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Abstract

Traditional language model compression tech-
niques, like knowledge distillation, require a
fixed architecture, limiting flexibility, while
structured pruning methods often fail to pre-
serve performance. This paper introduces Itera-
tive Structured Knowledge Distillation (ISKD),
which integrates knowledge distillation and
structured pruning by progressively replacing
transformer blocks with smaller, efficient ver-
sions during training. This study validates
ISKD on two transformer-based language mod-
els: GPT-2 and Phi-1. ISKD outperforms L1
pruning and achieves similar performance to
knowledge distillation while offering greater
flexibility. ISKD reduces model parameters
- 30.68% for GPT-2 and 30.16% for Phi-1 -
while maintaining at least four-fifths of perfor-
mance on both language modeling and com-
monsense reasoning tasks. These findings sug-
gest that this method offers a promising balance
between model efficiency and accuracy.

1 Introduction

Transformer-based language models, such as
GPTs (Radford et al., 2018), Llama (Touvron et al.,
2023), and Phi (Gunasekar et al., 2023), have be-
come essential in natural language processing (Ra-
hali and Akhloufi, 2023). These models, with pa-
rameter counts ranging from millions to billions,
achieve high accuracy and versatility across various
applications (Islam et al., 2023). However, their
large size leads to scalability and deployment chal-
lenges due to high computational demands (Keles
et al., 2023).

Efficient transformer model inference has been
explored through various methods (Tay et al.,
2022), with this paper focusing on pruning and
knowledge distillation. Pruning removes less im-
portant weights, with structured pruning targeting
entire layers (Ma et al., 2023), while unstructured
pruning targets individual weights. Knowledge dis-

Figure 1: A transformer model where block i is sub-
stituted with a compact block, Bcompact, containing two
internal layers with hidden dimension dB. Including
down- and up-projection for compatability.

tillation trains a smaller "student" model to repli-
cate the behavior of a larger "teacher" model (Sanh
et al., 2019). Pruning reduces model size by remov-
ing weights from pre-trained models, while knowl-
edge distillation transfers knowledge from larger
to smaller models, often at the cost of performance.
Pruning can cause performance degradation and
requires extensive fine-tuning, while knowledge
distillation uses a fixed architecture without grad-
ual compression.

To address these issues, we propose iterative
structured knowledge distillation (ISKD), which
combines both methods. ISKD gradually replaces
full transformer layers with smaller, retrained com-
pact blocks, combining structured pruning with
knowledge distillation. A visual representation of
an ISKD pruned model is shown in Figure 1.

Our contributions are: 1) We propose ISKD 1

2) We evaluate ISKD on language modeling and
commonsense reasoning with GPT-2 and Phi-1. 3)
We provide an in-depth analysis of the efficiency
of ISKD.

2 Methodology

In this section, we present the compact block ap-
proach, describe the training of these smaller layers,
and outline the setup, including model selection

1Code is available at https://github.com/
Malthehave/ISKD-COLING-2025.

https://github.com/Malthehave/ISKD-COLING-2025
https://github.com/Malthehave/ISKD-COLING-2025
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and pruning details.

2.1 Compact Block

Our goal is to compress transformer blocks by cre-
ating smaller, more efficient models. We introduce
a compact block, Bcompact, designed to mimic a
compressed version of the transformer blocks in
the pre-trained model (see Figure 1). For a trans-
former model with hidden dimension dfull, Bcompact
has a smaller hidden dimension, dB, and fewer at-
tention heads. To maintain compatibility, we down-
and up-sample weights via linear projection. These
compact blocks are introduced iteratively, requiring
minimal calibration.

Although Bcompact shares the same fundamental
architecture of the pre-trained model, any model
architecture with fewer parameters than the orig-
inal block could be used. The decision to share
architectures was driven by the goal of retaining
the model’s functionality, which we hypothesize is
easier with similar architectures.

2.2 Block Training

After substituting a specific block with Bcompact,
the model is fine-tuned on a dataset similar to its
original training dataset. We utilize 40M tokens
from the TinyStories dataset (Eldan and Li, 2023),
chosen for its high-quality, compact short stories,
allowing efficient fine-tuning. In contrast, Phi-1
was pre-trained on 54B tokens. Each pruned model
is calibrated on the TinyStories subset for 1 epoch
using the AdamW optimizer, with weight decay of
0.01, cross-entropy loss, and a batch size of 16. A
dual learning rate strategy is applied, prioritizing
updates to the compact block while allowing the
rest of the model to adapt. Learning rates are set as
follows:
Compact Block The new compact block, with
randomly initialized weights, uses a learning rate
of αnew = 1e− 4, consistent with the learning rate
used in the original fine-tuning of Phi-1 (Gunasekar
et al., 2023).
Existing Model Components To fine-tune pre-
trained components without overwriting existing
knowledge we experiment with a learning rate 5
times smaller at αold = 2e− 5.

2.3 Setup

We evaluate ISKD with two generative decoder-
only language models: GPT-2 (117M parameters)
and Phi-1 (1.4B parameters).

For GPT-2, we design Bcompact with two layers
of size 128, an intermediate MLP size of 512, and
two attention heads, resulting in a 5.11% parameter
reduction per block substitution and a total model
reduction of 61.32% when all 12 blocks were sub-
stituted. For Phi-1, we design Bcompact with four
layers, a hidden size of 512, an intermediate MLP
size of 2048, and one attention head. Each substi-
tution reduces Phi-1’s parameters by 2.5%, with
a total possible model reduction of 60.32% after
24 block substitutions. These configurations are
chosen to achieve a similar total parameter reduc-
tion of about 60% across both models. It should
be noted that further exploration of these configu-
rations could likely yield more efficient solutions.

3 Results

In this section, we introduce the datasets for eval-
uating ISKD on GPT-2 and Phi-1, followed by a
comparison with two established pruning methods.

3.1 Data
We evaluate the pruned models in two ways. First,
we use the Children’s Book Test (CBT) (Hill et al.,
2016) to test a model’s ability to predict the correct
sentence out of ten common noun options, given
no prior context, which challenges the model’s un-
derstanding of language structure and context-free
prediction. Second, we use HellaSwag (Zellers
et al., 2019) to evaluate commonsense reasoning by
presenting the model with an incomplete sentence
followed by four possible continuations, which re-
quires the model to select the most likely continua-
tion. We use the common zero-shot setup for both
datasets.

3.2 Results of Pruning GPT-2
We apply ISKD to GPT-2 and evaluate performance
on CBT and HellaSwag, using the random block
sequence 6, 8, 4, 10, 2, 12, 3, 11, 5, 9, 7, 1. As out-
lined in Section 4.1, random sequences work effec-
tively as long as early layers are not pruned first.
For the purpose of this study, we define early layers
as the first third of the model’s layers, following
the approach outlined by Tenney et al. (2019). In
their study of BERT-Large, which has 24 layers,
they considered the first seven layers to be early
layers, as most examples can be correctly classi-
fied at these layers, likely due to the presence of
heuristic shortcuts. To evaluate the effectiveness of
our approach, we compare our results to those of a
baseline uniform classifier.
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Figure 2: Test results (accuracy) from applying ISKD on 12 blocks of GPT-2 and 24 blocks of Phi-1.

As shown in Figure 2, substituting six blocks re-
duces parameters by 30.68%, maintaining 80.04%
performance on CBT and 94.25% on HellaSwag.
While performance declines gradually with each
substitution, the impact is minimal across the first
six block substitutions.

3.3 Results of Pruning Phi-1

We apply ISKD to Phi-1 with a random block se-
quence while avoiding early block pruning. Figure
2 shows that ISKD reduces parameters by 30.16%
while improving CBT performance by 4.93% and
maintaining 92.43% performance on HellaSwag.
After the first block substitution, CBT performance
improves, while HellaSwag performance initially
drops by 7.08%, but subsequent substitutions have
minimal impact. Degradation to baseline occurs
only after a 40.21% reduction in parameters.

Notably, the trajectory of maintained perfor-
mance for Phi-1 appears irregular, particularly com-
pared to GPT-2. This irregularity may indicate that
the fine-tuning process for Phi-1 has not fully con-
verged, which could stem from the model’s larger
size and greater complexity. Additional research
could examine the relationship between fine-tuning
duration and performance retention to ensure more
consistent results across substitution sequences.

3.4 Comparison to knowledge distillation and
structured pruning

To compare the effectiveness of ISKD, we conduct
a comparative evaluation on GPT-2 against two al-
ternative compression techniques: knowledge dis-
tillation (Hinton, 2015) and structured L1 pruning
(Yang et al., 2019). The L1 structured pruning
approach involves removing entire rows from the
weight matrices to reduce parameters. To ensure a
fair comparison, both pruned models are trained for
six epochs on the TinyStories dataset, matching the
training conditions of ISKD. Six epochs because

Algorithm Reduction CBT HellaSwag

ISKD 30.68% 79.82% 94.25%
Knowledge Dis. 34.17% 85.97% 90.23%
L1 Pruning 30.73% 78.12% 91.48%

Table 1: Maintained performance on CBT and Hel-
laSwag for ISKD, knowledge distillation, and structured
L1 pruning algorithms with their reduction in parameter
count.

for ISKD to reach a 30.68% parameter reduction it
will have been fine-tuned six times.

As shown in Table 1, ISKD outperforms struc-
tured pruning on both CBT and HellaSwag, indicat-
ing superior performance retention. While ISKD
also outperforms knowledge distillation on Hel-
laSwag, it performs slightly lower on CBT. This
result suggests that ISKD’s current training setup
and gradual compression strategy may not fully pre-
serve the nuanced linguistic understanding required
for CBT, which evaluates syntax and context-free
predictions.

This highlights an opportunity to refine ISKD
further. Future work could investigate whether al-
ternative fine-tuning datasets with greater linguistic
complexity or diversity could better support the re-
tention of capabilities evaluated by CBT. Similarly,
exploring adjustments to the architectural proper-
ties of the compact blocks, such as their hidden
size or number of attention heads, may help pre-
serve performance on tasks with higher linguistic
demands.

4 Analysis and Discussion

In this section, we analyze the block substitution
sequence and its impact, followed by an examina-
tion of each compact block’s output sensitivity on
the final model.
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Figure 3: Results from pruning four strategically chosen and five randomly chosen block sequences in GPT-2. Both
evaluated on test accuracy.

4.1 Block Substitution Sequence
While both GPT-2 and Phi-1 are evaluated, our
analysis focuses on GPT-2 due to its lower compu-
tational requirements. We report results for GPT-2,
with the assumption that similar trends likely apply
to larger models like Phi-1.

To assess the robustness of ISKD regarding
block substitution order, we experiment with four
block sequences: beginning to end, end to begin-
ning, middle-out, and alternating. As shown in
Figure 3, sequences substituting early blocks first
(beginning to end and alternating) perform worse,
while middle-out performs best. This suggests the
critical role of early blocks and the relatively lower
importance of middle blocks. Prior work has shown
that early transformer layers capture basic syntac-
tic information (Tenney et al., 2019), which may
explain the impact of substituting these blocks.

To further assess ISKD’s robustness with respect
to random block substitution sequences, we ap-
ply it to five randomly generated block sequences,
pruning the first six blocks in each. Figure 3
shows that random sequences exhibit similar per-
formance trajectories during the substitution pro-
cess. These findings reinforce that ISKD’s effec-
tiveness is mainly affected by early block substitu-
tions, while substitution order in middle blocks has
minimal impact. The figure also shows that the cu-
mulative effect of the number of blocks substituted
remains a significant factor.

4.2 Sensitivity Analysis
Minimal impact on performance, despite alter-
ations in the block substitution sequence, prompts
an investigation into the functional contribution
of individual blocks. Specifically, we examine
whether substituted blocks significantly influence
model performance or if they indicate overparame-
terization. The role of residual connections linking

Figure 4: NSSi(x, y) values of blocks after ISKD sub-
stitution compared to NSSi(x, y) of blocks in unpruned
GPT-2. Computed from the validation set.

the input to the output of Bcompact raises the ques-
tion of potential redundancy in its computations.

To investigate this, we conduct a sensitivity
analysis to quantify each block’s impact on GPT-
2’s output using a gradient-based sensitivity score
SSi(x, y) (Bansal et al., 2023):

SSi(x, y) = E(x,y)∼Dval

[∣∣∣∣bi(x)⊙
∂L(y, ŷ(x))

∂bi(x)

∣∣∣∣]
(1)

Here, bi represents the output of the i-th block,
and L is the cross-entropy loss for sequences of T
tokens x and labels y from the validation set. We
normalize sensitivity scores and compare across n
blocks, applying softmax to get NSSi(x, y) values
for each of the i = 12 pruned models.

Figure 4 shows NSSi(x, y) values after apply-
ing ISKD on each block. No block has a value of
zero, indicating that all compact blocks contributed
to the model’s output. Note that

∑n
i=1NSSi(x, y)

does not equal 1 because the scores reflect values
after each block substitution.

Figure 4 also shows that the first five compact
blocks align closely with their unsubstituted coun-
terparts, suggesting that Bcompact successfully ap-
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proximates the functional roles of its larger coun-
terpart. Substituting the final block in the sequence,
which was the first block in the model, leads to a
sensitivity spike of 74%. As discussed in Subsec-
tion 4.1, this also suggests that early blocks play a
critical role, indicating further fine-tuning is needed
for the final compact block.

5 Conclusion

This paper introduced ISKD as a novel approach
to improving the efficiency of large language mod-
els. ISKD serves as an alternative to structured
pruning and knowledge distillation by combining
both methods. It avoids the performance loss as-
sociated with structured pruning and offers more
flexibility than distillation, which requires a fixed
architecture. ISKD reduces model parameters by
30.68% for GPT-2 and 30.16% for Phi-1. And it
maintains over 80% of their original performance
on language modeling and commonsense reasoning
tasks.

Future work could explore optimizing ISKD for
larger models, particularly reducing sensitivity in
early layers during pruning. Additionally, apply-
ing ISKD to other transformer architectures and
domains beyond language modeling may reveal
broader applications for efficiently scaling deep
learning models.

Limitations

The first main limitation of this study is the absence
of hyperparameter optimization that potentially un-
derestimates the full capabilities of ISKD. Tuning
parameters such as learning rates, batch sizes, and
compact block architectures could yield improved
performance retention or higher compression rates.
Choosing the right fine-tuning dataset could also
play an important role in performance. Another
limitation is that the evaluation relies on a limited
set of benchmarks. While CBT and HellaSwag
provide insights into language modeling and com-
monsense reasoning, they do not comprehensively
represent the diverse landscape of NLP tasks. A
more extensive evaluation across various task types
would offer a more robust assessment of the com-
pressed models’ capabilities.
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A Appendix - Computational Efficiency
Analysis of ISKD

In this appendix, we explain the computational ef-
ficiency analysis for ISKD, including the results
of Multiply-Accumulate Operations (MACs) and
Floating Point Operations (FLOPs) calculations.
As shown in Figure 5, ISKD reduces the number
of GMACs and GFLOPs required for a forward
pass in GPT-2 linearly. For every block substituted,
GMACs decreased by 0.85 and GFLOPs by 1.7.
These reductions illustrate the computational bene-
fits of ISKD in reducing overall model complexity.

The ISKD-pruned GPT-2 model with a 30.68%
parameter reduction, from Section 3.4, has 10.53
GMACs. In contrast, the knowledge-distilled
model achieves a 34.17% parameter reduction with
11.03 GMACs. Meanwhile, the unpruned GPT-2
model has a GMAC count of 16.11.

Figure 5: GMACS and GFLOPS VS. parameter reduc-
tion on GPT-2.
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