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Abstract

Language models perform differently across
languages. It has been previously suggested
that morphological typology may explain some
of this variability (Cotterell et al., 2018). We
replicate previous analyses and find additional
new evidence for a performance gap between
agglutinative and fusional languages, where
fusional languages, such as English, tend to
have better language modeling performance
than morphologically more complex languages
like Turkish. We then propose and test three
possible causes for this performance gap: mor-
phological alignment of tokenizers, tokeniza-
tion quality, and disparities in dataset sizes
and measurement. To test the morphological
alignment hypothesis, we present MorphScore,
a tokenizer evaluation metric, and supporting
datasets for 22 languages. We find some ev-
idence that tokenization quality explains the
performance gap, but none for the role of mor-
phological alignment. Instead we find that the
performance gap is most reduced when train-
ing datasets are of equivalent size across lan-
guage types, but only when scaled according
to the so-called “byte-premium”—the differ-
ent encoding efficiencies of different languages
and orthographies. These results suggest that
languages of particular morphological types are
not intrinsically advantaged or disadvantaged
in language modeling. Differences in perfor-
mance can be attributed to disparities in dataset
size. These findings bear on ongoing efforts to
improve performance for low-performing and
under-resourced languages.

1 Introduction

An enduring goal in NLP is to develop language-
general systems that achieve equal performance
on all languages (Bender, 2011). Yet to date per-
formance on languages other than English and a

All code and data for this paper available below.
https://osf.io/jukzd/?view only=
3d0d491d24074215a0ab81f72a693c16

small number of high-resource languages remains
extremely poor (Joshi et al., 2020; Ranathunga and
de Silva, 2022; Søgaard, 2022; Atari et al., 2023;
Ramesh et al., 2023). This has been attributed to a
lack of research on non-English languages (Blasi
et al., 2022), a lack of training data, and the pos-
sibility that evaluations are skewed towards high-
resource languages (Choudhury, 2023).

Beyond these systemic biases, it’s also possi-
ble that certain linguistic features lead to higher
or lower language modeling performance. Specif-
ically, it has been proposed that languages with
more complex morphology are harder to model
(Cotterell et al., 2018; Park et al., 2021). Languages
with more inflectional classes are morphologically
more complex, and thus harder to predict. This can
be described in terms of enumerative complexity
(Ackerman and Malouf, 2013).

Greater morphological complexity may lead to
worse language model performance, as morpholog-
ically rich languages tend to have a large number
of very infrequent word forms produced by combi-
nations of morphemes, which leads to data sparsity
(Shin and You, 2009; Bender, 2011; Botev et al.,
2022). This claim finds empirical support in Gerz
et al. (2018a), who demonstrated over a sample of
50 languages that morphologically rich (agglutina-
tive) languages performed worse than less morpho-
logically rich (fusional) languages. In the current
work (§3), we replicate this analysis and extend it
to much larger transformer models, both in mono-
lingual and multilingual settings. We, too, find a
robust performance gap between agglutinative and
fusional languages.

This effect is surprising, as there are reasons to
think that agglutinating languages should be eas-
ier for language models to learn. In studies on
first language acquisition, children are observed
to acquire more complex morphological systems
earlier, especially systems that are uniform and
transparent (Dressler, 2010). This may be due to

https://osf.io/jukzd/?view_only=3d0d491d24074215a0ab81f72a693c16
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the fact that the form-meaning correspondences in
these systems are more transparent, and thus more
informative (Slobin, 1973, 2013, 2001; Dressler,
2010). By adulthood, there are no observed cross-
linguistic differences in the level of acquisition of
different languages according to morphological ty-
pology. Therefore, there is no linguistic evidence
that would predict that any language should be
harder to learn than any other language.

Identifying the causes for this performance gap
could permit improved performance for morpho-
logically rich languages (which are often low-
resource) and reduce the performance inequity, po-
tentially enabling users and researchers to be better
able to use and do research on language models
(Khanuja et al., 2023) in their own languages. We
evaluate three possible explanations.

Hypothesis 1: Tokenization is not
Morphologically Aligned

When the token boundaries for a given word line
up with its morpheme boundaries, that tokenization
is morphologically aligned. For example, the word
‘books’ in English is composed of the root ‘book’
and the plural morpheme ‘-s’. A morphologically
aligned tokenization would be [‘book’, ‘s’]. By
contrast, [’boo’, ’ks’] and [’b’, ooks’] would be
morphologically misaligned tokenizations.

Morphological alignment of the tokenizer – or
lack thereof – could impact language modeling
performance, especially for morphologically rich
languages. For these languages, relatively frequent
morphemes are combined to create a large number
of unique word forms, which may be rare or com-
pletely novel. If the tokenizer does not segment
words along morphological boundaries, it may be
difficult for the language model to efficiently learn
and represent the structure of the language. Addi-
tionally, this may be further exaggerated for mor-
phologically complex languages, which tend to
have longer words.

This hypothesis would predict that agglutinative
languages have less morphologically aligned tok-
enizers than fusional languages and that morpho-
logical alignment negatively correlates with met-
rics of language model performance. To test this
hypothesis, Section 4.1 introduces MorphScore,
tokenizer evaluation for morphological alignment
in 22 languages. To our knowledge, this is the
first such multilingual evaluation for morphologi-
cal alignment of tokenizers.

Hypothesis 2: Tokenization is Worse

Second, morphologically rich languages might tend
to engender lower quality tokenizations. There is
no current consensus on how to evaluate intrinsic
tokenization quality (Zouhar et al., 2023; Chizhov
et al., 2024). But compression is one of the most
widely used metrics (Gallé, 2019; Rust et al., 2021,
inter alia). It is usually measured as sequence
length – the number of tokens needed to encode a
sequence – or corpus token count (CTC; Schmidt
et al., 2024). Better compression has been linked
to better language modeling performance because
it allows for more language data to fit into a fixed
sequence length (Gallé, 2019; Liang et al., 2023;
Dagan et al., 2024; Goldman et al., 2024); however,
there is some evidence to suggest that compression
is not directly linked to performance (Deletang
et al., 2024; Schmidt et al., 2024).

Agglutinative languages might have worse com-
pression on average because words tend to be
longer (Fenk-Oczlon and Fenk, 1999; Berg et al.,
2022) and there are more unique word forms (San-
dra, 1994). In Turkish, for example, a single root
may have millions of unique word forms (Hakkani-
Tür et al., 2002). It is therefore less likely that the
tokenizer will store whole words in its vocabulary,
instead representing words using multiple tokens.
This in turn may lead to worse compression and
thus worse performance. If we find worse compres-
sion for agglutinative languages than for fusional
languages, this may indicate that suboptimal com-
pression is related to the performance gap.

Another proposed metric of tokenization quality
is Rényi entropy (Zouhar et al., 2023), which mea-
sures how evenly distributed token frequencies are
over the whole vocabulary, penalizing very high-
and very low-frequency tokens. Rényi entropy has
been shown to be predictive of downstream task
performance (ibid). Because of their larger number
of low-frequency word forms, it is possible that
agglutinative languages have higher numbers of
low-frequency tokens (specific inflectional forms)
or higher numbers of high-frequency tokens (very
high frequency morphemes used in many different
word forms) than fusional languages. Therefore
if agglutinative languages display worse (higher)
Rényi entropy than fusional languages, this could
indicate that inefficient token frequency distribu-
tion contributes to the performance gap.

In Section 5, we collect both compression and
Rényi entropy and test whether agglutinating lan-
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guages have worse compression and Rényi entropy,
which would suggest that aspects of tokenization
quality are driving the performance gap.

Hypothesis 3: Less Training Data

The role of data quantity for pre-trained language
models is uncontroversial: the more, the better. In
some cases, increasing data can improve perfor-
mance more than increasing model size (Hoffmann
et al., 2024). Western European high-resource lan-
guages tend to be less morphologically rich, and
correspondingly, many morphologically rich lan-
guages are low-resource. Morphologically rich
languages have less annotated data (Botev et al.,
2022) and are less well researched. According to a
survey by Blasi et al., despite having more speakers
than most European languages, morphologically
complex languages like Bengali, Swahili, and Ko-
rean have only a small number of studies. German,
Romanian, French, and Italian have been better
studied, despite having many fewer speakers (Blasi
et al., 2022, Table 2). Therefore, data scarcity may
be driving the observed performance gap between
agglutinative languages and fusional languages.

Furthermore, recent work has shown that there
are disparities in the number of bytes needed to
convey the same amount of information in differ-
ent languages (byte premium; Arnett et al., 2024a),
due to orthographic encoding and linguistic rea-
sons. Morphologically rich languages are more
often written with non-Latin scripts, which require
more bytes to be represented in common encoding
standards like UTF-8. Morphologically rich lan-
guages also have longer words, which may amplify
the effect. Byte premiums may thus exacerbate the
data scarcity problem, and agglutinative languages
may be trained on effectively less data even than
it currently seems. Section 6 asks whether mono-
lingual language models trained on byte-premium-
scaled text demonstrate the previously observed
performance gap.

2 Background

2.1 Morphological Typology

The field of morphological typology seeks to cate-
gorize languages according to their word formation
strategies (Brown, 2010). Some languages primar-
ily use words composed of a single morpheme or
a small number of morphemes. Other languages
incorporate many morphemes into a single word.
This paper focuses on two types of languages: fu-

sional and agglutinative languages. Fusional lan-
guages tend to encode multiple morpho-syntactic
features into a single morpheme, where agglutina-
tive languages tend to use different morphemes to
represent each feature (Plank, 1999; Haspelmath,
2009; Dressler, 2010). As a result, agglutinative
languages also tend to be polysynthetic (having
words composed of many individual morphemes;
Baker, 1996). For example, Turkish has separate
plural and accusative morphemes, but in English,
the root, tense, number, and person may all be
loaded onto a single morpheme (Exs. (1) and (2)).

(1) tarla-lar-ı (Turkish)
field-PL-ACC
(Plank, 1999)

(2) are
be-PRES.2PL (English)

Typological categorization is much more complex
than this binary categorical distinction. In order to
connect this work with previous studies, it is help-
ful to use a very coarse view of morphological type;
however, these properties are gradient. Languages
may have both fusional and agglutinative proper-
ties (and properties of other morphological types,
too). See Plank (1991; pp. 11-16) for discussion
on this point.

2.2 Morphologically Aligned Tokenization

There is an area of active research on the rela-
tionship between morphological alignment of tok-
enizers and how it relates to language model per-
formance. Work in this area often stems from
the assumption that morphologically aligned to-
kenization is the gold standard for tokenization
(Hofmann et al., 2022; Bauwens and Delobelle,
2024; Libovickỳ and Helcl, 2024, inter alia).
Morphologically-aware or aligned tokenization has
been argued to lead to more meaningful tokens,
which in turn leads to better performance (Baner-
jee and Bhattacharyya, 2018; Klein and Tsarfaty,
2020; Tan et al., 2020; Hofmann et al., 2021, 2022;
Minixhofer et al., 2023; Bauwens and Delobelle,
2024). There is empirical evidence from several
languages to support this claim, e.g. English (Jab-
bar, 2023), Korean (Lee et al., 2024) , Latvian
(Pinnis et al., 2017), Arabic (Tawfik et al., 2019),
Japanese (Bostrom and Durrett, 2020), Hebrew
(Gueta et al., 2023), Kinyarwanda (Nzeyimana and
Niyongabo Rubungo, 2022), and Uyghur (Abulim-
iti and Schultz, 2020). However, these efforts are
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limited by the availability of morphologically anno-
tated datasets (Minixhofer et al., 2023), which are
often only available for a small number of relatively
high-resource languages.

Some evidence also exists to the contrary (Zhou,
2018; Minixhofer et al., 2023; Gutierrez-Vasques
et al., 2023), even for some of the same languages.
Work on German and Czech (Macháček et al.,
2018), Nepali, Sinhala, and Kazakh (Saleva and
Lignos, 2021), Korean (Choo and Kim, 2023),
Turkish (Kaya and Tantuğ, 2024), and Spanish
(Arnett et al., 2024b) did not show any benefit of
morphologically aligned tokenization. This is con-
sistent with other work, e.g. Uzan et al. (2024),
showing that BPE, which generally performs best
on metrics such as compression, has the least mor-
phologically meaningful tokens compared to other
tokenization algorithms.

3 Evidence for a Performance Gap

This section describes three analyses that show
lower performance for agglutinative languages.
Previous analyses, which demonstrated evidence
for the performance gap between fusional and ag-
glutinative languages, all had significant confounds.
We extend previous work by additionally control-
ling for amount of training data and extending to
models which–as they are much larger and use the
transformer architecture–better represent the state
of the field.

3.1 Reanalysis of Gerz et al. (2018a)

Gerz et al. (2018b) analyzed a multilingual LSTM
trained on 50 languages and found that fusional
languages categorically outperformed agglutinative
languages. This seminal finding is nevertheless lim-
ited in ways. It did not control for the number of
training tokens, which was different for each lan-
guage. We addressed this in a replication of the
analysis on the original data, fitting a full linear
model in R with morphological type and number
of training tokens as fixed effects, predicting per-
plexity. We fit a reduced model with only number
of training tokens as a fixed effect. An ANOVA
showed that the full model explained more variance
in the data than the reduced model (F(3, 45)=5.221,
p=0.004)). After controlling for number of training
tokens, there is still a significant effect of morpho-
logical type, where agglutinative languages had
higher perplexities than fusional languages.

3.2 Multilingual Models

Evidence from Gerz et al. (2018a) comes from just
one model. To extend this work, we test a number
of more contemporary multilingual language mod-
els, including XGLM (Lin et al., 2022), BLOOM
(Le Scao et al., 2023), mT0 (Muennighoff et al.,
2023), MaLA (Lin et al., 2024), and LLaMA2 (Tou-
vron et al., 2023).

We test these models across a variety of bench-
marks: commonsense reasoning benchmark scores
from XStoryCloze (Lin et al., 2022), XCOPA
(Ponti et al., 2020), XNLI (Conneau et al., 2018),
Wikipedia (Guo et al., 2020), and XWinograd
(Muennighoff et al., 2023) reported in the Big-
Science BLOOM evaluation results1 and the SIB-
200 benchmark (Adelani et al., 2024), as reported
in the release paper.

We combine all of the benchmark scores into one
dataset. All scores are on a scale between 0 and
1. We use language family information from the
WALS database (Dryer and Haspelmath, 2013) and
annotate the morphological type according to gram-
mars and linguistic articles about each language.
For each language model, we calculate the propor-
tion of training data for each language according
to reported data quantities in tokens or bytes. If
languages were upsampled for model training, we
include upsampled proportions.

We fit a full linear mixed effects model in R
(Bates, 2010) predicting benchmark score with mor-
phological type and language family as fixed effects
and model and task as random effects. We fit a re-
duced model that is the same as the full model,
except without morphological type as a predictor.
We run an ANOVA to compare model fit. We find
that the full model (with morphological type as a
fixed effect) explains more variance than the re-
duced model (χ2(3) = 149.16, p<0.001). Even
after controlling for amount of training data, lan-
guage family, model, and benchmark task, there
is still a significant effect of morphological type,
where fusional languages show better performance
than agglutinative languages.

3.3 Monolingual Models

Both of the previous analyses measure performance
of multilingual models. None of these models had
controlled or balanced amounts of training data
for the languages they were trained on. This intro-

1https://huggingface.co/datasets/bigscience/
evaluation-results

https://huggingface.co/datasets/bigscience/evaluation-results
https://huggingface.co/datasets/bigscience/evaluation-results
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duces a confound, because European languages are
typically both higher resource and fusional. The
lower-resource languages in this sample were more
likely to be agglutinative. In this final analysis of
the performance gap, we compare performance of
a suite of 1,989 monolingual models from Chang
et al. (2023), covering 252 languages, which were
trained on matching numbers of tokens. For each
language, there are up to 12 models, with up to
three different model sizes and four different train-
ing corpus sizes. The three model sizes were tiny
(4.6M parameters), mini (11.6M parameters), and
small (29.5M parameters). The four dataset sizes
were low-resource (1M tokens), medlow-resource
(10M tokens), medhigh-resource (100M tokens),
and high-resource (1B tokens). Perplexities were
calculated using 500k held-out tokens. We use the
same language family and morphological type data
as in §3.2.

We use perplexity as a metric of performance.
This is the only existing evaluation metric for all
the languages represented by these models.

We fit a full linear regression with morphologi-
cal type, model size, and dataset size as predictors.
We also fit a reduced model with only model size
and dataset size as predictors. We use an ANOVA
to compare the fit of these two models. We find that
morphological type explains variance above and
beyond the other two predictors (χ2(3) = 28.809,
p<0.001). We also fit full and reduced models
with language family as an additional predictor.
Even after accounting for language family, mor-
phological type still explains additional variance
(χ2(3) = 3.3324, p=0.02).

Morphological type is predictive of performance
after controlling for model size and data amounts,
which supports the other analyses.

3.4 Interim Discussion
Using both perplexities and benchmark scores as
evaluation metrics, and evaluations from monolin-
gual and multilingual models, we found a robust
performance gap between agglutinative languages
and fusional languages. This evidence amplifies
prior work by using more evaluation metrics for
more languages, with more contemporary multilin-
gual and monolingual models trained with balanced
training data.

The following sections test three factors that may
be driving this gap, corresponding to the three hy-
potheses above: morphological alignment of the
tokenizers (§4), tokenization quality (§5), and dis-

parities in data measurement (§6).

4 H1: Morphological Alignment

Does differential morphological alignment of to-
kenizers in languages with more or less com-
plex morphology explain their performance gap?
We present a new evaluation framework, called
MorphScore, which permits a comparison of
morphological alignment across tokenizers and
languages. We evaluate monolingual tokeniz-
ers for 22 languages and analyze the rela-
tionship between MorphScore and morphologi-
cal type. Code and datasets for MorphScore
are available on GitHub: https://github.com/
catherinearnett/morphscore.

4.1 MorphScore: Evaluating Morphological
Alignment of Tokenizers

Calculating MorphScore. To evaluate a tok-
enizer’s MorphScore for each word in a test set, we
assign a value of 1 if the tokenizer places a token
boundary at the morpheme boundary of interest,
regardless of other token boundaries. We assign a
value of 0 if there is not a token boundary at the
morpheme boundary of interest. We exclude items
which contain no token boundaries (i.e. the entire
word form is in the tokenizer’s vocabulary), so as
not to penalize the tokenizer for not segmenting
the word. MorphScore is the mean of the assigned
values across the dataset for a given language. See
Table 1 for examples.

Languages. MorphScore uses datasets of mor-
phologically annotated words. We created datasets
for 22 languages, which are listed in Appendix A.
Half are agglutinative languages and half are fu-
sional, according to grammars and descriptions of
the languages. Language selection was also bal-
anced for resource level, where about half of the
languages of each morphological type are higher-
resource, and half lower-resource. The sample was
designed to be as diverse as possible in terms of lan-
guage family and writing system, given the other
constraints. Note that all fusional languages in
the sample are Indo-European, which reflects the
distribution of fusional languages in the world’s
languages, but not all Indo-European languages
are fusional (e.g. Armenian). Among the Indo-
European languages, two are from the Indic branch
(Gujarati, Urdu) and a variety of subgroups are rep-
resented: Slavic (Bulgarian, Slovenian, Croatian),
Baltic (Lithuanian), Hellenic (Greek), Armenian,

https://github.com/catherinearnett/morphscore
https://github.com/catherinearnett/morphscore
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Germanic (Swiss German, Icelandic), and Celtic
(Irish). The other language families represented
in the sample are Japonic, Koreanic, Dravidian,
Kartvelian, Austronesian, Turkic, Niger-Congo,
and Uralic, as well as an isolate (Basque).

Datasets. Each dataset is composed of words
with their morpheme boundary annotations from
Universal Dependencies2 (UD) or UniMorph3.
Words in MorphScore do not contain any umlaut
or suppletion and the whole word form can be com-
posed of the lemma and the morpheme (or the two
morphemic units annotated). Most of the datasets
only had one morpheme boundary annotation per
word, with the exception of the Korean datasets.
For Korean, when multiple morpheme boundaries
were annotated, we chose the left-most boundary.
We deduplicated items, and chose a random sample
of 2000 for sets where there were more than 2000
items. We only included languages with at least
100 items.

4.2 Tokenizers

We use the monolingual tokenizers from Chang
et al. (2023), which are from the same models used
for perplexities in §3.3. Each tokenizer is a Sen-
tencePiece (Kudo and Richardson, 2018) tokenizer
with a vocabulary size of up to 32k. Each tokenizer
is trained on 10k lines of text randomly sampled
from the model training data.

4.3 Results

We evaluate the tokenizers on their corresponding
MorphScore dataset. MorphScores are reported
in full in Table 3 in Appendix A. In order to ad-
dress Hypothesis 1, we first conduct a two sample
t-test to evaluate whether agglutinative languages
have lower MorphScores than fusional languages.
This would be consistent with the explanation that
tokenizers are more likely to fail to align token
boundaries with morpheme boundaries in agglu-
tinative languages. To the contrary, we find that
agglutinative languages have higher MorphScores
(M=66.3%) than fusional languages (M=53.3%), a
significant difference (t(20.874)=2.950, p=.008).

We also tested for a negative correlation be-
tween MorphScore and perplexity, such that bet-
ter MorphScores were correlated with better per-
formance. We fit a linear regression between the

2https://universaldependencies.org/
3https://unimorph.github.io/

variables, but found no significant correlation (F(1,
13)=0.323, p=0.580).

4.4 Discussion

One possible explanation for this result is that
words in agglutinative languages are on average
being segmented into more tokens, making it more
likely that a token boundary will fall on a mor-
pheme boundary. This in turn could be driven
by word length, as agglutinative languages tend
to have longer words. It could also be due to a
higher number of token boundaries per word (fer-
tility), as higher fertility means that as there are
more token boundaries, it becomes more likely
that one of the token boundaries would fall on a
morpheme boundary due to chance. Upon analy-
sis, we found that agglutinative languages indeed
had longer words (t(29,923)=18.222, p<0.001) and
more tokens per word (t(37,375)=34.27, p<0.001).
We fit a linear regression with number of tokens
per word, word length in characters, and morpho-
logical types as predictors for MorphScore. We
found that fertility and word length are both nega-
tively correlated with MorphScore (χ2(1)=61.457,
p<0.001; χ2(1)=364.03, p<0.001; respectively);
however, the effect sizes were extremely small with
an adjusted R2 = 0.021. Given these small effects,
longer words or higher fertility cannot explain the
greater than 20% higher MorphScores for aggluti-
native languages.

In order to mitigate concern about the choice to
exclude one-token words from the calculation of
MorphScore, we also calculate MorphScore such
that a one-token word is counted as correct. Ag-
glutinative languages still had higher MorphScores
than fusional languages (t(18.874) = 2.393, p =
0.027). Furthermore, we found no difference in the
absolute number of one-token words (t(19.867) = -
0.768, p = 0.452) nor in the proportion of one-token
words (t(17.014) = -0.577, p =0.572) between ag-
glutinative and fusional languages.

These results are inconsistent with Hypothesis 1;
morphological tokenizer alignment (as measured
by MorphScore) is higher for agglutinative lan-
guages rather than lower, and this effect cannot be
explained by higher fertility or longer word length.

5 H2: Tokenization Quality

We next evaluate whether tokenization quality can
explain the performance gap between agglutinative
and fusional languages. We use two metrics of tok-

https://universaldependencies.org/
https://unimorph.github.io/
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Language Word Source Segmentation Score
Basque aldiz morphemic aldi + z

Tokenizer 1 [‘al’, ‘diz’] 0
Tokenizer 2 [‘aldi’, ‘z’] 1

Croatian suučesnika morphemic suučesnik + a
Tokenizer 1 [‘su’, ‘uče’, ‘s’, ‘nika’] 0
Tokenizer 2 [‘su’, ‘u’, ‘če’, ‘s’, ‘nika’] 0

Icelandic samráDs morphemic samráD + s
Tokenizer 1 [‘samráD’, ‘s’] 1
Tokenizer 2 [‘samráDs’] exclude

Greek Αδριανής morphemic Αδριανή + ς
Tokenizer 1 [‘Α’, ‘δ’, ‘ριανής’] 0
Tokenizer 2 [‘Α’, ‘δρ’, ‘ιανή’, ‘ς’] 1

Table 1: Example items with morphemic segmentations and tokenizations with MorphScores according to their
morphological alignment.

enization quality: compression and Rényi entropy.
To achieve sufficient statistical power, we use the
same tokenizers as the previous section, but add all
the languages from Chang et al. (2023) with FLO-
RES datasets and for which we have morphological
type labels, for a total of 63 languages. Perplexities
for each tokenizer come from Chang et al. (2023).

5.1 Compression
We use corpus token count (CTC; also known as
sequence length) as our measure of compression.
CTC (Schmidt et al., 2024) is the number of tokens
it takes to encode a text. Lower CTC indicates bet-
ter compression, which is thought to have various
effects on performance, cost, and inference time. If
a tokenizer encodes a given text with more tokens,
this will mean more sequences in order to pass the
text through a language model. Each sequence,
thus, will contain less information. This leads to
higher training cost and slower inference (Song
et al., 2021; Petrov et al., 2023; Yamaguchi et al.,
2024) and worse model performance (Gallé, 2019;
Liang et al., 2023; Goldman et al., 2024).

We calculate CTC based on FLORES-200
(NLLB Team et al., 2022) by encoding the text
for each language with its respective tokenizer
and counting the sequence length, not including
beginning- and end-of-sequence tokens. FLORES
offers parallel texts for each language, meaning that
each text contains the same content, and sequence
lengths should be comparable between languages.

5.2 Rényi entropy
Rényi entropy has been proposed as a metric of
tokenization quality, as it measures the distribution

of token frequencies over the tokenizer vocabulary,
penalizing low- and high-frequency tokens. It has
been shown to correlate with downstream perfor-
mance (Zouhar et al., 2023).

Rényi entropy might also capture undesirable
tokenizer properties that could be causing the per-
formance gap. Agglutinative languages have longer
words (Fenk-Oczlon and Fenk, 1999; Berg et al.,
2022) and more unique word forms (Sandra, 1994).
This means that a tokenizer with a fixed vocabulary
size will necessarily use shorter tokens on average
for an agglutinative language than for a fusional
language4. Shorter tokens will have higher fre-
quencies on average (Berg et al., 2022), and these
tokens will carry less information, as the meaning
of a word is distributed over more tokens.

We calculate Rényi entropy from the
FLORES dataset for each language using
tokenization-scorer5 (Zouhar et al., 2023)
with the recommended setting (α=2.5).

5.3 Results
Agglutinative languages have higher CTC
(worse compression) than fusional languages
(t(85.944)=2.507, p=0.014). On average, their
sequences are 3.5% longer. However, there

4As there has not been previous empirical evidence to
support this point, we test this. We use the same tokenizers as
in the previous section and tokenize all the FLORES datasets
for which we have corresponding monolingual tokenizers. We
then calculate mean token length for the FLORES dataset. The
mean token length for fusional languages was 2.92 characters
and the mean token length for agglutinative languages was
3.25. This difference is statistically significant (t(68.36) =
3.236, p = 0.002).

5https://github.com/zouharvi/
tokenization-scorer

https://github.com/zouharvi/tokenization-scorer
https://github.com/zouharvi/tokenization-scorer
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is no correlation between CTC and perplexity
(linear regression; F(1, 190)=2.05, p=0.154). This
indicates that compression, at least measured in
this way, does not explain the performance gap.

There is also a difference in Rényi entropy
between agglutinative and fusional languages.
Agglutinative languages have worse (higher)
Rényi entropy (M=0.547) than fusional languages
(M=0.488; t(150.53)=5.168, p<0.001).

In order to test whether Rényi entropy can help
explain the performance gap, conduct a Likelihood
Ratio Test comparing two linear mixed effects mod-
els. The full model predicts perplexity from mor-
phological type, Rényi entropy, and CTC as fixed
effects, with model size as a random intercept. We
then fit a reduced model, removing morphological
type as a fixed effect. We compare the models with
an ANOVA and find that morphological type ex-
plains additional variance above and beyond the
other predictors (χ2(3)=29.464, p<0.001). This
indicates that Rényi entropy does not explain all
of the variance significantly explained by morpho-
logical type. A variance partitioning analysis using
the partR2 package in R (Stoffel et al., 2024) pro-
duces an R2 for morphological type of 0.100 and
for Rényi entropy of 0.030, while the full model
R2 is 0.144. Therefore the vast majority of the vari-
ance is still explained by morphological type. This
suggests that Rényi entropy could explain only a
small part of the performance gap.

5.4 Discussion

These results are inconsistent with the hypothe-
sis that tokenizer compression explains poorer lan-
guage modeling performance for agglutinative lan-
guages. Other results, e.g. Deletang et al. (2024);
Schmidt et al. (2024), also show a lack of rela-
tionship between compression and language model
performance. While compression indicates how
much information can be represented in a fixed
sequence length, the effect of compression may
be outweighed by other features of a particular
tokenizer, or language models may be able to over-
come suboptimal tokenization. This is an area for
further research, as it remains unclear what the best
criteria are for intrinsic evaluation of tokenizers
(Zouhar et al., 2023; Chizhov et al., 2024).

6 H3: Data Measurement Disparities

The final hypothesis for the performance gap is
disparities in training data.

The monolingual models used in §3.3 and §5
were designed to be trained on comparable amounts
of training data with comparable tokenizers (Chang
et al., 2023). Nevertheless, there are differences
in performance between languages. Chang et al.
(2024) trained a similar suite of models (the Gold-
fish models), taking into account the byte premiums
for each language.

Byte premiums (Arnett et al., 2024a) are the ra-
tio of the number of bytes it takes to represent a
content-matched text in different languages. For
example, a text in a language with a byte premium
of 3 relative to English will be three times larger
in bytes than the content-matched English text file.
One of the major contributors to byte premiums is
the writing system used by a language. Latin char-
acters are represented with a single byte in UTF-8
encoding. In the most extreme cases, characters
for scripts like Khmer take three bytes per char-
acter, not including diacritics. As a result, some
languages have byte premiums of up to 5 relative
to English.

This has implications for many things, includ-
ing how much text tokenizers are trained on. Most
training data can be measured in number of to-
kens, but this isn’t the case for tokenizer train-
ing data, as the tokenizer hasn’t been trained yet.
The Goldfish tokenizers and models are trained on
byte-premium-scaled text quantities, which was
designed to reduce the effects of the data measure-
ment disparities between languages.

In this section, we test whether taking byte pre-
miums into account can reduce or completely elim-
inate the performance gap. We annotate 154 lan-
guages for morphological type and use the same
procedure as in §3 to test for the performance gap
with the Goldfish models.

6.1 Results
The Goldfish models exhibit numerically higher
perplexity for agglutinative (M=143.62) than fu-
sional languages (M=132.63), but this difference
is not statistically significant (t(137.36)=1.180,
p=0.077). Therefore, after taking byte premiums
into effect, the Goldfish models do not exhibit the
same performance gap that was demonstrated in
previous research and in Section 3 above.

We tested whether there was a relationship
between byte premium and morphological type,
and found that there was a marginally significant
difference between byte premiums for agglutina-
tive and fusional languages (t-test; t(157.9)=1.960,
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p=0.0518).

6.2 Discussion

The results show that after taking into account byte
premiums, there is no difference in performance
according to morphological typology. Thus, ac-
counting for byte premiums by scaling training data
reduces most of the variance previously accounted
for by morphological type. This suggests, there-
fore, that differences that seemed to be driven by
morphological typology are actually being driven
by disparities in dataset size measurement.

7 Discussion

We find that byte premiums explain the largest por-
tion of the performance gap, which means that
cross-lingual differences in text encoding size can
explain these particular, previously documented
performance differences. The results do not sup-
port the idea that some languages are harder to
model than others, but it does seem that languages
need to be treated differently, e.g. by scaling data
quantities. This result can be used to inform how
much data should be used to train tokenizers and
language models, especially in low-resource or
multilingual settings. By not taking byte premi-
ums into account, we may be disadvantaging lan-
guages which are historically under-represented in
the field, even when resources for them do exist.

While these results may be surprising based on
the NLP literature, these results are consistent with
evidence from language acquisition work, which
has not shown any cross-linguistic differences in
learnability of languages. These results are unsur-
prising from an empirical perspective, as work in
Linguistics and NLP has consistently shown that
more data will always facilitate better learning, ir-
respective of the complexity of the language.

There do seem to be limits to the learnability
of linguistic systems. There are some language
systems that linguistic theory predicts are impossi-
ble for humans to learn. Recent work has shown
that language models are less successful at learning
those languages, compared to existing and possible
linguistic systems (Kallini et al., 2024). Therefore,
we do not predict that these results hold for systems
that are more complex than any attested natural lan-
guage.

The results relating to Rényi entropy do sug-
gest that there may be differences in tokenization
which could be affecting performance, however

more work is needed on this topic.

8 Conclusion

This paper first presented new evidence consis-
tent with a performance gap between languages
of different morphological types. We presented
and tested three hypotheses as to the cause(s) for
this performance gap: morphological alignment of
the tokenizer, tokenization quality, and measure-
ment disparities of dataset size. We found that
while there was evidence that tokenization qual-
ity (as measured by Rényi entropy) plays a small
role, dataset size seems to explain a large portion
of the performance gap. After scaling training data
according to byte premiums – a measure of how
many bytes it takes to represent text in different
languages – the performance gap goes away.

To do this work, we also created MorphScore,
which is an evaluation method that can be used to
evaluate the morphological alignment of tokeniz-
ers. We release the datasets needed to evaluate
MorphScore in 22 languages: https://github.
com/catherinearnett/morphscore.

These results raise questions about other unin-
tended differences in the way languages are treated
that could lead to differences in performance be-
tween languages. This is a critical issue for achiev-
ing language-general NLP systems and making
language models perform equitably. While it does
not seem that morphological typology is the pri-
mary reason for the observed performance gap, the
initial observation led to greater understanding of
crosslinguistic NLP. It is important to keep evalu-
ating the dimensions along which languages vary
and considering whether language technologies,
such as LLMs, introduce inequalities between lan-
guages. We have yet to fully understand all the
ways in which English-centric practices in NLP
may have impeded progress for language models
in other languages.

Limitations

For all of the analyses, we were limited by the
number of languages for which we had morpho-
logical type annotations. These annotations are
time-consuming and are themselves limited by the
resources available, namely grammars and linguis-
tic descriptions. The number of languages in the
MorphScore analysis is even more limited. Hav-
ing more annotations and datasets included in this
work would make the analyses more reliable. This

https://github.com/catherinearnett/morphscore
https://github.com/catherinearnett/morphscore
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is an important place for expansion in future work.
In the MorphScore datasets, we were also lim-

ited by the type of existing data. There were dif-
ferences in domain and breadth in the Universal
Dependencies and UniMorph datasets for each lan-
guage. There are also different numbers of items in
each dataset for each language. This means some
languages will have more diversity among the items
and there will be more statistical power than oth-
ers, therefore the treatment of each language was
not the same, which could introduce uncontrolled
variance. Additionally, the morpheme boundaries
that are annotated for different languages was not
consistent. Some boundaries were inflectional and
some were derivational. If there existed large
datasets of both inflectional and derivational mor-
phologically annotated words in a wide range of
languages, this would have improved the robust-
ness of the MorphScore results.

Finally, because the annotations in UD and Uni-
Morph chose only one boundary (or, if there were
multiple boundaries, we chose one), we can only
evaluate whether the token boundaries align with
the morpheme boundary we chose. We did this
to limit confounds, as all but one dataset had one
annotated boundary per word. Additionally, ag-
glutinative languages would have more morpheme
boundaries per word, which could skew results.
However, there was no controlled selection pro-
cess for which morpheme boundary was used for
the MorphScore analysis, therefore this could have
also affected results.

In the analysis of the Goldfish models, the evi-
dence that byte premiums account for the perfor-
mance gap is supported by a marginally significant
difference between byte premiums according to
their morphological type. It is possible that with an
even larger sample of languages, the effect would
instead meet the standard threshold for significance.
We argue that in conjunction with the other results,
it still demonstrates that taking byte premiums into
account significantly reduces the performance gap.
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• Greek: UD Greek-GUD train split (Proko-
pidis and Papageorgiou, 2014)

• Persian: UD Persian-PerDT train split (Ra-
sooli et al., 2013)

• Japanese: (Matsuzaki et al., 2024)

• Korean: UD Korean-Kaist train split (Chun
et al., 2018)

• Turkish: UniMorph (Pimentel et al., 2021)

• Indonesian: UD Indonesian-GSD (Larasati
et al., 2011)

• Hungarian: UD Hungarian-Szeged train split
(Vincze et al., 2010)

• Urdu: UD Urdu-UDTB train split (Palmer
et al., 2009; Bhat et al., 2017)

• Slovenian: UD Slovenian-SSJ train split (Do-
brovoljc et al., 2017; Dobrovoljc and Ljubešić,
2022)

• Tamil: UD Tamil-TTB train split (Ramasamy
and Žabokrtský, 2012)

• Georgian: UD Georgian-GLC test split
(Lobzhanidze, 2022)

• Armenian: UD Armenian-BSUT train split
(Yavrumyan and Danielyan, 2020)

• Irish: UD Irish-IDT train split (Lynn and Fos-
ter, 2016)

• Icelandic: UD Icelandic-Modern train split
(Rögnvaldsson et al., 2012)

• Gujarati: UniMorph (Baxi and Bhatt, 2021)

• Kurdish: UniMorph (Kirov et al., 2018)

• Cebuano: UD Cebuano-GJA test split
(Aranes, Glyd Jun and Zeman, Dan , 2021)

• Basque: UD Basque-BDT train split (Aranz-
abe et al., 2015)

• Zulu: UniMorph (Vylomova et al., 2020)

Full MorphScore results for the tokenizers from
Chang et al. (2023) are reported in Table 3.

https://arxiv.org/pdf/2402.10712
https://arxiv.org/pdf/2402.10712
https://arxiv.org/pdf/2402.10712
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284
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Language ISO Writing Sys. Lang. Family Morph. Type Num. Items
639-3 (ISO 15924)

Armenian hye armn Indo-European agglutinative 2000
Basque eus latn Basque agglutinative 2000
Bulgarian bul cyrl Indo-European fusional 2000
Cebuano ceb latn Austronesian agglutinative 131
English eng latn Indo-European fusional 2000
Georgian kat geor Kartvelian agglutinative 200
Greek ell grek Indo-European fusional 112
Gujarati guj gujr Indo-European fusional 547
Hungarian hun latn Uralic agglutinative 2000
Icelandic isl latn Indo-European fusional 1852
Indonesian ind latn Austronesian agglutinative 1552
Irish gle latn Indo-European fusional 1877
Japanese jpn jpan Japonic agglutinative 2000
Korean kor hang Koreanic agglutinative 2000
Northern Kurdish kmr latn Indo-European fusional 319
Persian pes arab Indo-European fusional 2000
Slovenian slv latn Indo-European fusional 2000
Spanish spa latn Indo-European fusional 2000
Tamil tam taml Dravidian agglutinative 884
Turkish tur latn Turkic agglutinative 2000
Urdu urd arab Indo-European fusional 1649
Zulu zul latn Niger-Congo agglutinative 2000

Table 2: Languages for which we created morphological datasets and evaluated MorphScore.

Lang Lang. Name MorphScore Morph. Type
hye armn Armenian 0.634 agg
eus latn Basque 0.724 agg
bul cyrl Bulgarian 0.584 fus
ceb latn Cebuano 0.806 agg
eng latn English 0.781 fus
kat geor Georgian 0.660 agg
ell grek Greek 0.586 fus
guj gujr Gujarati 0.347 fus
hun latn Hungarian 0.739 agg
isl latn Icelandic 0.574 fus
ind latn Indonesian 0.708 agg
gle latn Irish 0.468 fus
jpn jpan Japanese 0.691 agg
kor hang Korean 0.692 agg
kmr latn Kurdish 0.202 fus
pes arab Persian 0.345 fus
slv latn Slovenian 0.650 fus
spa latn Spanish 0.592 fus
tam taml Tamil 0.435 agg
tur latn Turkish 0.591 agg
urd arab Urdu 0.747 fus
zul latn Zulu 0.541 agg

Table 3: MorphScore results from Section 4.
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