@inproceedings{petrov-2025-ruaccent,
title = "{RUA}ccent: Advanced System for Stress Placement in {R}ussian with Homograph Resolution",
author = "Petrov, Denis Andreevich",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.444/",
pages = "6642--6648",
abstract = "This paper presents a novel approach to the problem of stress placement in Russian text, with a particular focus on resolving homographs. We introduce a comprehensive system that combines morphological analysis, context-aware neural models, and a specialized {\textquotedblleft}{\CYRYO}-fikator{\textquotedblright} to accurately place stress in Russian words, including those with ambiguous pronunciations. Our system outperforms existing solutions, achieving a 0.96 accuracy on homographs and 0.97 accuracy on non-homograph words."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="petrov-2025-ruaccent">
<titleInfo>
<title>RUAccent: Advanced System for Stress Placement in Russian with Homograph Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="given">Andreevich</namePart>
<namePart type="family">Petrov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel approach to the problem of stress placement in Russian text, with a particular focus on resolving homographs. We introduce a comprehensive system that combines morphological analysis, context-aware neural models, and a specialized “\CYRYO-fikator” to accurately place stress in Russian words, including those with ambiguous pronunciations. Our system outperforms existing solutions, achieving a 0.96 accuracy on homographs and 0.97 accuracy on non-homograph words.</abstract>
<identifier type="citekey">petrov-2025-ruaccent</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.444/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>6642</start>
<end>6648</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RUAccent: Advanced System for Stress Placement in Russian with Homograph Resolution
%A Petrov, Denis Andreevich
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F petrov-2025-ruaccent
%X This paper presents a novel approach to the problem of stress placement in Russian text, with a particular focus on resolving homographs. We introduce a comprehensive system that combines morphological analysis, context-aware neural models, and a specialized “\CYRYO-fikator” to accurately place stress in Russian words, including those with ambiguous pronunciations. Our system outperforms existing solutions, achieving a 0.96 accuracy on homographs and 0.97 accuracy on non-homograph words.
%U https://aclanthology.org/2025.coling-main.444/
%P 6642-6648
Markdown (Informal)
[RUAccent: Advanced System for Stress Placement in Russian with Homograph Resolution](https://aclanthology.org/2025.coling-main.444/) (Petrov, COLING 2025)
ACL