highlighting their unique strengths
in specific areas. Additionally, a comprehen-
sive user study classifies the errors made by
LLMs into ten problem-solving ability cate-
gories. The analysis highlights that calculations
and linguistic knowledge, particularly in low-
resource languages, remain significant weak-
nesses in current LLMs. IRUEX has the poten-
tial to serve as a benchmark for evaluating the
reasoning capabilities of LLMs in non-English
settings, providing a foundation for improving
their performance in diverse languages and con-
texts.

1 Introduction

Recent advances in Large Language Mod-
els (LLMs), particularly exemplified by GPT-
4 (Achiam et al., 2023), have dramatically trans-
formed the field of artificial intelligence with pro-
found implications for education. Rapid expansion
in computational capacity, model size, and sophis-
tication of underlying algorithms has marked the
evolution of these models. With billions of pa-
rameters, models like GPT-4 can generate human-

like text with an unprecedented level of coherence
and contextual understanding (Brown et al., 2020;
Bubeck et al., 2023). This remarkable leap for-
ward is mainly due to innovations in transformer
architecture (Vaswani et al., 2023) and extensive
pre-training on diverse datasets. These have col-
lectively enhanced the models’ ability to perform
complex tasks, including those in educational con-
texts (Radford et al., 2019). These advancements
have ushered in a new era of AI-driven education,
where LLMs facilitate content delivery and enable
personalized learning experiences, making educa-
tion more accessible and adaptable to individual
learning needs (Bommasani et al., 2021; Wei et al.,
2022a).

Integrating chatbots powered by large language
models into educational environments significantly
changes how students receive support. These chat-
bots are used for various academic purposes, from
personalized tutoring to administrative assistance
and enhancing student engagement (Labadze et al.,
2023; Okonkwo and Ade-Ibijola, 2021). One of
the most promising uses is personalized tutoring,
where chatbots offer tailored aid, allowing students
to grasp complex concepts in subjects like mathe-
matics and physics at their own pace (El Janati
et al., 2020). In addition, chatbots are increas-
ingly used to manage administrative tasks, such
as responding to common queries about course
schedules or submission deadlines, thus reduc-
ing the workload of educators and administrative
staff (Kadir et al., 2023). Moreover, using interac-
tive dialogue systems to engage students enhanced
motivation and improved learning outcomes, par-
ticularly in blended and online learning environ-
ments. (Chen et al., 2023; Hew et al., 2023).

As LLMs become more prevalent in educational
settings, rigorous evaluations are essential to assess
their effectiveness across various subjects. These
evaluations often focus on key metrics such as accu-
racy, adaptability, and the models’ ability to support



6506

critical thinking and problem-solving skills (Chol-
let, 2019). In mathematics, LLMs are evaluated
on their capability to understand and generate solu-
tions to complex problems, with studies showing
mixed results depending on the complexity of the is-
sues and the model’s training (Lample and Charton,
2019; Didolkar et al., 2024). Physics and chem-
istry assessments often evaluate a model’s ability
to simulate experiments accurately or explain sci-
entific phenomena clearly (Latif et al., 2024; Bran
et al., 2023). In language arts, such as English,
LLMs are assessed for their ability to generate co-
herent and contextually appropriate essays, sum-
marizations, and other literary tasks (Raffel et al.,
2020; Han et al., 2024). These evaluations high-
light the strengths and limitations of the models,
providing crucial information on how LLMs can
be best utilized and improved in educational ap-
plications (Kasneci et al., 2023; Fagbohun et al.,
2024).

In this study, we embarked on a comprehensive
journey to assess the problem-solving capabilities
of large language models in the context of Iran’s
university entrance exam (Konkour). A corner-
stone of this research was the development of an
extensive and diverse dataset meticulously com-
piled to include 868 questions on seven distinct
topics. This dataset encompassed specialized sub-
jects such as mathematics, physics, and chemistry,
as well as general subjects such as Persian litera-
ture, Arabic and English language, and religious
education. Including low-resource languages like
Persian and Arabic added another layer of complex-
ity, ensuring that the dataset challenged the models’
technical skills and ability to process and generate
accurate responses in languages with fewer training
resources. By replicating the real-world challenges
students face during the entrance exam, this dataset
provided a robust foundation for evaluating the
models’ proficiency in understanding and solving
complex problems across various academic fields.

The evaluation process involved a detailed as-
sessment of several leading LLMs using the com-
piled dataset, including GPT (Achiam et al., 2023),
Gemini (Team et al., 2023), and LLaMA (Tou-
vron et al., 2023). Performance metrics revealed
insightful data on the accuracy and ranking of each
model, allowing us to draw meaningful compar-
isons between them. Furthermore, a thorough error
analysis was conducted to identify common pit-
falls and limitations inherent in these models. To
push the boundaries of model performance, we also

explored advanced techniques such as Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020)
and few-shot learning (Wang et al., 2020). These
methods were tested to enhance the models’ accu-
racy and generalization ability from minimal exam-
ples, particularly in low-resource settings. Through
this multifaceted approach, the study highlighted
LLMs’ current strengths and weaknesses in aca-
demic problem-solving and paved the way for fu-
ture innovations in improving their capabilities.

2 Related Work

In recent years, the development and evaluation of
large language models have attracted significant at-
tention, especially in dataset design. These datasets
are crucial for assessing LLMs’ various capabili-
ties, ranging from classic natural language process-
ing (NLP) tasks to more specialized domains such
as knowledge and information retrieval.
Classic NLP Tasks: Among the most widely recog-
nized is the General Language Understanding Eval-
uation (GLUE) benchmark (Wang, 2018), which
includes a series of tasks like sentiment analysis,
textual entailment, and sentence similarity to assess
various aspects of language understanding. GLUE
has established itself as a standard for evaluating
LLMs, with ongoing research driving models to sur-
pass state-of-the-art performance continually. Ad-
ditionally, specialized datasets like Stanford Sen-
timent Treebank (SST) (Socher et al., 2013) for
sentiment analysis and TREC (Li and Roth, 2002)
for text classification have been vital in fine-tuning
LLMs for specific applications.

Building on the foundation of GLUE, the Super-
GLUE benchmark (Wang et al., 2019) introduces
even more challenging tasks, such as coreference
resolution and commonsense reasoning, pushing
LLMs to achieve a deeper level of language com-
prehension. This benchmark has set a new standard
for advanced language understanding, guiding the
development of models that more closely emulate
human linguistic capabilities.
Question Answering: The Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al., 2016)
is a cornerstone in the field of question-answering
(QA). It sets a high standard for language models
by requiring them to extract precise answers from
context-rich Wikipedia articles. Alongside SQuAD,
other QA datasets, such as TriviaQA (Joshi et al.,
2017) have further advanced the reasoning capabil-
ities of LLMs.
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Beyond these general-purpose benchmarks, spe-
cialized datasets have played a pivotal role in ex-
panding the scope of language models, particu-
larly in educational and scientific domains. The
ARC dataset (Clark et al., 2018) focuses on scien-
tific reasoning, presenting questions from standard-
ized science exams that require models to apply
background knowledge and logical reasoning to ar-
rive at correct answers. Other specialized datasets
such as MathQA (Amini et al., 2019), Open-
BookQA (Banerjee et al., 2019), SciBERT (Belt-
agy et al., 2019), SciBench (Wang et al., 2023) and
CQuAE (Gerald et al., 2024) have been instrumen-
tal in challenging models with complex problems
in specific fields such as mathematics.
Knowledge: LAMA (LAnguage Model Analy-
sis) (Petroni et al., 2019) is a dataset designed to
evaluate models’ ability to recall factual knowl-
edge stored in their parameters without external
context, testing understanding across various do-
mains like history, science, and geography. Build-
ing on this, KILT (Knowledge Intensive Language
Tasks) (Petroni et al., 2020) serves as a benchmark
suite for tasks that require models to retrieve and
utilize external knowledge, including open-domain
question answering, entity linking, and fact verifica-
tion. KILT emphasizes the integration of retrieval-
augmented generation tasks, reflecting the grow-
ing focus on models’ ability to combine language
understanding with knowledge retrieval. Addition-
ally, datasets like WikiHop (Welbl et al., 2018) and
TREX (Elsahar et al., 2018) advance benchmarks
by incorporating multi-hop reasoning with knowl-
edge retrieval, challenging models to perform so-
phisticated reasoning across interconnected facts.
Low-Resource Language Benchmarks: Research
on underrepresented languages remains a chal-
lenge, but datasets like IndicNLP (Kakwani et al.,
2020) and the Masakhane Initiative (Orife et al.,
2020) have made strides in addressing this gap.
They provide resources for Indian and African lan-
guages, respectively, enabling the evaluation and
development of models in low-resource contexts.
Recent studies, such as Abaskohi et al. (2024),
have also explored the effectiveness of models like
ChatGPT in handling Persian NLP tasks, empha-
sizing the importance of culturally and linguisti-
cally relevant datasets. These multilingual and
low-resource benchmarks highlight the need for
inclusive datasets that capture linguistic diversity,
paving the way for advancements in LLMs’ gener-
alization and application across languages.

3 Datasets

In this project, we leverage several datasets, each
contributing uniquely to the thorough evaluation
process. These datasets are carefully selected to
cover a broad spectrum of academic subjects, re-
flecting both theoretical knowledge and practical
applications. They also include preparatory materi-
als that simulate real-world educational practices,
ensuring that the evaluation process is rigorous
and relevant. This section provides detailed de-
scriptions of the datasets used, underscoring their
significance and relevance in assessing the perfor-
mance of LLMs. All data referenced in this study
are available for download at GitHub.1

3.1 IRUEX Dataset

The Iran university entrance exam is one of Iran’s
most competitive and significant exams, with
nearly one million students participating annually.
As a critical factor in university admissions, the
content of this exam is highly pertinent for evalu-
ating LLMs’ reasoning and problem-solving abili-
ties. The IRUEX dataset comprises multiple-choice
questions in the math group from exams conducted
between 2019 and 2023, organized into subject
categories such as mathematics, physics, and chem-
istry and general subjects like Persian literature,
Arabic, English language, and Islamic religious
education. In 2023, an update reduced the tested
subjects to only mathematics, physics, and chem-
istry, reflecting a shift in the exam’s structure.

The dataset is provided in LaTeX format, allow-
ing LLMs to interpret and process mathematical
formulas and scientific notations effectively. Ad-
ditionally, questions containing images are disre-
garded to assess the language model’s comprehen-
sion of textual information solely. The dataset was
carefully compiled by crawling, ensuring a com-
prehensive and accurate collection of exam content.
To facilitate evaluation and ensure accessibility for
LLMs that do not understand Persian, we also pre-
pared the translated version of the IRUEX dataset
into English. This translation allows us to analyze
the impact of language conversion on model per-
formance. Detailed information on the number of
questions per category is available in Table 1. De-
tailed examples, key topics, and focus areas for
each category can be found in Appendix A.

1https://github.com/hamedkhaledi/
IRUEX-dataset

https://github.com/hamedkhaledi/IRUEX-dataset
https://github.com/hamedkhaledi/IRUEX-dataset
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Math Chemistry Physics Arabic English Religion Persian Literature
2023 34 26 25 - - - -
2022 46 24 22 25 25 25 25
2021 47 25 26 25 25 25 25
2020 44 32 19 25 25 25 25
2019 46 28 24 25 25 25 25
Total 217 135 116 100 100 100 100

Supplementary Questions 6042 5923 5674 3883 7366 4809 2761

Table 1: Number of questions per category in the IRUEX dataset

3.2 Supplementary Questions

Beyond the IRUEX dataset, students often engage
with supplementary questions to prepare for en-
trance exams. This dataset includes a carefully
curated selection of questions classified by varying
degrees of difficulty, along with detailed descriptive
answers. These resources are precious for few-shot
evaluations of LLMs, as the descriptive answers
enable the assessment of the model’s ability to gen-
erate comprehensive responses based on minimal
context. The supplementary questions were gath-
ered by crawling various educational platforms and
resources frequently used by students. The num-
ber of questions per category in this dataset is also
detailed in Table 1.

3.3 High School Textbooks

To further enhance the evaluation process, we in-
clude a collection of all high school textbooks,
which were transformed from PDF files into text
format for easier integration and use. These text-
books are essential for retrieval-augmented genera-
tion, where LLMs access a broader knowledge base
to improve the accuracy and relevance of their gen-
erated responses. This dataset ensures that models
are tested on exam-style questions and the foun-
dational knowledge taught in high schools, com-
prehensively evaluating their capabilities across a
broad knowledge spectrum.

4 Experiments

To thoroughly assess the performance of the
IRUEX dataset across multiple language models,
we conducted an extensive evaluation using a range
of models, including Gemini-Pro (Team et al.,
2023), LLaMA3.1-8B, LLaMA3-70B, LLaMA3.1-
70B, LLaMA3.1-405B (Dubey et al., 2024), GPT-
3.5-turbo, GPT-4 (Achiam et al., 2023), GPT-4o-
mini and GPT-4o. These models were accessed
through their respective APIs. Our evaluation strat-
egy employed several distinct methodologies:

Zero-shot Learning: In the zero-shot evaluation,
models were tested without prior exposure to sim-
ilar examples or specific task-related instructions.
To enhance the reasoning capabilities of the mod-
els, we employed Chain of Thought (CoT) (Wei
et al., 2022b) prompting. This technique encour-
ages models to articulate their thought processes,
leading to more comprehensive and detailed re-
sponses rather than presenting the final answer.
This strategy was pivotal in tasks requiring complex
reasoning and sequential decision-making.

Few-shot Learning: For the few-shot evalua-
tion (Brown et al., 2020), we selected three ex-
ample questions and answers to serve as contex-
tual references from the supplementary question
dataset for each gold question. These examples
were chosen using a Term Frequency-Inverse Doc-
ument Frequency (tf-idf) (Ramos et al., 2003) ap-
proach, which focused on key phrases within the
questions to ensure that the selected examples were
highly relevant to the target question. We used the
Jaccard score (Niwattanakul et al., 2013), selecting
three distinct examples related to the main question,
all with scores below the 0.4 threshold. This metric
measured the overlap of key terms, ensuring that
the examples were sufficiently similar to the main
question to provide relevant context yet distinct
enough to avoid redundancy and overfitting. This
balance was essential for maintaining content and
phrasing diversity while offering meaningful in-
sights. Although we initially explored embedding-
based retrieval, the tf-idf method proved more ef-
fective in matching the examples to the questions.
GPT-4o, which had the best performance in the
zero-shot evaluation, was primarily used for these
few-shot assessments. This approach was particu-
larly advantageous in categories where providing
limited but precise contextual information signifi-
cantly boosted the model’s performance.

Translation-based Evaluation: Due to the lack of
native Persian language support in specific models,
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Model Math Chemistry Physics Arabic English Religion Persian Literature
Zero-shot

LLaMA3.1-8B 11.34 16.76 25.62 27.00 78.00 26.00 25.00
LLaMA3-70B 31.06 37.47 51.12 49.00 87.00 39.00 22.00

LLaMA3.1-70B 41.37 47.97 61.46 50.00 87.00 46.00 27.00
LLaMA3.1-405B 41.47 49.07 72.32 61.00 94.00 46.00 42.00

GPT-3.5 25.45 29.02 38.35 30.00 72.00 24.00 31.00
GPT-4 30.91 43.94 51.17 61.00 95.00 48.00 38.00

GPT-4o-mini 53.18 49.30 71.54 52.00 88.00 42.00 33.00
GPT-4o 52.22 62.06 79.76 68.00 96.00 66.00 39.00

Few-shot
GPT-4o 61.13 61.93 82.11 69.00 92.00 72.00 51.00

Translation-based
Gemini-Pro 30.38 31.15 33.01 - 81.00 - -

GPT-4o 45.21 48.54 62.27 - 96.00 - -
Retrieval-Augmented Generation (RAG)

GPT-4o 48.57 64.76 76.8 64.00 95.00 68.00 43.00

Table 2: Accuracy results (%) on the IRUEX dataset. The highest accuracy for each experiment is highlighted
in bold, while the second highest is underlined. The average accuracy is weighted according to the number of
problems in each course.

such as Gemini, we translated the IRUEX dataset
into English using the Google Translate API. The
translated dataset was then evaluated with GPT-4o.
This approach allowed us to measure the impact
of translation on model performance, explicitly fo-
cusing on categories that do not rely heavily on
native language nuances. However, we excluded
categories such as Persian literature, Arabic, and re-
ligion from this evaluation due to the inherent loss
of meaning and cultural context when translating
these topics into English.

Retrieval-Augmented Generation (RAG): To en-
hance the model’s ability to draw on external
knowledge, we implemented a retrieval-augmented
generation (Lewis et al., 2020) approach. We chun-
ked high school textbooks into paragraphs and used
the BM25 (Robertson et al., 2009) algorithm to re-
trieve each question’s most contextually similar
paragraphs. Two adjacent paragraphs were also
included to ensure the model had sufficient con-
text. This retrieved information was then provided
as part of the input prompt, enabling the models
to generate more informed and accurate responses
based on relevant external knowledge.
Models were instructed to provide their final an-
swer on the last line of their responses, a crucial
directive for accurately parsing and evaluating their
outputs. We set the temperature parameter to 0
for all evaluations to minimize randomness and en-
sure reproducible and deterministic responses. We

meticulously recorded the accuracy of each model
across different categories of the IRUEX dataset,
with results comprehensively summarized in Ta-
ble 2, offering a clear comparison of model per-
formances across various tasks. Detailed prompts
used during the evaluations are documented in Ap-
pendix B to ensure transparency and reproducibil-
ity. Also, additional evaluation results from other
LLMs can be found in Appendix C.

5 Results Analysis

We reported results from various language models
in diverse academic and linguistic tasks. In this
analysis, we will examine several key observations,
including model performance, technique impact,
and areas for improvement.

5.1 Model Analysis

This section highlights critical points extracted
from Table 2 under the zero-shot setting.
Model Size Impact: The performance of lan-
guage models has consistently improved with in-
creased model sizes. Notably, within the LLaMA
series, LLaMA3.1-405B significantly outperforms
its predecessors, LLaMA3-70B and LLaMA3.1-
70B, across all categories. This suggests that larger
models are generally more adept at handling com-
plex tasks, as evident in their higher scores across
various categories. Interestingly, newer versions
of LLaMA consistently outperform earlier ones
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with the same number of parameters, highlighting
advancements in model architecture and training
techniques. The IRUEX dataset can also differen-
tiate among different LLMs, providing valuable
insights into their performance and capabilities.
Model Comparison: Comparison of GPT-4 and
GPT-4o-mini provides insights into how specific
variants address problem-solving and language-
based tasks. GPT-4o-mini excels in problem-
solving and mathematical calculations, as indicated
by its top scores in mathematics, chemistry, and
physics. However, it lags in language-based ques-
tions, where GPT-4 demonstrates superior perfor-
mance. This discrepancy suggests that while GPT-
4o-mini is optimized for specific computational
tasks, GPT-4 offers a more balanced performance
across different question types.
Low-Resource Languages: The performance of
these models in low-resource languages is partic-
ularly noteworthy. Although English scores are
generally high, models show weaker results in
languages like Arabic and Persian. Despite this,
LLaMA3.1-405B outperforms GPT-4o in Persian
literature, indicating that model architecture and
training data quality play significant roles in han-
dling diverse languages. Persian questions involv-
ing ancient poetry and Arabic-specific linguistic
constructs presented unique difficulties for LLMs.
These challenges often stemmed from nuanced se-
mantic constructs, intricate morphology, and the
culturally embedded context required to fully com-
prehend the text. Such details could provide ac-
tionable insights for improving model training and
fine-tuning in low-resource language settings.
Mathematics Performance: These models’ math-
ematical and computational abilities are promising
but exhibit room for improvement. GPT-4o and
its mini variant show strong performance in mathe-
matical tasks, with GPT-4o achieving the highest
score in this domain. However, even the top per-
formers leave space for advancements in accuracy
and efficiency, suggesting ongoing potential for en-
hancing mathematical reasoning and calculation
capabilities in AI models.
Ranking Achievement: GPT-4o’s performance is
highlighted by its impressive rank of approximately
500 out of 140,000 math group students in a zero-
shot setting. This ranking emphasizes the model’s
strong generalization abilities and effectiveness in
various tasks without extensive fine-tuning, show-
casing its high-level performance relative to a large
pool of competitors.

5.2 Techniques Impact

Another crucial aspect of the analysis is the influ-
ence of the techniques used on the model’s perfor-
mance. These techniques offer different levels of
enhancement depending on the task at hand.

Few-shot learning generally leads to substantial
improvements. GPT-4o’s performance in a few-
shot setting is a testament to this, with notable
increases across most subjects, particularly in math
(61.13), physics (82.11), religion (72.00), and Per-
sian (51.00). These results suggest that few-shot
learning helps the model better understand and re-
spond to complex questions, especially in technical
subjects.

RAG also significantly boosts performance, es-
pecially in subjects like chemistry, where GPT-4o
achieves a top score of 64.76. This technique is
particularly effective when models need to retrieve
specific information, as seen in the enhanced scores
across most categories compared to zero-shot per-
formance. However, RAG’s impact on language-
dependent tasks is mixed. For example, while it
enhances performance in Persian literature and re-
ligion, it does not substantially improve results in
English or Arabic compared to few-shot learning.

In contrast, translation techniques often degrade
performance due to errors introduced during the
translation process. The Gemini-Pro model, which
relies on translation, consistently underperforms
compared to GPT-4o in both technical subjects and
English, as indicated by the lower scores across the
board. Notably, GPT-4o demonstrates more robust
performance in Persian when evaluated directly,
without translation. This suggests that translation
techniques may not be reliable for tasks requiring
precise language understanding, particularly in low-
resource languages where translation quality might
be inconsistent.

6 Error Analysis

In this section, we analyze the errors made by GPT-
4 in a zero-shot setting using the IRUEX dataset. To
conduct this analysis, we selected all 192 questions
from the 2022 exam to conduct this analysis. Three
students who passed the exam with great ranks
compared the official solutions to the answers gen-
erated by GPT-4. Based on this analysis, we identi-
fied the skill deficiencies that contributed to the er-
rors and grouped them into ten categories, with the
last six categories adapted from SciBench (Wang
et al., 2023). The identified categories are as fol-
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(a) Math (b) Physics (c) Chemistry

(d) Arabic (e) English (f) Religion (g) Persian Literature

Figure 1: Error analysis of GPT-4’s performance by subject, showing the distribution of correct answers and
mistakes across various skill categories.

lows:

• Question Interpretation: The ability to fully
grasp the question’s intent, including under-
standing key terms and concepts in both the
question and its answer choices.

• Language Comprehension: The ability to
grasp the meaning of individual words or
phrases.

• Linguistic Knowledge: Proficiency in
language-related knowledge, including liter-
ary devices, spelling, and grammar.

• Textual Analysis: The ability to comprehend
and extract relevant information from a given
passage of text.

• Logical Reasoning: The ability to construct
well-reasoned arguments based on observa-
tions or assumptions.

• Logical Decomposition: The ability to break
down a problem into smaller, more manage-
able parts and understand the relationships
between these components.

• Assumption Identification: The skill of de-
tecting relevant and necessary assumptions
underlying a problem.

• Calculation Skills: The capability to accu-
rately perform mathematical operations and
computations.

• Scientific Literacy: A comprehensive under-
standing of key scientific principles, terminol-
ogy, and methodologies across various disci-
plines.

• Spatial Perception: The ability to visualize
and understand spatial relationships, which is
crucial in fields like physics, chemistry, and
geometry.

Based on Figure 1, GPT-4’s weaknesses across
different areas reveal specific skill deficiencies af-
fecting its performance. In mathematics, a signifi-
cant challenge for GPT-4 lies in its calculation abili-
ties. The error rate for arithmetic and mathematical
computations is notably high, at 23.3%, highlight-
ing the model’s difficulty in this domain. Addi-
tionally, the construction of coherent arguments
and the ability to effectively break down problems
into smaller components are other areas of con-
cern, though less prominent. In physics, GPT-4
exhibits fewer calculation errors (9.1%) compared
to its math performance, but logical reasoning er-
rors emerge at 13.6%. Spatial perception errors,
while not the highest, still affect 4.5% of cases,
indicating some difficulty in visualizing physical
relationships.

Chemistry presents a different challenge. The
model struggles notably with assumption identi-
fication (17.9%), logical decomposition (17.9%),
and logical reasoning (17.9%). The scientific lit-
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eracy category also has a high error rate of 17.9%.
However, it is worth noting that RAG improves the
model’s performance for both chemistry and reli-
gion. This suggests that scientific literacy in these
domains benefits significantly from enhanced con-
textual understanding, demonstrating the model’s
potential for improvement when supplemented
with additional information.

The most notable weaknesses in religion are sci-
entific literacy, with a 20.0% rate, and logical rea-
soning, which accounts for 16.0% of questions.
These results suggest difficulties in applying core
knowledge and forming well-reasoned arguments
in this area. Additionally, question interpretation
and language comprehension show smaller but still
significant challenges.

In Persian literature, GPT-4 struggles signifi-
cantly with language comprehension, with an error
rate of 32.0%. This indicates a notable deficiency
in understanding complex phrases or meanings.
Similarly, in Arabic, linguistic knowledge and lan-
guage comprehension are areas where the model
frequently stumbles, with error rates of 20.0% for
both. These figures highlight GPT-4’s limitations in
grasping nuanced meanings in complex linguistic
constructs, particularly in non-English languages.

Finally, GPT-4 performs relatively well in En-
glish compared to the other domains. Textual anal-
ysis shows low error rates (4.0%), indicating that
in English language tasks, the model has a firmer
grasp of language-related skills. This further em-
phasizes the difference in performance between
English and other languages, particularly when
considering more linguistically complex tasks like
those found in Persian literature or Arabic.

7 Conclusion

In this paper, we introduce the IRUEX dataset,
a novel educational resource designed to assess
the capabilities of large language models (LLMs)
across seven distinct categories. The dataset is
mainly focused on evaluating problem-solving
skills and linguistic knowledge, emphasizing under-
represented languages such as Persian and Arabic.
By leveraging the IRUEX dataset, we conducted
a comprehensive evaluation of various LLMs, em-
ploying diverse techniques, and found that the lat-
est, larger models consistently outperformed their
predecessors.

Our analysis indicates that while advanced
LLMs, like GPT-4o, can achieve performance lev-

els comparable to the top 1% of students, areas
remain for improvement, particularly in tasks in-
volving complex calculations and low-resource lan-
guage processing. We believe the IRUEX bench-
mark dataset provides a robust foundation for fu-
ture research aimed at enhancing LLMs’ problem-
solving and multilingual capabilities. Addition-
ally, we plan to explore the efficacy of differ-
ent approaches, such as Program-Aided Language
(PAL) (Gao et al., 2023), Declarative (He-Yueya
et al., 2023) and fine-tuning, on this dataset and
across various existing LLMs.

8 Limitations

While the IRUEX dataset provides a valuable tool
for evaluating LLMs in problem-solving and lin-
guistic tasks, there are notable limitations that must
be considered. First, the dataset is purely text-
based, which means it does not evaluate LLMs’
multimodal capabilities. As a result, models de-
signed to process textual and visual information
cannot fully showcase their strengths in this evalu-
ation. Future iterations of the dataset may benefit
from incorporating visual components to provide
a more comprehensive assessment of multimodal
LLMs.

Additionally, the dataset is restricted to only
three languages —English, Persian, and Arabic—
limiting its utility in assessing LLMs’ multilingual
capabilities across a broader spectrum of languages.
This focus on a small set of languages, while valu-
able for exploring underrepresented linguistic con-
texts, may not capture the full range of challenges
faced by LLMs in other low-resource languages.
Moreover, the dataset’s scope is confined to seven
categories of tasks, while comprehensive in some
respects, may not cover all possible real-world ap-
plications of LLMs, especially in highly special-
ized or emerging fields. These limitations highlight
the need for future dataset versions to include a
broader range of languages, modalities, and task
categories, enabling a more comprehensive assess-
ment of LLM capabilities.
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A IRUEX description

Sample questions from the IRUEX dataset are pre-
sented in Table 3. To facilitate a broader under-
standing of the dataset content, some of the ques-
tions have been translated into English. Below is

a summary of each course’s key topics and focus
areas covered in each course:

• Math: Covers key concepts such as discrete
mathematics, equations, limits, derivatives,
logarithms, and geometry, providing a com-
prehensive foundation in mathematical princi-
ples.

• Physics: Explores fundamental topics, includ-
ing thermodynamics, magnetic fields, electric-
ity, energy, dynamics, and waves, emphasiz-
ing the core principles of physical sciences.

• Chemistry: Focuses on essential areas like
stoichiometry, solutions and solvents, the pe-
riodic table, and general chemical knowledge,
offering a deep dive into chemical sciences.

• Persian: Examines the meaning of verses and
words, literary devices, and the works of poets,
highlighting key aspects of Persian literary
heritage.

• Arabic: Covers word meanings, passage com-
prehension, vowel usage, and translation, fo-
cusing on linguistic skills and understanding
in the Arabic language.

• Religion: Provides an overview of Islamic
teachings and the Quran, emphasizing reli-
gious knowledge and understanding of Is-
lamic principles.

• English: Concentrates on vocabulary devel-
opment, filling in blanks, and passage com-
prehension, aimed at enhancing proficiency in
the English language.

B Prompts

All the prompts used in the experiments are pre-
sented in Table 4. This includes the system prompt,
zero-shot prompt, few-shot prompt, and retrieval-
augmented generation (RAG) prompt.

C Additional Experiments

In this section, we present a comprehensive
overview of the additional experiments conducted
to evaluate the performance of various large lan-
guage models, including Qwen, Mixtral, and Re-
flection. The complete set of experimental results
is presented in Table 5.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
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Math Correct Answer: D
Consider geometric sequences with a natural ratio greater than one that contains 5 terms.
How many such sequences can be found whose sentences are members of the set {1,2,...,100}?
A) 3
B) 4
C) 6
D) 7

Chemistry Correct Answer: A
Which compound’s molecular structure does not have a triple bond?
A) {O_2}
B) CO
C) HCN
D) {N_2}

Physics Correct Answer: B
A ball is released from a height h and falls with a constant acceleration g = 10
frac{m}{{s^2}}. If its average velocity at the end frac{3}{4} of the path is 15 frac{m}{s},
how many meters per second is its average velocity throughout the path?
A) 0.5
B) 7.5
C) 10
D) 5/12

Arabic Correct Answer: C
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English Correct Answer: D
We all know that when two people cooperate with each other, they ........... better Ideas.
A) found
B) give off
C) measure
D) come up with

Religion Correct Answer: C
According to the verses of the Holy Quran,
the acceptance of God’s Lordship is determined by which speech of a righteous servant?

A) @ �Pñ
�	
®
�
»
�
A
�
Ó@
�

�
ð @ �Q»� A

�
�
�

�
A
�
Ó@
�

�
ÉJ
�.

�
�Ë@

�
èA
�	
J
�
K


�
Y
�
ë

�
A
�	
K @
�

B) �é�
�
ÓA
�
J

�
®�

�
Ë @ Ð

�

�
ñ
�
K


�ú



�
Í @
�

�
Ñº

�	
J
�
ª
�
Ò
�
j.
�
J


�
Ë
�
ñ
�
ë

�
B
�
@
�
é
�
Ë @
�
B
�
é
�
<Ë @

C) �é
�
<Ë� ú




�
G
�
A �Ü
�
Ø

�
ð �ø



A
�
J

�
m
�
× �
ð ú



¾
�

�
�
�	
�
�
ð ú




�
G
�
C
�
�
�

�	
à@
�

D)
�	
àñ

�
Ò
�
Ê
�
ª
�
K
 @ñ

�	
K A
�
¿
�
ñ
�
Ë
�	
à@

�
ñ
�
J

�
m

�
Ì'@ �ú



æê
�

�
Ë
��
è �Q

	
k�

�
B
�
@ �P

�
@
�
YË@

�	
à@
�

Persian Literature Correct Answer: A
What is the meaning of each of the following words respectively?
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Table 3: Sample question examples from the IRUEX dataset
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System Prompt:
Please present a comprehensive and step-by-step solution for a {CATEGORY} problem.

Zero-Shot Prompt:
The given question is in multiple-choice format with options A, B, C, and D.
After solving, conclude the answer by clearly stating and returning only the correct option in the last line,
enclosed in brackets, and following the ’The correct option is (Option-Letter)’ format.
For instance:
Question:
[A sample question]
Solution:
[Provide a detailed step-by-step solution]
The correct option is (A)
Question:
{QUESTION}
Solution:

Few-Shot Prompt:
The given question is in multiple-choice format with options A, B, C, and D.
After solving, conclude the answer by clearly stating and returning only the correct option in the last line, enclosed in parentheses,
and following the ’The correct option is (Option-Letter)’ format.
Here are some examples:

Example1:
Question:
{EXAMPLE QUESTION1}
Solution:
{EXAMPLE SOLUTION1}
The correct option is ({CORRECT_OPTION1})

Example2:
Question:
{EXAMPLE QUESTION2}
Solution:
{EXAMPLE SOLUTION2}
The correct option is ({CORRECT_OPTION2})

Example3:
Question:
{EXAMPLE QUESTION3}
Solution:
{EXAMPLE SOLUTION3}
The correct option is ({CORRECT_OPTION3})
Question:
{QUESTION}
Solution:

RAG Prompt
The question is in a multiple-choice format with options A, B, C, and D.
Your task is to solve the question and conclude by clearly stating the correct option.
In the final line, return only the correct option enclosed in parentheses in the following format: ’The correct option is (Option-Letter)’.
For example:
Question:
[A sample question]
Solution:
[Provide a detailed step-by-step solution]
The correct option is (A)
Note: You can include the following context if applicable. Using context is optional.
Context:
{CONTEXT}
Question:
{QUESTION}
Solution:

Table 4: Comparison of system, zero-shot, few-shot, and retrieval-augmented generation (RAG) prompts for solving
multiple-choice problems
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Model Math Chemistry Physics Arabic English Religion Persian Literature
Zero-shot

LLaMA3-8B 9.88 8.85 16.08 23.00 59.00 14.00 17.00
LLaMA3.1-8B 11.34 16.76 25.62 27.00 78.00 26.00 25.00
Gemma2-9B-it 21.28 31.61 47.33 41.00 81.00 32.00 18.00
Gemma2-27B-it 27.07 40.66 53.77 50.00 88.00 40.00 32.00
Mixtral-8x22B 29.99 32.33 43.16 44.00 83.00 44.00 22.00
LLaMA3-70B 31.06 37.47 51.12 49.00 87.00 39.00 22.00

Reflection-LLaMA3.1-70B 36.53 33.32 53.16 38.00 78.00 32.00 30.00
LLaMA3.1-70B 41.37 47.97 61.46 50.00 87.00 46.00 27.00

Qwen2-72B 45.14 45.85 64.13 55.00 93.00 43.00 37.00
LLaMA3.1-405B 41.47 49.07 72.32 61.00 94.00 46.00 42.00

GPT-3.5 25.45 29.02 38.35 30.00 72.00 24.00 31.00
GPT-4 30.91 43.94 51.17 61.00 95.00 48.00 38.00

GPT-4o-mini 53.18 49.30 71.54 52.00 88.00 42.00 33.00
GPT-4o 52.22 62.06 79.76 68.00 96.00 66.00 39.00

Few-shot
GPT-4o 61.13 61.93 82.11 69.00 92.00 72.00 51.00

Translation-based
Gemini-Pro 30.38 31.15 33.01 - 81.00 - -

GPT-4 29.54 35.62 50.77 - 95.00 - -
GPT-4o 45.21 48.54 62.27 - 96.00 - -

Retrieval-Augmented Generation (RAG)
LLaMA3-70B 34.91 39.89 49.74 50.00 86.00 52.00 32.00

GPT-4o 48.57 64.76 76.8 64.00 95.00 68.00 43.00

Table 5: Accuracy Results (%) on the IRUEX dataset. The highest accuracy for each experiment is highlighted
in bold, while the second highest is underlined. The average accuracy is weighted according to the number of
problems in each course.
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