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Abstract

Nowadays, hate speech technologies are surely
relevant in Brazil. Nevertheless, the inabil-
ity of these technologies to provide reasons
(rationales) for their decisions is the limiting
factor to their adoption since they comprise
bias, which may perpetuate social inequali-
ties when propagated at scale. This scenario
highlights the urgency of proposing explain-
able technologies to address hate speech. How-
ever, explainable models heavily depend on
data availability with human-annotated ratio-
nales, which are scarce, especially for low-
resource languages. To fill this relevant gap,
we introduce HateBRXplain1, the first bench-
mark dataset for hate speech detection in Por-
tuguese, with text span annotations capturing
rationales. We evaluated our corpus using
mBERT, BERTimbau, DistilBERTimbau, and
PTT5 models, which outperformed the cur-
rent baselines. We further assessed these mod-
els’ explainability using model-agnostic expla-
nation methods (LIME and SHAP). Results
demonstrate plausible post-hoc explanations
when compared to human annotations. How-
ever, the best-performing hate speech detection
models failed to provide faithful rationales.

1 Introduction

Over the last few years, there has been an increased
focus on hate speech as a result of the global role re-
lated to new technologies and platforms that facili-
tate orchestrated hateful behavior and incitement to
discrimination (Wardle, 2024). Hate speech is de-
fined as a type of offensive language that expresses
violence, intolerance, prejudice, or discrimination
against an individual or a group based on their so-
cial identity (Fortuna and Nunes, 2018; Zampieri
et al., 2019), which may be implicitly or explic-
itly expressed (Poletto et al., 2021; Vargas et al.,
2024a).

1The code and dataset are publicly available: https://
github.com/isadorasalles/HateBRXplain

To mitigate this issue, hate speech detection
systems have been developed as effective coun-
termeasures to inhibit offensive and hateful lan-
guage from being published or spread on the Web
and social media. Nonetheless, while there was
significant progress in the hate speech research
area, for instance, new expert and comprehen-
sive datasets (Vargas et al., 2024a; Guest et al.,
2021; Fortuna et al., 2019b; Vargas et al., 2024b),
the high performance of deep learning models
(Zimmerman et al., 2018; Gambäck and Sikdar,
2017) and transformer architectures (Caselli et al.,
2021), these recent models are becoming less inter-
pretable (Tsvetkov et al., 2019) highlighting a lack
of transparency posing unwanted risks, such as un-
intended biases that has recently been identified as
a major concern in the area (May et al., 2019).

In modern Natural Language Processing (NLP),
a prevalent approach to building hate speech clas-
sifiers consists of training on hate speech datasets
using fine-tunning Large-Scale Language Models
(LLMs), which, according to (Davani et al., 2023),
leads to representational biases, such as preferring
European American names over African American
names (Caliskan et al., 2017), associating words
with more negative sentiment against persons with
disabilities (Hutchinson et al., 2020), or associating
ethnic stereotypes between Hispanics and house-
keepers and Asians with professors (Garg et al.,
2018). Furthermore, a specific gap in neural hate
speech classifiers consists of their over-sensitivity
to group identifiers such as “Muslim”, “gay”, and
“black”, which are only hate speech according to
offensive context (Dixon et al., 2018).

Recent NLP models are frequently recognized
as “black boxes”, meaning their decisions lack
transparency and may be biased. Explainability
methods can uncover potentially biased text fea-
tures by applying a set of explanation techniques
(Gongane et al., 2024). For instance, (Mathew et al.,
2021) introduced the HateXplain dataset in English,

https://github.com/isadorasalles/HateBRXplain
https://github.com/isadorasalles/HateBRXplain
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which includes human rationales to explain the hate
speech labels assigned to the text. Their findings
demonstrate that incorporating human rationales as
an additional signal during training can reduce bias
in hate speech detection models toward specific
communities.

Specifically tailored to low-resource languages,
the resources are still scarce. As a result, research
and development of hate speech technologies for
low-resource languages are less developed. For
instance, five datasets were proposed for the Por-
tuguese language. However, none of these datasets
comprise human-annotated rationales, which is es-
sential to building more interpretable and responsi-
ble hate speech detection models.

To fill this relevant gap, we introduce
HateBRXplain, a benchmark dataset for explain-
able hate speech detection in Brazilian Portuguese.
The HateBRXplain was manually annotated by
two different annotators using human-based ra-
tionales. We evaluated our corpus using mBERT,
BERTimbau, DistilBERTimbau, and PTT5 models,
which reached high performance and outperformed
the current baselines for Portuguese. Furthermore,
to assess the explainability of these models, we
employed two model-agnostic explainable meth-
ods (LIME and SHAP). We then evaluated the pre-
dicted rationales following standard metrics. Our
contributions may be summarized as follows:

• We study an under-explored and relevant prob-
lem: explainable hate speech detection for
low-resource languages.

• We provide the first hate speech dataset in
Brazilian Portuguese with human-annotated
rationales for explainable hate speech detec-
tion. The HateBRXplain consists of 7,000 In-
stagram comments derived from the HateBR
dataset, in which 3,500 offensive comments
were annotated with human-based rationales,
i.e., text spans that support a particular class.

• We evaluate the HateBRXplain on mBERT,
BERTimbau, DistilBERTimbau, and PTT5
models. The results overcame the current
baseline for Portuguese, achieving an F1-
score of 0.91 with BERTimbau.

• We assess the explainability of these classi-
fiers by evaluating the quality of rationales
predicted by two model-agnostic explanation

methods (LIME and SHAP) following classi-
cal metrics, such as plausibility and faithful-
ness. Results for plausibility demonstrate an
overall high agreement between human anno-
tations and post-hoc explanations. However,
while some models excel in classification per-
formance, they cannot always provide faithful
rationales for their decisions.

2 Related Work

2.1 Hate Speech Datasets in Portuguese

Most hate speech and offensive language corpora
have been developed for the English language
(Davidson et al., 2017; Zampieri et al., 2019;
Fersini et al., 2018), leaving a resource gap for
other languages. To address this gap for Portuguese,
(de Pelle Pelle and Moreira, 2017) introduced the
OFFCOMBR, a corpus containing 1,250 comments
comprising two annotations: (i) “offensive” or
“non-offensive”; and (ii) six hate speech categories
(racism, sexism, homophobia, xenophobia, reli-
gious intolerance, and cursing). Further work by
(Fortuna et al., 2019a) presents a dataset consisting
of 5,668 tweets in both European and Brazilian
Portuguese, comprising two annotation levels: (i)
“hate” or “no-hate”; and (ii) multilabel hate speech
hierarchical annotation schema with 81 hate cat-
egories. (Leite et al., 2020) introduced ToLD-Br
(Toxic Language Dataset for Brazilian Portuguese),
a dataset containing 21,000 tweets in Brazilian Por-
tuguese manually annotated into one of seven cate-
gories: non-toxic, LGBTQ+phobia, obscene, insult,
racism, misogyny, and xenophobia. More recently,
(Trajano et al., 2023) introduced OLID-BR (Offen-
sive Language Identification Dataset for Brazilian
Portuguese) comprising 6,354 comments extracted
from Twitter, YouTube, and other related datasets,
annotated according to different categories: health,
ideology, insult, LGBTQ+phobia, other lifestyle,
physical aspects, profanity/obscene, racism, reli-
gious intolerance, sexism, and xenophobia. Finally,
(Vargas et al., 2022, 2024a) proposed HateBR cor-
pus, composed of 7,000 Instagram comments man-
ually annotated by experts, comprising three levels:
(i) “offensive” or “non-offensive”; (ii) offense lev-
els (high, moderately, and slightly offensive); and
(iii) nine hate group targets (xenophobia, racism,
homophobia, sexism, religious intolerance, party-
ism, apology to dictatorship, antisemitism, and fat-
phobia). Table 1 summarizes the available data
resources for the Portuguese language.
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Authors Data # Instances % Offensive Platform Models F-score
(de Pelle Pelle and Moreira, 2017) OFFCOMBR 1,250 32.50 Globo news comments NB, SVM 0.80

(Fortuna et al., 2019a) No-Name 5,668 31.50 Twitter LSTM 0.78
(Leite et al., 2020) ToLD-Br 21,000 44.07 Twitter BERT 0.76

(Trajano et al., 2023) OLID-BR 6,354 90.07 Twitter, YouTube BERT 0.77
(Vargas et al., 2022, 2024a) HateBR 7,000 50.00 Instagram BERT 0.85

Table 1: Overview of Portuguese data resources for hate speech detection.

Authors Data Language # Instances Platform Models F-score
(Mathew et al., 2021) HateXplain English 20,148 Gab and Twitter CNN-GRU, BiRNN, BERT 0.69

(Pavlopoulos et al., 2021) No-Name English 10,629 Civil Comments dataset BERT 0.71

(Ravikiran and Annamalai, 2021) DOSA Tamil-English 4,786 YouTube BERT 0.40Kannada-English 1,097
(Hoang et al., 2023) ViHOS Vietnamese 11,056 Facebook and YouTube BiLSTM, BERT 0.78
(Delbari et al., 2024) PHATE Persian 7,000 Twitter BERT, GPT 0.78

Table 2: Overview of data resources for hate speech with human rationales annotation.

2.2 Hate Speech Datasets with
Human-Annotated Rationales

Hate speech detection has been extensively re-
searched. However, there are limited studies specif-
ically explaining the model’s decision on what is
classified as hate speech. (Zaidan et al., 2007) intro-
duced the concept of exploiting human-annotated
rationales during training of a learning method to
boost performance. Using rationales may result in
better models that reduce unintended bias toward
target communities (Mathew et al., 2021). More-
over, it enhances transparency and accountability
by supporting the development of interpretable
models clarifying the reasoning behind each hate
speech classification.

(Mathew et al., 2021) introduced the HateXplain
dataset containing hate and offensive speech with
span annotations that capture human rationales for
20,148 Gab and Twitter posts. (Pavlopoulos et al.,
2021) provides a collection of 10,629 English posts
derived from the Civil Comments dataset with hu-
man annotations for toxic spans. (Ravikiran and
Annamalai, 2021) presents DOSA (Dravidian Of-
fensive Span Identification Dataset), a dataset with
annotated offensive spans for under-resourced lan-
guage comments posted on YouTube. It comprises
4,786 Tamil-English comments and 1,097 Kannada-
English comments. (Hoang et al., 2023) presents
the ViHOS (Vietnamese Hate and Offensive Spans)
dataset, which consists of 11,056 comments de-
rived from Facebook and YouTube with span an-
notations that capture the human rationales for la-
beling a comment as hate or offensive. Finally,
(Delbari et al., 2024) introduced PHATE, a dataset
consisting of 7,000 Persian tweets tailored to multi-
label hate speech detection. Each tweet was manu-
ally annotated with the targeted hate speech group

and the rationale for the assigned label. Table 2
summarizes the available data resources for hate
speech detection with rationales annotations.

No existing hate speech dataset in Portuguese
provides human rationales. To address this gap,
we propose HateBRXplain, the first benchmark
dataset in Portuguese for explainable hate speech
detection.

3 HateBRXplain Corpus

HateBRXplain consists of an explainable version
of HateBR corpus (Vargas et al., 2022, 2024a). The
HateBR corpus comprises 7,000 comments col-
lected from the comment section of Brazilian politi-
cians’ accounts on Instagram and manually anno-
tated by specialists, reaching a high inter-annotator
agreement (75% of kappa). Precisely, it consists
of comments annotated according to three different
layers: a binary classification (offensive versus non-
offensive comments), offensiveness-level classifi-
cation (highly, moderately, and slightly offensive),
and nine hate speech groups (xenophobia, racism,
homophobia, sexism, religious intolerance, party-
ism, apology for the dictatorship, antisemitism, and
fatphobia). In addition, the HateBR corpus presents
a balanced class distribution (3,500 offensive and
3,500 non-offensive), in contrast to the other Por-
tuguese corpora presented in Table 1, in which the
classes are unbalanced. Moreover, the baseline ex-
periments on HateBR overcame the other existent
baselines for the Portuguese language.

This paper presents HateBRXplain, the first
human-annotated rationale corpus designed for
explainable hate speech detection in Brazilian
Portuguese. To develop this explainable version
of HateBR, we employed the concept of ratio-
nales—specific text spans within a comment that
supports its categorization.
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Do you really believe what you’re saying?
If you don’t, you’re just a liar. If you do
you’re mentally ill.

Criminal! Scoundrel and racist!
May justice be served!

That’s what you want — people employed
but just following orders like puppets.

Table 3: Examples of annotations from HateBRXplain.
The highlighted text indicates the rationale provided by
the annotator.

3.1 Human-Annotated Rationales

A detailed description of our annotation process
approach is presented in this section. For annotat-
ing rationales, we focused exclusively on spans of
text that indicate offensiveness. Annotators were
instructed to highlight only the portions of text that
supported the offensive label, resulting in rationales
being provided exclusively for the 3,500 offensive
comments. According to our guidelines, a ratio-
nale is defined as a set of text spans, with each
span being the smallest text segment that conveys
offensive meaning. Thus, a text span can be either
a word or a phrase. Consequently, each comment
may contain multiple text spans that constitute the
rationale. Table 3 presents annotation examples
from our dataset.

3.1.1 Profile of Annotators
To ensure the reliability of data annotation, two
independent annotators performed the task. To
minimize bias and enhance the robustness of the
results, we diversified the annotators’ profiles, as
detailed in Table 4.

Profile Description
Education Master’s and PhD candidates
Gender Female
Color Black and White
Brazilian States São Paulo and Minas Gerais

Table 4: Annotators’ profile.

3.1.2 Annotation Evaluation
The final step of the annotation process involves
assessing the quality of the annotated data by evalu-
ating the annotators’ agreement. We used two met-
rics for this evaluation: the Jaccard Index and the
F1-score, calculated at the human rationale anno-
tations’ span level. We treated partial overlaps be-
tween spans as valid matches to compute both mea-
sures. Specifically, we calculated the Intersection-

Metric Human-annotations Random
Jaccard Index 0.6746 0.4855
F1-score 0.7168 0.5735

Table 5: Evaluation of human-annotation rationales
compared with random annotation.

over-Union (IoU) for each pair of spans, and if the
IoU was 0.5 or higher, the spans were considered
a match. The Jaccard Index metric measures the
similarity between two sets of spans by calculating
the Intersection-over-Union (IOU), as defined in
Equation 1.

Span Jaccard index =
Number of Matching Spans
Total Unique Spans (Union)

(1)

In Equation 2, we define the span-level F1-score.

Span F1-score = 2× Pi ×Ri

Pi +Ri

where Pi =
|A1

i ∩A2
i |

|A1
i |

and Ri =
|A1

i ∩A2
i |

|A2
i |

(2)

where A1
i and A2

i represent the spans for the
i−th instance provided by Annotator 1 and An-
notator 2, respectively. We averaged the Jaccard
Index and F1-score across pairs of human rationale
annotations and compared these results with ran-
domly generated rationale annotations. The com-
parison is presented in Table 5. To generate the
random rationale annotations, we maintained the
same distribution of span sizes as Annotator 1 and
Annotator 2, selecting an equivalent number of to-
kens for each instance and producing two random
rationale sets. As expected, the metrics for human
annotations outperformed those for random annota-
tions, indicating a higher level of agreement among
human annotators.

3.2 Corpus Statistics
Table 6 presents the statistics of the HateBRXplain
corpus, categorized by label (offensive and non-
offensive). As mentioned, the corpus is balanced,
with 3,500 offensive comments and 3,500 non-
offensive comments. Additionally, we observe min-
imal differences in both the average length of the
comments and the distribution of part-of-speech
tags between the two classes.

Two annotators provided rationale explanations
for each instance in the dataset. Table 7 presents
statistics for these human annotations. On average,
Annotator 1 highlighted 7.72 tokens per post, com-
pared to 5.14 tokens by Annotator 2, and identified
more spans overall. Moreover, Figure 1 illustrates
that the spans annotated by Annotator 1 are more
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Description Label
Offensive Non-offensive

# Comments 3,500 3,500
# Sentences 4,871 4,674

# Words 53,455 42,891
Avg Sentences/Comment 1.3917 1.3354

Avg Words/Comment 15.2728 12.2546

Part-of-Speech
(Avg)

Noun 3.4920 2.7994
Verb 2.4043 1.8068

Adjective 0.9880 0.8774
Adverb 1.1263 0.8888
Pronoun 1.1197 0.8900

Table 6: HateBRXplain data statistics per label.

Description Rationales
Annotator 1 Annotator 2

# Spans 6,601 5,922
# Tokens 27,038 17,992

Avg spans/Comment 1.8860 1.6920
Avg tokens/Comment 7.7251 5.1406

Part-of-Speech
(Avg)

Noun 2.0328 1.5097
Verb 1.3183 0.7988

Adjective 0.6194 0.4754
Adverb 0.4991 0.2874
Pronoun 0.4477 0.2614

Table 7: Human rationales statistics per annotator.

extended in terms of the number of characters, in-
dicating that Annotator 1 needed more contextual
information to identify offensiveness compared to
Annotator 2. This observation is further supported
by the analysis of part-of-speech tags, which re-
veals a higher presence of nouns and verbs in the
rationales provided by Annotator 1.

Figure 1: Histogram of annotated span size regarding
the number of characters for both annotators.

4 Experimental Setup

In this section, we provide (i) details on the models
used to evaluate the performance of hate speech
detection using the proposed dataset and (ii) details
of the post-hoc explanation methods used to pro-
vide automatic explanations over the sentences of
our dataset to assess the explainability aspects of
the proposed learning models.

4.1 Hate Speech Detection Models

To evaluate the generalization of the dataset, we
used four pre-trained models as follows:

mBERT.2 Developed by (Devlin et al., 2019),
mBERT is a multilingual variation of the BERT
model. Pre-trained in the top 104 languages with

2google-bert/bert-base-multilingual-cased

the largest Wikipedia, including Portuguese. The
base model has 12 layers and 110M parameters.

BERTimbau.3 Developed by (Souza et al.,
2020), BERTimbau is a Brazilian Portuguese lan-
guage model based on the BERT architecture (De-
vlin et al., 2019). Trained on over 3.5 million docu-
ments from BrWaC corpus (Brazilian Web as Cor-
pus) (Wagner Filho et al., 2018). The base model
has 12 layers and 110M parameters.

DistilBERTimbau.4 A small, fast, and cheap
transformer model trained by distilling BERTim-
bau base architecture (Silva Barbon and Akabane,
2022), having 66.4M parameters.

PTT5.5 Developed by (do Carmo et al.,
2020), PTT5 is also a Brazilian Portuguese lan-
guage model pre-trained on the BrWaC corpus
(Wagner Filho et al., 2018). PTT5 is based
on T5 architecture (Raffel et al., 2020), an
encoder-decoder transformer model. The base
model has 220M parameters, and we used the
T5ForSequenceClassification layer to predict each
instance.

4.1.1 Hyperparameters
We fine-tuned these models on the HateBRXplain
dataset, ensuring the Instagram comments were uni-
formly normalized using a Portuguese-specific tool
as described by (Costa Bertaglia and Volpe Nunes,
2016). To compare the results, all these models
were evaluated using the same train:validation:test
split of 8:1:1, performing stratified split to main-
tain class balance. The results were obtained from
the test set, while the validation set was used for
hyperparameter tuning. For all models, we set the
maximum sentence length to 512 and employed
the AdamW optimizer. The learning rates were
set as follows: 2e-5 for mBERT, 1e-5 for BERTim-

3neuralmind/bert-base-portuguese-cased
4adalbertojunior/distilbert-portuguese-cased
5unicamp-dl/ptt5-base-portuguese-vocab

https://huggingface.co/google-bert/bert-base-multilingual-cased
https://huggingface.co/neuralmind/bert-base-portuguese-cased
https://huggingface.co/adalbertojunior/distilbert-portuguese-cased
https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab
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Rationales method Text
Human Annotator Who cares about what you think, corrupt communist? You should be in jail!
mBERT [LIME] Who cares about what you think, corrupt communist? You should be in jail!
mBERT [SHAP] Who cares about what you think, corrupt communist? You should be in jail!
BERTimbau [LIME] Who cares about what you think, corrupt communist? You should be in jail!
BERTimbau [SHAP] Who cares about what you think, corrupt communist? You should be in jail!
DistilBERTimbau [LIME] Who cares about what you think, corrupt communist? You should be in jail!
DistilBERTimbau [SHAP] Who cares about what you think, corrupt communist? You should be in jail!
PTT5 [LIME] Who cares about what you think, corrupt communist? You should be in jail!
PTT5 [SHAP] Who cares about what you think, corrupt communist? You should be in jail!

Table 8: Example of model-predicted rationales compared to human annotations for a single instance. Green
highlights indicate tokens both the model and human annotators found important for the prediction. In contrast,
orange highlights indicate tokens considered important by the model but not by the human annotators.

bau, 2e-5 for DistilBERTimbau, and 3e-4 for PTT5,
with a batch size of 8 for all models. The training
was conducted for five epochs, and the reported test
set results are based on the epoch that achieved the
lowest loss on the validation set.

4.2 Post-hoc Explanation Methods

To evaluate the explainability of the proposed clas-
sification models, we employed two widely-used
post-hoc explanation methods: LIME (Local In-
terpretable Model-agnostic Explanations) (Ribeiro
et al., 2016) and SHAP (SHapley Additive exPlana-
tions) (Lundberg, 2017). Both are model-agnostic
methods, meaning they generate explanations with-
out requiring access to the internal workings of the
model, relying solely on input-output pairs. LIME
provides local explanations by perturbing the input
data and observing how these changes affect the
model’s predictions. In contrast, SHAP evaluates
the contribution of each feature to the prediction
by considering all possible feature combinations,
offering both local and global interpretability.

For comparison purposes, we applied both meth-
ods to generate local explanations (rationales) for
a randomly selected subset of 350 offensive com-
ments (10% of the rationales annotated data) from
HateBRXplain. Table 8 shows an example of
model-predicted explanations.

5 Evaluation and Results

This section reports the evaluation of the four mod-
els for detecting hate speech. In addition, we
present the evaluation of the explainability aspects
of these learning models.

5.1 Evaluation of Models

We assessed the performance of the four classi-
fiers in distinguishing between offensive and non-
offensive speech, using accuracy and macro F1-
score as evaluation metrics. The results are shown

in Table 9. Additionally, we conducted a ROC
curve analysis, as illustrated in Figure 2.

Model Metric
Accuracy macro F1

mBERT 0.8743 0.8737
BERTimbau 0.9157 0.9153
DistilBERTimbau 0.9000 0.8994
PTT5 0.9043 0.9035

Table 9: Evaluation of mBERT, BERTimbau, Distil-
BERTimbau, and PTT5 models on the test set.

Figure 2: ROC curves for the four fine-tuned models.

We observed that models pre-trained exclusively
on a Portuguese corpus outperformed the multilin-
gual BERT. The highest performance was achieved
with the BERTimbau model, which reached an F1-
Score of 0.91 and an AUC of 0.97.

5.2 Evaluation of Explanations
We then employed classical metrics to evaluate the
model-predicted rationales generated by the SHAP
and LIME methods. This section describes these
metrics and presents the results.

5.2.1 Metrics
Building on prior research (DeYoung et al., 2020;
Jacovi and Goldberg, 2020; Mathew et al., 2021;
Wang et al., 2022), we assessed the explainabil-
ity of the proposed models with plausibility and
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faithfulness metrics. Plausibility evaluates how
closely the model’s explanations align with human
judgment. In contrast, faithfulness measures how
accurately these model-predicted rationales reflect
the model’s actual decision-making process (Jacovi
and Goldberg, 2020).

Plausibility: To assess plausibility, we reported
the IOU (Intersection-Over-Union) F1-score, along
with token-level Precision, Recall, and F1-score
metrics (DeYoung et al., 2020). These metrics are
computed on the token level since the rationales
given by the post-hoc explanations are individual
tokens rather than text spans. Moreover, since
each instance has two human-annotated rationales,
we consider the human rationale with the highest
agreement with the model-predicted rationale as
the ground truth.

The IOU F1-score is defined in Equation 3, in
which, for each instance, the IOUi is given by
the overlap between rationales tokens divided by
the union of tokens. A model-predicted rationale
matches a human-annotated rationale if its IOUi

equals or exceeds 0.5. We accounted for these par-
tial matches to calculate the IOU F1-score.

IOU-F1 =
1

N

N∑
i=1

Greater(IOUi, 0.5)

where IOUi =
|Mi ∩Hi|
|Mi ∪Hi|

(3)

where Mi and Hi represent the rationales of the
i-th instance provided by the model and human,
respectively; N is the number of instances. Follow-
ing these definitions, we also measured token-level
Precision and Recall and used these to derive token-
level F1-score as defined in Equation 4.

Token-F1 =
1

N

N∑
i=1

(2× Pi ×Ri

Pi +Ri
)

where Pi =
|Mi ∩Hi|

|Mi|
and Ri =

|Mi ∩Hi|
|Hi|

(4)

Faithfulness: To measure faithfulness, we
reported the comprehensiveness and sufficiency
(DeYoung et al., 2020). Comprehensiveness, de-
fined in Equation 5, measures whether the tokens
necessary to make a prediction were selected. For
each instance, xi, let m(xi)j be the prediction a
model m provides for class j and ri be the pre-
dicted rationales. We then define m(xi\ri)j as the
model m predicted probability of xi without the
predicted rationales ri. A high comprehensiveness
value implies that the rationales are influential in
the prediction. Otherwise, sufficiency measures the

degree to which the predicted rationales are ade-
quate for making a prediction. In Equation 6, let
m(ri)j be the prediction probability of giving only
the model-predicted rationales ri to a model m for
class j. A low sufficiency value implies that the
rationales are sufficient to make a prediction.

Comp. =
1

N

N∑
i=1

(m(xi)j −m(xi\ri)j) (5)

Suff. =
1

N

N∑
i=1

(m(xi)j −m(ri)j) (6)

5.2.2 Results
Table 10 presents the evaluation of the post-hoc
explanations given by LIME and SHAP regarding
plausibility and faithfulness. Notably, while the
BERTimbau model achieved the best performance
metrics in the classification task (shown in Sec-
tion 5.1), it did not rank among the top models
for explainability metrics. Regarding plausibility,
our evaluation revealed that PTT5 [SHAP] model
achieved the top scores for IOU F1, Token Recall,
and Token F1. Apart from the DistilBERTimbau
models, the post-hoc method SHAP performed bet-
ter on plausibility metrics than LIME. However,
the number of tokens returned by each method
varies significantly. SHAP typically returned more
tokens than LIME, as shown in Table 11. Since
the plausibility metrics are evaluated by compar-
ing model-predicted rationales to human-annotated
ones—which are often more complex and contex-
tually rich (e.g., complete phrases)—the overlap
between LIME’s tokens and human annotations is
generally smaller than that of SHAP, leading to
higher metric scores for SHAP.

Additionally, among the methods, the scores
achieved for the Token F1 metric are often higher
than the ones achieved by IOU-F1. However, IOU-
F1 is less precise, as it counts a prediction as a
match only if the predicted rationale overlapping
with the human annotation is at least 0.5. Moreover,
Token Precision is frequently higher than Token Re-
call. The explanation for this relies on the way we
compute these metrics. As outlined in Equation 4,
the precision metric relies on the model-predicted
rationales, whereas the recall metric relies on the
human-annotated. According to Table 11, the aver-
age number of tokens in model-predicted rationales
is generally lower than the average tokens provided
by Annotator 1, which is 7.72, as shown in Table 7.
The mBERT [SHAP] and the PTT5 [SHAP] are the
only models where Token Recall exceeded Token
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Moodel [XAI method]
Plausibility Faithfulness

IOU F1 ↑ Token Precision ↑ Token Recall ↑ Token F1 ↑ Comp. ↑ Suff. ↓
mBERT [LIME] 0.5828 0.7458 0.6936 0.6701 0.8809 0.0134
mBERT [SHAP] 0.6628 0.7143 0.7520 0.6897 0.9324 0.0172
BERTimbau [LIME] 0.5857 0.7557 0.6848 0.6698 0.5904 0.0237
BERTimbau [SHAP] 0.6600 0.7489 0.7099 0.6831 0.6458 0.0215
DistilBERTimbau [LIME] 0.6457 0.7614 0.7276 0.7003 0.9407 0.0115
DistilBERTimbau [SHAP] 0.6200 0.7543 0.6862 0.6720 0.9475 0.0114
PTT5 [LIME] 0.6057 0.7487 0.6978 0.6776 0.5654 0.0016
PTT5 [SHAP] 0.7400 0.7177 0.8378 0.7362 0.6160 0.0083

Table 10: Evaluation of explanations predicted by LIME and SHAP post-hoc explainability methods.

Model [XAI method] Avg Tokens
mBERT [LIME] 5.3114
mBERT [SHAP] 8.9571
BERTimbau [LIME] 5.3171
BERTimbau [SHAP] 7.6400
DistilBERTimbau [LIME] 5.5686
DistilBERTimbau [SHAP] 7.2800
PTT5 [LIME] 5.4086
PTT5 [SHAP] 10.0428

Table 11: Average number of tokens predicted by the
models.

Precision; these models have a higher average of
predicted tokens.

Regarding the faithfulness evaluation, we re-
ported the comprehensiveness and sufficiency
scores. In terms of comprehensiveness, the models
with the highest scores were mBERT and Distil-
BERTimbau, which were the ones that presented
the lowest F1-scores on the classification task (as
shown in Table 9). Although the PTT5 [SHAP]
model achieved the highest plausibility metrics,
it did not perform as well on the comprehensive-
ness metric. In contrast, the sufficiency metric
presented a low score across all models, with the
best value for PTT5 [LIME], indicating that the
models-predicted rationales are generally adequate
for predicting whether a comment is offensive.
However, some methods missed the prediction of
essential rationales, which impacted their compre-
hensiveness, as this metric measures whether the
model has included all necessary tokens for making
a prediction, ensuring that no essential tokens are
omitted.

Finally, Figure 3 displays the Jaccard Index
(Equation 1) as a measure of similarity for the
top 50 most important tokens identified by each
model. The figure reveals that tokens predicted
by the same classifier using different explainability
methods tend to have a higher similarity. Notably,
the PTT5 [SHAP] model, which achieved the high-
est plausibility metrics and predicted the largest
average number of tokens, showed the lowest simi-
larity with other models.

Figure 3: Similarity analysis of the top 50 most impor-
tant tokens identified by each model.

6 Conclusion

This paper introduces HateBRXplain, a novel
benchmark dataset designed for explainable hate
speech detection in Brazilian Portuguese. The
dataset contains 7,000 Instagram comments, evenly
split between 3,500 offensive and 3,500 non-
offensive entries. Two annotators further anno-
tate each offensive comment with rationales—text
spans that justify the offensive label. We evaluated
several state-of-the-art hate speech detection mod-
els on this dataset, including variations of BERT
and T5. Furthermore, we assessed the models’ ex-
plainability through model-agnostic explanation
methods, evaluating plausibility and faithfulness
metrics. Our findings reveal that while some mod-
els excel in classification performance, they do not
necessarily achieve the highest explainability met-
rics, highlighting the ongoing need for transparency
and reliability in developing hate speech detection
models. We believe this work will significantly im-
pact the field, paving the way for further research
in explainable hate speech detection in Portuguese,
with HateBRXplain as a valuable resource for ad-
vancing model performance and interpretability.
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Limitations

HateBRXplain is an extension of the HateBR
dataset, meaning it inherits any limitation present
in HateBR construction. For instance, HateBR
was collected from the comment section of Brazil-
ian politicians’ accounts on Instagram, so the
dataset may not represent hate speech on other plat-
forms and domains. However, among all available
datasets for Brazilian Portuguese, HateBR stands
out as the only one annotated by experts, balanced
in terms of offensive and non-offensive comments,
and presented baseline evaluations, achieving the
highest F1-score in the hate speech detection task
among all Portuguese datasets available.

Additionally, the rationales annotation process
relied on human annotators, which inherently intro-
duces potential subjective biases and inconsisten-
cies. We attempted to mitigate this by diversifying
the annotator’s profile and providing clear annota-
tion guidelines, but some subjectivity is unavoid-
able.

Ethical Considerations

This paper’s data resources and artifacts are open-
source and anonymized. Furthermore, an expert
in responsible AI supervised the entire annota-
tion process to ensure that the labels did not raise
ethical concerns. Finally, the annotators selected
for this task represent diverse cultural and demo-
graphic backgrounds, including members of af-
fected groups, to ensure both fairness and repre-
sentativeness.

Acknowledgements

We kindly thank Google, CAPES, and CNPq for
supporting this project.

References
Aylin Caliskan, Joanna J. Bryson, and Arvind

Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
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