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Abstract

Explanation regularisation (ER) has been intro-
duced as a way to guide text classifiers to form
their predictions relying on input tokens that
humans consider plausible. This is achieved
by introducing an auxiliary explanation loss
that measures how well the output of an input
attribution technique for the model agrees with
human-annotated rationales. The guidance
appears to benefit performance in out-of-
domain (OOD) settings, presumably due to an
increased reliance on ‘plausible’ tokens. How-
ever, previous work has under-explored the
impact of guidance on that reliance, particularly
when reliance is measured using attribution
techniques different from those used to guide
the model. In this work, we seek to close this
gap, and also explore the relationship between
reliance on plausible features and OOD per-
formance. We find that the connection between
ER and the ability of a classifier to rely on
plausible features has been overstated and that
a stronger reliance on plausible tokens does not
seem to be the cause for OOD improvements. 1

1 Introduction

In explanation regularisation (ER; Ross et al., 2017;
Ghaeini et al., 2019; Liu and Avci, 2019; Ismail
et al., 2021; Joshi et al., 2022; Pruthi et al., 2022;
Stacey et al., 2022, i.a.), a text classifier is encour-
aged to inform its predictions by tokens included
in a human rationale for the label. This is achieved
with an auxiliary ‘explanation loss’ that penalises
differences between the output of a guided attri-
bution technique (e.g., a relevance map based on
top-layer attention) and the annotated human ratio-
nale (see Figure 1). Compared to their counterparts
trained without rationales, these ER models have
been reported to improve classification, including
for out-of-domain (OOD) inputs (Joshi et al., 2022;

1Source code available at https://github.com/
PedroMLF/ER_through_the_lens_of_attributions.
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Figure 1: ER (top-left) minimises a classification and
an explanation loss. The latter uses an input attribution
technique to obtain a machine rationale for the predic-
tion, and penalises differences between that and the
human rationale. Guiding the model to rely in its pre-
dictions on plausible tokens is expected to help the clas-
sifier at test time (top-right), when no human rationale
is available. Bottom: even though the attribution tech-
nique used for guidance shows human-like rationales,
the model may in fact rely on different (non-plausible)
tokens, as other attribution techniques might reveal.

Stacey et al., 2022; Madani and Minervini, 2023),
with this improved robustness being ascribed to in-
creased reliance of ER models on plausible tokens
(i.e., those in the human rationale for the label).

While ER is assumed to encourage classifiers to
rely more on plausible tokens, this has not been
carefully verified in previous work. In particular,
prior analyses have focused on guided attributions—
i.e., those explicitly supervised to resemble human
rationales through the explanation loss—finding
them to be better aligned with human rationales
(Mathew et al., 2021; Stacey et al., 2022; Madani
and Minervini, 2023, i.a.). Although impact on
guided attributions is a necessary condition, this
impact is not sufficient to demonstrate that the clas-
sifier relies more on plausible tokens. We argue

https://github.com/PedroMLF/ER_through_the_lens_of_attributions
https://github.com/PedroMLF/ER_through_the_lens_of_attributions
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that, to confirm an increased reliance, it is also nec-
essary to examine the impact of guidance on attribu-
tions obtained through other non-guided attribution
techniques (see Figure 1). If these are unaffected, it
would suggest that the model is ‘hacking’ (Skalse
et al., 2022) the explanation loss rather than gen-
uinely increasing its reliance on plausible tokens.

In this work, we analyse (i) ER’s ability to make
classifiers rely on plausible tokens; and (ii) the re-
lationship between plausibility and robustness to
OOD conditions. We start by studying ER with
jointly optimised losses (§5.1). We find that – un-
like the guided attribution techniques – there is little
to no evidence that attributions by any other non-
guided attributions are affected by ER, suggesting
the loss ‘hacking’. In fact, we find that meaningful
impact on input attributions is only achievable by
ensuring a low explanation loss, for example via
constrained optimisation (see §5.2). However, this
is effective only for ‘global’ guided attribution tech-
niques (which capture the information ‘flow’ across
all or most components of the model), and, cru-
cially, at the expense of classification performance.

Contributions. We show that the connection be-
tween ER and the ability of a classifier to rely on
plausible tokens has been overstated. In particu-
lar, we find that the choice of guided attribution
technique is critical for this assumption: local at-
tribution techniques, such as top-layer attention,
can be ‘hacked’, minimising the explanation loss
without much evidence of increased reliance on
plausible tokens. Moreover, we find that OOD clas-
sification performance degrades for ER models that
(over-)rely on plausible tokens, hinting at the need
of finding better design choices for ER.

2 Related Work

Learning from explanations. Human explana-
tions (e.g., token-level rationales, as in Figure 1)
have been used to improve text classifiers (Hart-
mann and Sonntag, 2022; Hase and Bansal, 2022).
Examples include select-predict ‘pipelines’, where
an explanation output by a first module serves as in-
put to a classifier (Camburu et al., 2018), and multi-
task settings, where a classifier and a rationale ex-
tractor are jointly trained (Carton et al., 2022; Chan
et al., 2022). In contrast, we are interested in ex-
planation regularisation, where, rather than having
additional model components trained to perform
rationale extraction, a model is trained to align at-
tributions provided by a differentiable attribution

technique with human rationales (Ross et al., 2017;
Ghaeini et al., 2019; Liu and Avci, 2019; Rieger
et al., 2020; Mathew et al., 2021; Pruthi et al., 2022;
Stacey et al., 2022, i.a.). Most work on ER focuses
on in-domain data, however, there is evidence that
ER can improve robustness to OOD data, for text
(Rieger et al., 2020; Joshi et al., 2022; Stacey et al.,
2022), and image classification (Chefer et al., 2022;
Rao et al., 2023). Other works identify difficul-
ties in using explanations to learn better classifiers
and propose methods to improve the compromise
between classification performance and model ex-
plainability. These works differ from ours by: (i)
not using human-annotated explanations (Plumb
et al., 2020); or (ii) by departing significantly from
the ER formulation, for example, by using a multi-
task setup with a separate explainer (Carton et al.,
2022) or by not employing a trainable explainer and
instead incorporating human explanations through
contrastive learning (Resck et al., 2024). We, in-
stead, focus on ER and explore its impact on the
plausibility of input attributions and how that, in
turn, impacts classification performance both in-
and out-of-domain.

Attribution techniques. In vector-based tech-
niques, model components are directly used to ob-
tain input attributions. The simplest approach is
to use attention weights (Clark et al., 2019, i.a.),
despite conflicting evidence on its usefulness for
this purpose (Jain and Wallace, 2019; Serrano and
Smith, 2019; Wiegreffe and Pinter, 2019; Pruthi
et al., 2020). Later works (Kobayashi et al., 2020,
2021; Ferrando et al., 2022; Modarressi et al., 2022)
incorporate information about the magnitude of in-
put vectors and the influence of other components
of the Transformer layer (Vaswani et al., 2017).
These are examples of local techniques, where attri-
butions are based on the dynamics of a single layer.

It is also possible to obtain a global analysis
of the model, by including the dynamics of its
multiple layers. One example is attention-rollout
(Abnar and Zuidema, 2020), which recursively ag-
gregates attention weights across layers. Other
examples of global vector-based techniques are
GlobEnc (Modarressi et al., 2022), ALTI (Fer-
rando et al., 2022), and DecompX (Modarressi
et al., 2023). Global attributions can also be ob-
tained from gradient-based approaches (Kinder-
mans et al., 2016; Shrikumar et al., 2017; Sun-
dararajan et al., 2017, i.a.), or a mix of attention and
gradients (Chefer et al., 2021; Qiang et al., 2022).
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3 Explanation Regularisation

In ER (Joshi et al., 2022; Stacey et al., 2022; Pruthi
et al., 2022, i.a.), we assume the availability of
training data D = {(xi, yi, ei)Ni=1}, for each data
point, xi is the input text, yi is the target label, and
ei is a human rationale (specifically, a subset of
tokens of the input regarded as a justification for
the label). Human rationales can be obtained from
annotators (Socher et al., 2013; Camburu et al.,
2018; Rajani et al., 2019; Mathew et al., 2021)
or through heuristics (Liu and Avci, 2019; Rieger
et al., 2020), and are only required during training.

An ER classifier minimises a joint loss

Lcls(θ) + λ Lexpl(θ), (1)

where Lcls is the regular classification loss and
Lexpl is the explanation loss, with a hyperparam-
eter λ ∈ R≥0 controlling the contribution of the
latter. The expectation is that Lexpl leads the model
to rely in its decisions on more plausible tokens.

The first term is the cross-entropy loss Lcls(θ) =
E(x,y)∼D[Lce(Cθ(x), y)], where Cθ is a train-
able classifier. The second term, Lexpl(θ) =
E(x,y,e)∼D[S(E(Cθ, x), e)], employs an attribution
technique in order to obtain a relevance map
E(Cθ, x) for the classifier’s output and penalises
the classifier by this map’s deviation from the hu-
man rationale, as assessed by a function S such as
mean absolute error or KL divergence (Joshi et al.,
2022). We refer to E as the guided attribution
technique. Besides being differentiable, E is re-
quired to be memory- and time-efficient. Examples
of techniques used in ER include gradient-based
(Ross et al., 2017; Ghaeini et al., 2019; Chefer et al.,
2022), vector-based (Mathew et al., 2021; Pruthi
et al., 2022; Stacey et al., 2022; Fernandes et al.,
2022), and perturbation-based approaches (Ying
et al., 2022). We follow Joshi et al. (2022) and
Stacey et al. (2022) and use top-layer attention and
INPUTXGRADIENT (Shrikumar et al., 2017). In
addition, we also experiment with attention-rollout
(Abnar and Zuidema, 2020).

4 Experimental Setting

Data. We use SST-2 (Socher et al., 2013) as train-
ing and in-domain data, following the heuristic
proposed by Carton et al. (2020) to obtain instance-
level rationales. For OOD data with rationales we
use Movies (Zaidan and Eisner, 2008; DeYoung
et al., 2020), and annotate Yelp-50, a subset of Yelp,
as described in Appendix G.1. For OOD without

rationales annotations we use Amazon Reviews
(‘Movies and TV’ split) (Hou et al., 2024), IMBD
(Maas et al., 2011), and Yelp (Zhang et al., 2015).
For more details on data refer to Appendix G.

Model. All experiments use HuggingFace Trans-
formers’ (Wolf et al., 2020) BIGBIRD-ROBERTA-
BASE model as the pre-trained contextual embed-
ding encoder model (Zaheer et al., 2020). This
choice follows previous works (Chan et al., 2022;
Joshi et al., 2022; Madani and Minervini, 2023).
For more training details refer to Appendix H.

Scoring Function. We follow Joshi et al. (2022)
and use mean absolute error for S in Lexpl(θ).

Target Annotations. All datasets with rationales
are annotated at the instance level with binary vec-
tors, whose dimensionality equals the number of
tokens. A value of 1 indicates relevant, highlighted
tokens. In order to obtain a target for the scoring
function S , the instance-level vector is normalized
to sum to one by dividing each element by the
total number of highlighted tokens in the instance
when using top-layer attention and attention-rollout
(Joshi et al., 2022; Stacey et al., 2022). For IN-
PUTXGRADIENT we use the original binary values.

Attribution Techniques. We make use of one
local technique, namely, top-layer attention (ATT),
and 5 global techniques, namely, attention rollout
(ATTR; Abnar and Zuidema, 2020), INPUTXGRA-
DIENT (IXG; Shrikumar et al., 2017), ALTI (Fer-
rando et al., 2022), and DECOMPX (Modarressi
et al., 2023) with (DX-C) and without (DX) the
classification head. 2 For guidance we use ATT,
ATTR or IXG, as those are memory- and time-
efficient enough to be used during training. The re-
mainder are used only for analysis. All techniques
are further described in Appendix A.

Plausibility Metrics. To assess how well input
attributions reproduce the human annotated
rationales, we use three metrics introduced in
Fomicheva et al. (2021), and described in Appendix
D: AUC Score, Average Precision; and Recall@k.

Constrained Optimisation. To study classifiers
whose guided attributions are as plausible as they
can be (through the lens of the explanation loss),
we can reimagine ER as a constrained optimisation

2For ATT and ATTR, we average attention weights across
heads. For IXG we use the Captum package (Kokhlikyan et al.,
2020). For DECOMPX and ALTI we adapt the original code.
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problem: minimise classification loss subject to a
bound b on the explanation loss,

min
θ

Lcls(θ) s.t. Lexpl(θ) ≤ b , (2)

with b set to a value close to minθ Lexpl(θ) – a
minimiser of the explanation loss, taken in isolation.
We approach this via Lagrangian relaxation (Boyd
and Vandenberghe, 2004), with implementation
choices detailed in Appendix H.

5 Results

ER Attr. F1 Guided Non-Guided

Joint (§5.1) Local ✓ ✓ ∅
Global ✓ ∅ ∅

Constr (§5.2) Local ✓ ✓ ∅
Global × ✓ ✓

Table 1: Summary of the effect (✓ positive, × negative,
or ∅ nil) of local or global guidance, across Joint and
Constrained setups, in terms of OOD classification (F1)
and impact on guided and non-guided attributions.

Table 1 presents a brief overview of our observa-
tions, which are discussed in detail in the following
subsections. In §5.1, we find that despite positively
impacting the OOD generalisation of the classifi-
cation task, joint ER has limited impact on input
attributions. In fact, only local guidance is able to
better predict plausible rationales, and that effect is
only observed for the guided technique itself. With
global guidance, we find that the explanation loss is
under-optimised. To understand what is happening,
in §5.2 we reinterpret ER as constrained optimi-
sation, where the explanation loss is constrained
to be low. At this point, we find it to be possi-
ble to affect input attributions meaningfully, but
only when guiding a global attribution technique
and, crucially, at the expense of classification per-
formance. In a nutshell, local guidance is being
‘hacked’: attributions are modified locally as to opti-
mise the explanation loss without affecting the fea-
tures used for classification (intuitively, the model
‘hides’ non-plausible computations where the local
attribution technique cannot ‘see’, such as in lower
layers). Global guidance, on the other hand, seems
much harder to ‘hack’: optimising it well requires
modifying computations performed in different lay-
ers across the model, more strongly restricting the
features used for classification to rationale tokens.
This, however, tends to worsen classification perfor-
mance. Finally, we find in §5.3 that the disconnect

between (over-)reliance on plausible tokens and
OOD classification performance prevents us from
systematically using features available for model
selection to find models that perform best OOD.

5.1 Joint Optimisation

We start by studying the most common ER setup
(§3), where the two losses are jointly optimised.

Joint ER improves OOD classification. As ob-
served in Table 2, joint ER improves OOD average
classification performance. This is more noticeable
for guidance with local attention (ER+ATT), with
guidance that uses global attribution techniques
(ER+ATTR and ER+IXG) showing smaller im-
provements. If we consider variance across runs,
and visualise the distribution of results across seeds
(Fig. 2), it is noticeable how the effect on the aver-
age improvement is exacerbated by runs that per-
form poorly. In fact, this seems to indicate that
one of the merits of ER is to converge less often to
models that generalise poorly to OOD conditions.

Only local guidance improves rationale extrac-
tion performance. In addition to classification,
ER models are trained to align guided attributions
to human rationales. Hence, compared to the base-
line, we expect an impact on the plausibility of
the corresponding guided attributions. This effect
can be observed by comparing the highlighted
cells in Table 3 with the corresponding baseline.
Our expectation is met only with local guidance,
with average AUC plausibility increasing from 35.6
(baseline) to 78.6 (w/ ATT) in-domain and similar,
but more modest, improvements OOD (Table 4).

The lack of impact of global guidance on the
plausibility of the corresponding guided attribu-
tions might come as a surprise. However, we need
to consider that: (i) this class of techniques in-
corporates more of the model’s components when
computing attributions, potentially making it more
difficult for the model to ‘hide’ implausible com-
putations from the explanation loss; and (ii) joint
ER balances both classification and explanation
losses with a preference (via model selection) for
classification, meaning that to maintain classifica-
tion performance the model might require ‘under-
optimising’ the explanation loss. Both possibilities
will be further studied in this section.

ER+ATT fails to impact non-guided attribution
techniques. The previous results illustrate how
attention guidance (ER+ATT) is able to simulta-
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SST Dev SST Test Movies Yelp IMDB Amazon-M-TV

BASELINE 92.95 ± 0.57 94.36 ± 0.48 91.01 ± 4.38 94.41 ± 0.99 91.20 ± 1.63 83.89 ± 0.89

J
§5.1

ATTENTION 93.56 ± 0.50 94.33 ± 0.72 93.10 ± 2.44 95.09 ± 0.44 91.87 ± 1.10 84.10 ± 0.56
+ ROLLOUT 93.19 ± 0.68 94.09 ± 0.82 92.72 ± 2.71 94.77 ± 0.66 91.88 ± 0.99 84.15 ± 0.47
IXG 92.91 ± 0.58 94.13 ± 0.56 91.11 ± 3.37 94.72 ± 0.54 91.30 ± 1.44 84.29 ± 0.92

C
§5.2

ATTENTION 93.41 ± 0.57 94.45 ± 0.49 90.59 ± 4.80 94.52 ± 1.30 90.65 ± 2.17 83.38 ± 1.11
+ ROLLOUT 90.78 ± 0.90 91.11 ± 0.77 89.56 ± 2.67 92.40 ± 0.78 89.19 ± 0.85 81.44 ± 0.81
IXG 90.64 ± 0.90 91.59 ± 1.46 75.80 ± 15.1 88.99 ± 6.17 83.35 ± 7.58 79.95 ± 2.57

Table 2: F1-Macro (↑) and standard deviation for in-domain (SST) and OOD data. ATTENTION corresponds to an
ER (J)oint or (C)onstrained model that uses attention as the guided attribution technique, +ROLLOUT to a model
that uses attention-rollout, and IXG to a model that uses INPUTXGRADIENT. Results are averages of 15 seeds.
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Figure 2: F1-Macro scores (↑). ER + ATT uses attention as the guided attribution technique, ER + ATTR uses
attention-rollout, and ER + IXG uses INPUTXGRADIENT. The C prefix indicates a constrained model. Results
correspond to 15 seeds. ER-C + IXG is not shown for improved clarity and can be seen in Appendix Figure 11.

neously improve OOD classification and rationale
extraction (when assessed with the corresponding
guided attribution technique). It is tempting to con-
nect these two observations and conclude that ATT

guidance results in ER models that better classify
while relying more on plausible tokens. However,
we find that not to be the case. Firstly, we correlate
input attributions (obtained by a given technique)
across training conditions (e.g., ALTI baseline attri-
butions vs. ALTI ER+ATT attributions). We find
that – aside from the guided attribution technique
– correlation coefficients are mostly unaffected by
ER training, both in- and out-of-domain (see first
row of Figure 3, for OOD). We find similar ev-
idence for all non-guided techniques (Appendix
Fig. 9). Secondly, we compare the AUC plausi-
bility scores of the non-guided techniques—any
non-highlighted cell in Tables 3 and 4—with the
corresponding baselines. Here, we observe a lack
of impact across joint ER models. For example, for
ER+ATT we find the impact to be small (59.0 vs
64.5 for ALTI) to none (58.5 to 58.4 for DX-C).
We find similar evidence using average precision
and recall@k (Appendix Table 9). In fact, if we
look at AUC plausibility scores across layers (Fig.
4) we can observe that ER+ATT only impacts the
plausibility of attributions at the top-layer. This
result confirms our suspicions: local guidance is
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Figure 3: Yelp-50 (OOD) Kendall Rank correlations
between attribution techniques for different approaches.
Baseline (BS) vs Baseline serves as ground-truth for the
expected correlations agreement due to seed variability.

able to ‘hide’ implausible computations at lower
layers, thus hiding them from Lexpl.

Lcls and Lexpl exhibit no synergy. We observed
before how ER+ATTR and ER+IXG failed to im-
pact input attributions, including for the respec-
tive guided attribution technique. To understand
why this happened, we train ER models exclusively
with the explanation loss, L = Lexpl, and obtain a
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SST-Dev

A
T

T

A
T

T
R

IX
G

A
LT

I

D
X

-C

D
X

BASELINE 35.6 27.9 50.7 59.0 58.5 57.5

Joint ER (§5.1)

W/ ATT 78.6 27.9 50.6 64.5 58.4 57.8
W/ ATTR 37.0 28.7 50.8 60.2 58.6 57.4
W/ IXG 44.6 27.6 53.8 61.7 58.0 57.6

Constrained ER (§5.2)

W/ ATT 87.6 28.2 51.5 68.3 57.6 56.8
W/ ATTR 63.2 89.1 67.6 87.9 76.9 81.3
W/ IXG 63.9 42.9 81.5 74.8 61.3 64.8

L = Lexpl (§5.1)

Lexpl (A) 89.0 29.6 53.2 78.2 52.0 53.0
Lexpl (R) 81.1 89.4 72.9 88.2 77.1 83.3
Lexpl (I) 69.2 57.4 84.3 81.0 65.2 66.1

Table 3: Average in-domain AUC plausibility scores
(↑). Lexpl (A/R/I) are trained with L = Lexpl, for ATT,
ATTR, and IXG respectively. Highlighted values cor-
respond to the ER guided attribution technique.
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Figure 4: SST-Dev average AUC plausibility score per
layer (↑) with Attention and DecompX.

‘lower-bound’ for its value. As seen in Table 5, all
joint ER approaches exhibit a gap to the explana-
tion loss ‘lower-bound’ value, particularly ATTR
and IXG, with this observation extending to AUC
— e.g., for Lexpl (A) we obtain a AUC value of
89.0 (vs the 78.6 obtained with joint ER+ATT),
and for Lexpl (R) we obtain a value of 89.4 (vs the
28.7 obtained with joint ER+ATTR). These re-
sults highlight one possible difficulty of the joint
ER setup: promoting plausible attributions via ER
with global guidance might incur a negative cost
in classification performance, hence joint optimi-
sation (whose hyperparameters are selected based
on classification loss) will under-optimise the aux-
iliary task. In order to confirm this behavior we run
the joint ER setup with increasing values of λ. The

Movies Yelp-50

A
T

T

A
T

T
R

IX
G

A
T

T

A
T

T
R

IX
G

BASELINE 70.0 49.6 58.1 51.9 37.1 51.5

Joint ER (§5.1)

W/ ATT 74.6 49.1 58.1 69.7 36.4 50.7
W/ ATTR 70.1 50.2 58.0 52.5 37.6 51.7
W/ IXG 69.9 49.0 59.5 56.5 37.3 53.6

Constrained ER (§5.2)

W/ ATT 68.8 48.1 56.0 76.0 37.4 51.3
W/ ATTR 71.1 62.8 59.3 67.2 69.4 58.8
W/ IXG 56.7 56.1 61.6 60.8 50.5 69.8

L = Lexpl (§5.1)

Lexpl (A) 61.0 48.2 48.0 70.1 38.5 47.1
Lexpl (R) 59.4 62.5 55.2 62.6 68.6 56.8
Lexpl (I) 51.8 56.9 59.8 55.2 58.3 68.6

Table 4: Average out-of-domain AUC plausibility
scores (↑). Lexpl (A/R/I) are trained with L = Lexpl, for
ATT, ATTR, and IXG respectively. Highlighted values
correspond to the ER guided attribution technique.

Ec Objective L(dev)
expl (↓) AUC(dev) (↑)

ATT
Lexpl 0.030 89.0
(J) ER 0.040 78.6
(C) ER 0.034 87.6

ATTR
Lexpl 0.032 89.4
(J) ER 0.064 28.7
(C) ER 0.033 89.1

IXG
Lexpl 0.349 84.3
(J) ER 0.432 53.8
(C) ER 0.358 81.5

Table 5: SST-Dev explanation loss and AUC values for
models guided with ATT, ATTR, or IXG, as a function
of their training objective (explanation loss alone, vs.
(J)oint ER and (C)onstrained ER).

results for ER+ATT and ER+ATTR can be seen in
Fig. 5. We observe two overall trends. Given a high
enough λ, the explanation loss converges to the ob-
tained ‘lower-bound’. For ER+ATT, even smaller
values of λ impact the explanation loss, whereas
for ER+ATTR larger values are required. For both
strategies alike, as the explanation loss values de-
creases, the cross entropy loss increases (we verify
that all models still converge on the classification
loss). However, the ER+ATT model seems to be
more robust to this trade-off—we observe a smaller
increase in CE loss as the explanation loss de-
creases when compared to ER+ATTR. We observe
a similar effect for ER+IXG in Appendix Fig. 12.

Although this is, perhaps, not a necessarily
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Figure 5: SST-Dev Lce vs. Lexpl. The vertical lines show
the validation explanation-loss bounds. Each point is the
average of 5 runs, the error bars show standard deviation
for each loss. λ ranges from 0 (No-ER) to 100.

surprising finding (Carton et al. (2022), for
example, observe a similar tradeoff, though
in a multi-tasking setting), it challenges a key
assumption of ER as a means to improve OOD gen-
eralisation: that the explanation loss should help
inform the classifier, improving OOD performance.
In fact, we observe that the joint ER setup will
struggle to accommodate both losses, particularly
when using a guided attribution technique that
is more difficult to ‘hack’ in order to become
apparently better at predicting human rationales,
such as attention-rollout, where the explanation
loss might be lowered, but far from optimally.

5.2 Constrained Optimisation

In §5.1, we observed how joint ER under-optimises
the explanation loss and how this effect varies in
function of the guided attribution technique being
local or global. Moreover, Table 3 shows that opti-
mising exclusively the explanation loss, L = Lexpl,
can lead to AUC plausibility improvements—on
the guided attribution technique alone for local
guidance, and across the board for global guidance.
This serves as motivation to analyse classifiers op-
timised for the classification task, while subject
to achieving the aforementioned explanation loss
‘lower-bound’ via constrained optimisation.

Constrained global guidance is necessary to im-
pact non-guided attribution techniques. We
start by noting how constrained ER addresses an
earlier result: both global guided techniques are
now impacting the corresponding guided attribu-
tion technique. This is true for both the AUC plau-
sibility scores (in Table 3) and correlation coeffi-
cients (in Appendix Figure 9). However, this is
so by design, and a more interesting observation
stems from inspecting the non-guided attribution

techniques — while constrained ER-C+ATT still
mostly fails to impact other attribution techniques,
constrained ER-C+ATTR and ER-C+IXG impact
the outcome of all assessed attribution techniques.
We can observe this along three ‘dimensions’. First,
global techniques are able to clearly impact the
plausibility of all attribution techniques (Table 3).
For instance, ER-C+ATTR leads to large improve-
ments in DecompX, where the average AUC plau-
sibility score is improved from 57.5 (in baseline)
to 81.3, with the value being 56.8 for ER-C+ATT.
Second, there is a clear impact in the correlation of
attributions across approaches (Appendix Fig. 9a),
contrarily to what is observed for local ER, includ-
ing ER-C+ATT. Finally, AUC plausibility scores
per layer (Figure 4) also show how the global tech-
nique is able to impact not only attributions at the
top-layer, but across the whole model, making them
more aligned with the human rationales. All obser-
vations along the three inspected ‘dimensions’ hold
for the OOD data, with attributions clearly being
impacted (Figure 3), despite the lower influence in
the AUC plausibility metric (Table 4).3

There is a disconnect between (over-)reliance on
plausible features and OOD robustness. De-
spite the noticeable impact of constrained ER-
C+ATTR and ER-C+IXG on attributions and their
plausibility, Table 2 indicates a decline in classifi-
cation performance. That is, the only ER strategies
that resulted in models that rely more strongly on
plausible tokens decrease OOD classification ro-
bustness. This is somewhat expected given what
we observed before in Figure 5. However, it does
lead us to conclude that the ER protocol should
be re-considered, or at least, a bigger emphasis on
trying to understand what ‘amount’ of increased
plausibility is desirable, and where that informa-
tion should be used while regularising the model,
in order to better align the current expectations of
improved OOD generalisation due to an increased
reliance of ER models on plausible features.

5.3 Predicting OOD performance

As shown in Figure 2, ER models exhibit a
broad spread of OOD classification results. This
highlights the importance of identifying the best-
performing models, ideally without access to OOD
data. Thus, we investigate whether it is possible
to predict OOD classification performance from

3We also find similar evidence for AUC per-layer across
multiple attribution techniques (Appendix Figure 13).
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Figure 6: Relationship between ID/OOD predictors and
OOD classification performance.

features potentially available for model selection.

In-domain classification and plausibility perfor-
mance are not predictive of OOD improvements.
Figures 6a and 6b show the association between
in-domain (SST-Dev) predictors classification F1-
Macro and plausibility AUC (computed with DX-
C), and classification F1-Macro for Movies (OOD).
In both cases there is no clear correlation be-
tween the in-domain metrics and OOD classifica-
tion scores, with the result in Figure 6b further sup-
porting the apparent disconnect between reliance
on plausible features and OOD classification per-
formance. We find a similar behavior for other
approaches, OOD datasets, plausibility metrics and
attribution techniques (Appendix F).

OOD plausibility performance is not predictive
of OOD improvements. Given that we do not
find in-domain classification performance or attri-
bution plausibility to be predictive of OOD perfor-
mance, we now investigate if there is any correla-
tion at the OOD level. In order to test this, we use
the Movies and Yelp-50 datasets. Figure 6c shows
the association between OOD plausibility AUC

(computed with IxG4) and classification F1-Macro,
for both datasets. Similarly to what we observed
in-domain, there is no correlation between OOD
plausibility scores and its corresponding classifica-
tion task performance.

The combination of both these results highlights
the difficulty of predicting OOD results, and brings
forth another challenge of the ER setup, where we
need to make decisions about design choices based
on in-domain performance, that does not seem to
be linked to OOD generalisation.

6 Conclusion

In this work we take a step towards a better under-
standing of how explanation regularisation impacts
a model beyond its classification performance. In
particular, we aim to study both in- and out-of-
domain settings, with a focus on how the plausibil-
ity of input attributions is affected, and what is the
relationship between increased reliance on plausi-
ble tokens and robustness to OOD conditions.

We find that ER, unless constrained to meet a
‘lower-bound’ on the explanation loss computed
with a global attribution technique, does not lead
to models that effectively rely on plausible tokens.
In fact, we observe a disconnect between reliance
on plausible tokens and OOD robustness, with (i)
OOD classification improvements not being pre-
dicted by increased plausibility; and (ii) OOD clas-
sification performance degrading when models are
constrained to rely more on plausible tokens.

Our findings highlight relevant challenges for
ER and suggest future research questions: (i) how
to achieve a better balance between solving the clas-
sification task and constraining the model to attend
to plausible tokens, e.g., by learning which layers
and attention heads of the Transformer model to
regularise (see Fernandes et al. (2022)), or (ii) by
allowing the model to learn to select which ratio-
nales to use during training (see Arous et al. (2021);
Carton et al. (2022)); and (iii) how would input at-
tributions for an ER model be impacted by using
more informed, while still efficient, vector-based
global guidance techniques as part of ER design
choices (and not only as an analysis tool).

4MOVIES consists of long inputs, resulting in prohibitive
runtime for batch sizes that do not result in OOM errors, on a
Nvidia A100, when using DX and ALTI. Thus, we report IxG,
as it can be computed for both datasets in the figure.
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Limitations

In this section we identify some limitations of our
work. However, we do note that we focus on the
limitations that stem from design choices of our
analysis, and not on the limitations we ‘inherit’ and
that are part of the base problem, e.g., whether plau-
sibility should be a desired property of explanations
(Jacovi and Goldberg, 2021).

Data. In terms of data, we identify two limita-
tions. The first limitation related with data concerns
the limited number of datasets per task that include
annotations, making it difficult to analyse the im-
pact of ER on the attributions on out-of-domain
settings. Secondly, we use only the task of senti-
ment analysis to study the disconnect between ER’s
robustness to OOD conditions and the plausibility
of attributions. This is also connected to the first
discussed limitation — a full ER setup requires
rationale-annotated data of an appreciable dimen-
sion for training, and also multiple OOD datasets,
including at least one with rationale-annotated data.
However, the questions we ask are deeply inherent
to ER, and it seems unlikely that alternative tasks
would be impacted differently.

Models. We use a single pre-trained model,
BIGBIRD-ROBERTA-BASE (Zaheer et al., 2020).
This choice follows existing work on ER (in par-
ticular applied to out-of-domain conditions), and
allows evaluating datasets with long examples, but
it does mean that we do not assess how ER im-
pacts attributions for different pre-trained models,
in particular, with varying number of parameters.

Attribution Techniques. Two of the techniques
we use, ALTI (Ferrando et al., 2022) and DecompX
(Modarressi et al., 2023), cannot be applied to long
examples, leading either to prohibitive runtime, or
to out-of-memory errors (on a single GPU NVIDIA
A100), even with a batch size as low as 2. Thus,
we cannot apply them to the OOD movies dataset,
and have to limit our manually annotated split of
Yelp to a moderate maximum sequence length. Yet,
on Yelp, these represent a reasonable portion of the
dataset’s length distribution.

Ethical Considerations

This work studies the synergy between models that
attribute more plausibly, i.e., more aligned with
humans, and improved OOD performance. We use
existing datasets, that include human annotations

of the relevant tokens that explain why an example
is classified with a given label. These annotations
might be biased, include mistakes, etc. By training
a text classifier to become more aligned with those
annotations we might further magnify the biases of
the annotation process.
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A Attribution Techniques

We use a total of six attribution techniques in this
work. They serve two main roles, acting as: (i)
guided attribution techniques, when used as part of
ER training to compute the explanation loss, Lexpl;
and (ii) non-guided attribution techniques, when
used to evaluate the impact of ER on input attribu-
tions. The attribution techniques we use are either
gradient-based or vector-based. In the case of the
latter, they differ on the components of the Trans-
former encoder architecture (Vaswani et al., 2017)
that are used, and also on multiple design choices.
Finally, all techniques provide global attributions,
with the exception of attention, which is a local
attribution technique.

Attention. Attention attributions correspond to
the normalised top-layer attention weights. These
are directly obtained from the Transformer model
architecture. We use the values from the [CLS]
token, averaged across heads.

Attention-Rollout. Attention-Rollout (Abnar
and Zuidema, 2020) attributions are obtained
by recursively aggregating attention scores. As
in the original implementation, we incorporate
the residual connection by adding the identity
matrix (I) to the original attention matrix (Al),
followed by a normalization step, resulting in
Al

R = 0.5Al + 0.5I. We use the values from the
[CLS] token, averaged across heads.

InputXGradient. INPUTXGRADIENT (Shriku-
mar et al., 2017) attributions are obtained by multi-
plying the input value by the corresponding gradi-
ent with respect to the output target label. We use
the Captum package implementation (Kokhlikyan
et al., 2020).

ALTI. ALTI (Ferrando et al., 2022) is a vector-
based attribution technique based on the attention
block decomposition introduced in Kobayashi et al.
(2021). This decomposition factors in not only
the attention weights, but also the value vectors,
the output projection, as well as the first residual
connection and layer normalization. The main dif-
ference lies in how the value of the contribution
of a token at the layer level is computed — ALTI
takes into account the output vector of the atten-
tion block and uses the L1 norm instead of the L2
norm. Furthermore, ALTI then aggregates the local
attributions over the full model using a rollout-like

approach, resulting in global attributions. We adapt
the available code.5

DecompX. DecompX (Modarressi et al., 2023),
similarly to ALTI, is a vector-based attribution
technique based on the attention block decompo-
sition by Kobayashi et al. (2021). The main dif-
ferences are twofold: first, DecompX incorporates
all the Transformer encoder components, includ-
ing the feed-forward networks. Second, instead
of using a recursive approach like rollout to aggre-
gate the local attributions, DecompX propagates
‘decomposed token representations’ through the
model. We also report DecompX-Classifier, which
includes the classification head, and whose output
is signed. We adapt the available code.6

B Impact of Local vs Global Guided
Attributions in ER

We can use attention-rollout to show why we ex-
pect global attributions to be more impactful than
the local counterparts when supervising a model
with explanations. Rollout was introduced in Ab-
nar and Zuidema (2020), and makes it possible
to obtain global attributions by recursively aggre-
gating vector-based local attributions, such as at-
tention. By defining attention-rollout recursively,
al = ρ(hl,hl−1;al−1), where al corresponds to
attention-rollout weights at layer l, and hl to the
hidden states at layer l, we can write its gradient.
Namely, for the lth layer, we get:

∂al
∂θ

=
∂

∂θ
ρ(hl,hl−1;al−1)

=
∂

∂hl
ρ(hl,hl−1;al−1)×

∂hl

∂θ

+
∂

∂hl−1
ρ(hl,hl−1;al−1)×

∂hl−1

∂θ

+
∂

∂al−1
ρ(hl,hl−1;al−1)×

∂al−1

∂θ︸ ︷︷ ︸
recursion

.

(3)

By inspecting Equation 3, we can observe how
the impact of guiding with a global vector-based
technique goes beyond that of a local technique
– there we have al = ρ(hl,hl−1), meaning that
the last recursion term of the gradient that prop-
agates to the layers below would not be part of
the computation. This difference seems to indicate
that using a global attribution technique, such as

5https://github.com/mt-upc/transformer-contributions
6https://github.com/mohsenfayyaz/DecompX

https://github.com/mt-upc/transformer-contributions
https://github.com/mohsenfayyaz/DecompX


6543

(a) Local (b) Global

Figure 7: Illustration of local versus global attribution
techniques as tools for ER. Local attributes to the input
of the top-layer. Global attributes to the input tokens
using the full model, and potentially constraining the
model more strongly to follow human annotations.

attention-rollout, as E in the explanation loss will
more strongly limit the model’s ability to condition
on features other than the rationale tokens. We
show a visual interpretation of this difference in
Figure 7.

C Attributions Techniques Faithfulness

To further validate our choice of attribution tech-
niques, we assess the faithfulness of the used input
attributions by computing normalised sufficiency
and comprehensiveness (Carton et al., 2020). These
are computed as follows:

NullDiff(x, ŷ) = max(0, p(ŷ|x)−p(ŷ|x, 0)) (4)

NormSuff(x, ŷ, α) =
Suff(x, ŷ, α)− Suff(x, ŷ, 0)

1− Suff(x, ŷ, α)
(5)

NormComp(x, ŷ, α) =
Comp(x, ŷ, α)

Comp(x, ŷ, 1)
, (6)

with ŷ = arg max p(y|x). Both normalised suf-
ficiency and comprehensiveness, computed with
the top 1%, 20%, 40%, 60%, 80%, and 100%
most attributed tokens, can be seen in Figure 8.
As expected, both metrics improve the more top-
attributed tokens, based on a given attribution tech-
nique, are used as input to the classifier. Further-
more, we find DecompX, DecompX-Classifier, and
ALTI to perform the best. This corroborates the
results reported on their respective works.

D Plausibility Metrics

We employ three metrics introduced in Fomicheva
et al. (2021, 2022) to measure how well the input
attributions match the human annotated tokens.

AUC Score. Computes the Area Under the Re-
ceiver Operating Characteristic Curve score, which
considers multiple threshold values for the attribu-
tions with human annotations as the target label.
This metric has been used in past works (DeYoung
et al., 2020; Mathew et al., 2021; Fernandes et al.,
2022; Resck et al., 2024).

Average Precision. As mentioned in Fomicheva
et al. (2021), AUC scores might be optimistic when
dealing with unbalanced data. That is relevant
when working with rationales, where the annotated
tokens might correspond to a small portion of the
input. Thus, we report the average precision score,
which summarizes the average-precision curve as
a weighted average of the precision scores at the
different thresholds,

AP =
∑
n

(Rn −Rn− 1) Pn, (7)

where Pn and Rn correspond to the precision
and recall values at a given threshold.

Recall@k. Measures the average recall for a spe-
cific number of tokens k. It is calculated as

r@k =
|{x ∈ rk(x) : x < k}|

N
, (8)

where N is the number of annotated tokens for
x, and r(.) is a function that retrieves the rank of
all annotated tokens.

E Input Attributions Correlations

As discussed in Section 5, one of the tools we use
to study the impact of ER on the input model at-
tributions is to measure changes in the correlation
of attribution scores for a fixed technique across
approaches, e.g., how does attention correlate base-
line vs baseline and baseline vs ER+ATT. Here, for
each attribution technique, we iterate over all ex-
amples, sample two model versions, select the cor-
responding attributions for the BASELINE and ap-
proach we want to assess, and then compute the re-
spective Kendall rank correlation coefficient7. We

7https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.kendalltau.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
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Figure 8: Normalised sufficiency and comprehensiveness (↑) scores for the top-x% tokens according to a given
attribution technique, for SST-Dev, using the BASELINE approach.

show results for SST-Dev, Yelp-50, and Movies us-
ing all ER approaches and attribution techniques in
Figure 9. The conclusions are as discussed in Sec-
tion 5: ER techniques based on attention (ER+ATT

and ER-C+ATT) impact only the attention attri-
butions, while global constrained ER approaches
(ER-C+ATTR and ER-C+IXG) are able to impact
all reported attribution techniques.

Alternatively, it is also possible to compare cor-
relation coefficients for a pair of attribution tech-
niques for a given choice of training objective (e.g.,
the correlation between attention and attention-
rollout for baseline or ER+ATT) and how those cor-
relations change as we vary the training objective.
We compute average Kendall rank correlation val-
ues and report them in Figure 10. The obtained re-
sults agree with our previous findings: (i) attention
as a guided attribution technique (ER+ATT and
ER-C+ATT) impacts mostly only attention attribu-
tions; (ii) global guided attribution techniques have
little impact when used in joint ER (ER+ATTR
and ER+IXG); (iii) only the constrained ER ap-
proaches with global guided attributions techniques
are able to clearly impact most attributions; and (iv)
for OOD most patterns are the same, despite less
noticeable. Note how this correlation analysis is
different from the previous. First, here we inspect
averages (the number of data points makes it un-
feasible to report histograms of correlation coeffi-
cients), which has the potential to be misleading.
Second, we correlate across attribution techniques
instead of correlating the same attribution across
approaches, which leads to observations that are
more complex and difficult to interpret.

F Predicting OOD Performance

To complement the results discussed in Section 5.3,
we present findings on a broader range of OOD
datasets and plausibility metrics criteria, also in-
cluding joint ER+ATT and ER+ATTR results. Re-
sults are shown in Figure 14. Similarly to Section
5.3, no in-domain criteria exhibits correlation with
OOD classification performance.

G Data

For in-domain and training data we use SST-2
(Socher et al., 2013), following the heuristic al-
gorithm proposed in Carton et al. (2020) to ob-
tain instance-level rationales8. For out-of-domain
we use: Amazon-Reviews9 (Hou et al., 2024),
IMBD10 (Maas et al., 2011), Movies11 (Zaidan and
Eisner, 2008; DeYoung et al., 2020), and Yelp12

(Zhang et al., 2015). From these OOD datasets
only Movies includes human annotated rationales.
Some OOD evaluation datasets have several thou-
sand examples. In those cases we sample 5,000
examples. More details on the final data are de-
scribed in Table 6. All data is in English.

8https://github.com/BoulderDS/
evaluating-human-rationales/blob/master/scripts/
download_and_process_sst.py

9https://huggingface.co/datasets/McAuley-Lab/
Amazon-Reviews-2023

10https://huggingface.co/datasets/stanfordnlp/
imdb

11https://huggingface.co/datasets/
eraser-benchmark/movie_rationales

12https://huggingface.co/datasets/fancyzhx/
yelp_polarity

https://github.com/BoulderDS/evaluating-human-rationales/blob/master/scripts/download_and_process_sst.py
https://github.com/BoulderDS/evaluating-human-rationales/blob/master/scripts/download_and_process_sst.py
https://github.com/BoulderDS/evaluating-human-rationales/blob/master/scripts/download_and_process_sst.py
https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023
https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/eraser-benchmark/movie_rationales
https://huggingface.co/datasets/eraser-benchmark/movie_rationales
https://huggingface.co/datasets/fancyzhx/yelp_polarity
https://huggingface.co/datasets/fancyzhx/yelp_polarity
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Train Dev Test % Positive Avg. / Max Length Source Rationales

SST (Socher et al., 2013) 6,920 872 1,821 ≈ 50 % ≈ 25 / ≈ 65 Movies ✓
MOVIES (Zaidan and Eisner, 2008; DeYoung et al., 2020) - - 399∗ 50.0 % 786 / 1024 Movies ✓

IMDB (Maas et al., 2011) - - 5,000 50.7 % 288 / 1024 Movies ×
AMAZON (MOVIES AND TV) (Hou et al., 2024) - - 5,000 77.5 % 107 / 1024 Products ×

YELP (Zhang et al., 2015) - - 5,000 50.6 % 168 / 1024 Businesses ×
YELP-50∗∗ - - 50 50.0 % 84 / 151 Businesses ✓

Table 6: Sentiment analysis datasets, including percentage of examples labeled as positive, average and maximum
length of inputs (after truncating), source of the data, and whether rationales are provided. ∗ – This includes both
dev and test examples. ∗∗ – This corresponds to the subset of annotated data described in Section G.1.

Average F1-Macro

BASELINE 93.71 ± 1.62

ER+ATT 93.98 ± 1.80
ER+ATTR 94.24 ± 2.07
ER+IXG 93.30 ± 1.91

ER-C+ATT 94.64 ± 2.41
ER-C+ATTR 92.64 ± 2.61
ER-C+IXG 94.51 ± 3.17

Table 7: F1-Macro scores (↑) for YELP-50.

G.1 Extra OOD Annotated Data

We conduct our OOD analysis on the Movies
dataset, an available sentiment analysis dataset with
human rationale annotations. To further support
our claims with respect to increased robustness to
OOD conditions, we annotated a split of 50 exam-
ples of the Yelp dataset. We first filter out exam-
ples that will result in more than 150 subtokens
when using the tokenizer from the pre-trained en-
coder model we use during training (so that we
can compute attributions with all available metrics,
in particular ALTI (Ferrando et al., 2022) and De-
compX (Modarressi et al., 2023), which we find to
result in prohibitive runtime or OOM errors with
long sequences). Then, we sample 55 examples at
random from those, tokenize them using the En-
glish tokenizer from spaCy (Honnibal et al., 2020),
and manually annotate the first five, selecting all se-
quences of text that offer evidence for the gold label.
These are used as few-shot examples for a prompt
to META-LLAMA-3-8B-INSTRUCT13 (AI@Meta,
2024) that outputs automatic annotations for the
remaining 50 examples. Finally, we post-edit the
automatic annotations whenever necessary.

Average model classification performance for
this split of data is shown in Table 7.

13https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

H Hyperparameters and Training

Optimizer and Scheduler. We use AdamW
(Loshchilov and Hutter, 2018) as our optimizer,
with β values set to (0.9, 0.98) and the weight de-
cay coefficient set to 0. For the learning rate we use
a linear scheduler, with 10% of training steps as
warm-up. For constrained optimisation parameters
we use RMSprop (Tieleman and Hinton, 2012).

Hyperparameter Selection. We choose the com-
bination of learning rate and maximum number of
training epochs (since we use a linear scheduler
with 10% of training steps as warm-up) with the
lowest cross-entropy loss over three runs. For the
explanation regularised approach we explore the
same hyperparameters, plus the λ weight. We se-
lect based on cross-entropy loss so that different
values of λ can be directly compared.

For the constrained approach, we first train a
model (3 seeds) using L = Lexpl and use the av-
erage minimum explanation train and validation
explanation losses to guide our choice of bounds
btrain and bval. For bval we use the average of the
minimum validation loss. For btrain we use a value
close to 1.5 times the average of the minimum
training loss. Then, we choose the combination
of learning rate and constrained optimizer learning
rate that minimizes the average cross entropy loss.

For the baseline we explore learning rate ∈
{2, 3, 5× 10−5} and maximum number of epochs
∈ {15, 25}. For the joint approach we explore
the same space as the baseline model and λ ∈
{0.6, 1.0, 1.4}, following a set of choices aligned
with previous work on ER for OOD robustness. For
the constrained approach we explore learning rate
∈ {2, 3, 5 × 10−5} and constrained learning rate
∈ {1 × 10−1, 5 × 10−2}. All experiments use a
batch size of 32. Final choices can be seen in Table
8. The experiments with multiple lambdas uses the
same choices as the baseline model.

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Baseline Value

Learning Rate 3× 10−5

Train Epochs 25

Joint Attention Value

Learning Rate 2× 10−5

Train Epochs 25
λ 1.0

Joint Rollout Value

Learning Rate 3× 10−5

Train Epochs 15
λ 1.0

Joint IxG Value

Learning Rate 2× 10−5

Train Epochs 25
λ 1.0

Constrained Attention Value

Learning Rate 2× 10−5

Train Epochs 25
Constrained Learning Rate 5× 10−2

btrain 0.035
bval 0.031

Constrained Rollout Value

Learning Rate 3× 10−5

Train Epochs 25
Constrained Learning Rate 1× 10−1

btrain 0.030
bval 0.031

Constrained IxG Value

Learning Rate 2× 10−5

Train Epochs 25
Constrained Learning Rate 1× 10−1

btrain 0.35
bval 0.35

Table 8: Hyperparameters choices for all approaches.

Training. During training we choose a model
checkpoint based on average validation loss for the
baseline and the joint explanation regularisation
approach. This follows Joshi et al. (2022) and en-
sures that the explanation loss of the ER approach
directly influences model selection.

For constrained optimization, we choose the
model checkpoint with the lowest validation cross-
entropy loss, provided that the validation explana-
tion loss is Lexplval < 1.1× bval. This ensures that
we compare model checkpoints where the guided
attribution technique is learning to predict the an-
notated rationales, according to the defined bound.
Selecting a checkpoint based on the same criteria
would have not been possible for the joint approach,
as none of the runs converges to an explanation loss
value that meets the defined validation bound.

Unless mentioned otherwise, we report results

over 15 seeds.14 All our experiments are devel-
oped using a single Nvidia A100 40GB GPU, and
implemented with PyTorch (Paszke et al., 2019)
and PyTorch Lightning (Falcon and The PyTorch
Lightning team, 2019).

Attribution Techniques. Following Joshi et al.
(2022), we scale the attributions E(Cθ, x) by
100 when computing the explanation loss and re-
normalize them with softmax. We take it as part of
the approaches that use attention as the guided attri-
bution technique, ER+ATT and ER-C+ATT. For
INPUTXGRADIENT we keep all default choices
of the Captum package. The output attributions
are aggregated into token-level attributions via
sum, and normalised with the L2 norm. For DE-
COMPX/DECOMPX-C15, and ALTI16 we keep all
default choices part of the original work. For attri-
butions techniques that output ‘signed’ attribution
scores, i.e., IXG and DX-C, we take the absolute
value of the attribution score.

Classifier. Following Joshi et al. (2022), we
use a pre-trained Transformer encoder model,
GOOGLE/BIGBIRD-ROBERTA-BASE17 (Zaheer
et al., 2020), followed by a linear layer that uses
as input the top-layer representation of the [CLS]
token, with TANH as the non-linearity, and no
classifier dropout.

14We found ER-C+IXG unstable to train, with only around
one in three seeds minimising the CE loss while also min-
imising the explanation loss. Thus, it required training more
models. In practice, we still report results over 15 seeds.

15https://github.com/mohsenfayyaz/DecompX
16https://github.com/mt-upc/

transformer-contributions
17https://huggingface.co/google/

bigbird-roberta-base

https://github.com/mohsenfayyaz/DecompX
https://github.com/mt-upc/transformer-contributions
https://github.com/mt-upc/transformer-contributions
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
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Figure 9: Average Kendall Rank correlation between attribution techniques of the different approaches. The BS
(Baseline) and ER (corresponding ER approach) text corresponds to the average correlation values.
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Figure 10: Average Kendall Rank correlation between attribution techniques for the different approaches.
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Figure 13: Average AUC plausibility scores per-layer (↑). We report only techniques that output per-layer
attributions.
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(a) SST-Dev Classification as Predictor
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(b) SST-Dev Plausibility as Predictor - AUC with Attention
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(c) SST-Dev Plausibility as Predictor - AUC with Attention-Rollout
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(d) SST-Dev Plausibility as Predictor - AUC with DecompX-Classifier
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(e) SST-Dev Plausibility as Predictor - Average Precision with DecompX-Classifier
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(f) SST-Dev Plausibility as Predictor - Recall@k with DecompX-Classifier

Figure 14: Scatter plot showing the relationship between in-domain (SST-Dev) measurements (F1-Macro classifica-
tion scores and plausibility scores computed with different metrics and attribution techniques) for multiple datasets.
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