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Abstract
Multimodal large language models (MLLMs)
demonstrate strong capabilities in multimodal
understanding, reasoning, and interaction but
still face the fundamental limitation of hallu-
cinations, where they generate erroneous or
fabricated information. To mitigate hallucina-
tions, existing methods annotate pair-responses
(one non-hallucination vs one hallucination)
using manual methods or GPT-4V, and train
alignment algorithms to improve the correspon-
dence between images and text. More critically,
an image description often involve multiple di-
mensions (e.g., object attributes, posture, and
spatial relationships), making it challenging
for the model to comprehensively learn multi-
dimensional information from pair-responses.

To this end, in this paper, we propose RRHF-
V, which is the first using rank-responses (one
non-hallucination vs multiple ranking hallu-
cinations) to mitigate multimodal hallucina-
tions. Instead of using pair-responses to train
the model, RRHF-V expands the number of
hallucinatory responses, so that the responses
with different scores in a rank-response enable
the model to learn rich semantic information
across various dimensions of the image. Fur-
ther, we propose a scene graph-based approach
to automatically construct rank-responses in a
cost-effective and automatic manner. We also
design a novel training objective based on rank
loss and margin loss to balance the differences
between hallucinatory responses within a rank-
response, thereby improving the model’s image
comprehension. Experiments on two MLLMs
of different sizes and four widely used bench-
marks demonstrate that RRHF-V is effective in
mitigating hallucinations and outperforms the
DPO method based on pair-responses.1

1 Introduction

Large Language Models (LLMs) (OpenAI, 2023;
Touvron et al., 2023; Achiam et al., 2023; Jiang
1Code: https://github.com/chengq1001/RRHF-V
∗Corresponding author.
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Figure 1: Figure (a) and (b) illustrate a comparison be-
tween DPO (Rafailov et al., 2024) and our RRHF-V.
“Chosen” and “Reject” represent non-hallucinatory and
hallucinatory responses, respectively. RRHF-V train-
ing with our automatically constructed rank-responses
does not require a reference (Ref.) model, and the num-
ber of hallucinatory responses extends from 1 to N. In
Figure (c), our exploratory experiments on the hallucina-
tion evaluation metric AMBER Acc (Wang et al., 2023)
demonstrate the effectiveness of using rank-responses.

et al., 2023; Bai et al., 2023a) represent a signif-
icant milestone in the field of natural language
processing. They have been further extended to
encompass multimodal domains, leading to the
emergence of Multimodal Large Language Models
(MLLMs) (Achiam et al., 2023; Liu et al., 2024c;
Team et al., 2023; Bai et al., 2023b). Despite their
impressive capabilities, which enable them to ex-
cel in various visual tasks (Zhang et al., 2023; Li
et al., 2024; Black et al., 2024) and handle com-
plex content understanding (Lai et al., 2024) or
generation (Brooks et al., 2023; Geng et al., 2024),
MLLMs face a major challenge known as the “Hal-
lucination” problem. Specifically, MLLMs fre-
quently generate incorrect statements in responses
to user-provided images and prompts, such as pro-
ducing irrelevant or nonsensical responses, identify-
ing non-existent colors, inaccuracies in quantities,
and incorrect object positions in images. This flaw
poses significant risks to the practical application
of MLLMs, making them less reliable as assistants.

Various approaches have been proposed to mit-
igate hallucinations in MLLMs. These methods

https://github.com/chengq1001/RRHF-V
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can be mainly divided into training-free (Leng
et al., 2024; Huang et al., 2024a; Wang et al.,
2024a; Manevich and Tsarfaty, 2024) and training-
based approaches (Li et al., 2023a; Sun et al.,
2023a; Zhao et al., 2023; Yu et al., 2024a; Gun-
jal et al., 2024; Liu et al., 2023; Yu et al., 2024b;
Yue et al., 2024). Training-free approaches ad-
dress potential hallucinations by postprocessing
the outputs of MLLMs. While not requiring addi-
tional training costs, training-free approaches tend
to reduce the inference speed. Training-based ap-
proaches primarily tackle hallucination issues by
aligning MLLM outputs with human preferences.
Direct Preference Optimization (DPO) (Rafailov
et al., 2024) has emerged as a pivotal approach
through annotating pairs of hallucinatory and non-
hallucinatory responses and training alignment al-
gorithms to improve the correspondence between
images and text, where a pair-response consists of
one non-hallucination and one hallucination.

The pair-response preference alignment method
presents two critical challenges. First, the effective-
ness of mitigating hallucinations largely depends
on the quality of the pair-responses. Specifically,
the description of an image may involve multiple
dimensions. For example, when describing an im-
age of a cat, it could include attributes like the cat’s
color, posture, and background. Additionally, the
image may contain other objects, such as trees or
toys. This complexity makes it difficult for the
model to learn multi-dimensional information from
the pair-responses. Second, obtaining such spe-
cific and diverse datasets of pair-responses poses a
significant challenge. Current approaches primar-
ily rely on human annotators or GPT-4V (Achiam
et al., 2023) to label the outputs of MLLMs, which
not only demands specialized knowledge but also
incurs substantial time and financial costs.

To address the aforementioned challenges, we
propose a RRHF-V framework, which automati-
cally construct rank-responses to train the model
for mitigating hallucinations in MLLMs. First, to
obtain richer semantic information from responses,
and inspired by RRHF (Yuan et al., 2024) (an al-
gorithm for aligning LLMs that scores multiple
sampled responses and learns to align the ranking
of these responses with human preferences), we
propose an alignment algorithm for MLLMs based
on rank-responses. Instead of using pair-responses
to train the model, we automatically construct N
hallucinatory responses for each non-hallucinatory
response to form a rank-response, as illustrated in

Figure 1. Moreover, unlike existing alignment algo-
rithms like DPO for MLLMs and RRHF for LLMs
that require multiple models to achieve preference
alignment, our RRHF-V only needs to adjust the pa-
rameters of a single model. Further, to improve the
model’s ability to discern the differences between
hallucinatory responses within a rank-response, we
design a training objective based on rank loss and
margin loss to balance these differences. In addi-
tion, we propose a method for automatically con-
structing rank-responses based on scene graphs, re-
placing the need for expensive and time-consuming
human annotation of pair-responses. The main con-
tributions of this paper are as follows:

• We are the first to propose using rank-
responses to mitigate multimodal hallucina-
tions. Compared to a pair-response for an
image, the responses with different scores in a
rank-response enable the model to learn rich
semantic information across various dimen-
sions of the image.

• We propose a scene graph-based approach to
automatically construct rank-responses in a
cost-effective and automatic manner.

• We design a novel training objective based
on rank loss and margin loss to balance the
differences between hallucinatory responses
within a rank-response.

To validate the effectiveness of RRHF-V, we
conducted experiments on four MLLM halluci-
nation evaluation datasets, AMBER (Wang et al.,
2023), POPE (Li et al., 2023b), MMhalBench (Sun
et al., 2023b) and Object HalBench (Rohrbach
et al., 2018) based on MLLMs of different sizes
(LLaVA-1.5-7B (Liu et al., 2024c) and Tiny-
LLaVA-1B (Zhou et al., 2024a)). Experimental
results show that RRHF-V performs better than
DPO in multimodal scenarios and effectively miti-
gates hallucinations. Further analysis reveals that
rank-responses based on scene graphs also play a
crucial role in mitigating hallucinations.

2 Related Work

2.1 Multimodal Large Language Models
Recent advancements in MLLMs research are pri-
marily attributed to the evolution of LLMs (Wang
et al., 2024b; Zhuo et al., 2024; Lu et al., 2024;
Su et al., 2024). With the aid of advanced LLMs
like LLaMA (Touvron et al., 2023) and Qwen (Bai
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et al., 2023a), a batch of MLLMs such as LLaVA-
1.5 (Liu et al., 2024c), Qwen-VL (Bai et al., 2023b),
and mPLUGOwl2 (Ye et al., 2024) have emerged,
which can comprehend and generate a wide array
of content by utilizing information from distinct
modalities like texts and images.

Despite the success, current MLLMs suffer from
serious hallucination problems. Thus, in this paper,
we focus on mitigating hallucination problems to
promote the use of MLLMs in practical scenarios.

2.2 Hallucinations in MLLMs
Hallucinations in MLLMs have significantly im-
peded their usage in the real world, especially for
tasks that rely on precise captions. Recently, numer-
ous studies focus on the construction of datasets
for evaluating hallucination phenomena (Rohrbach
et al., 2018; Li et al., 2023b; Wang et al., 2023;
Sun et al., 2023a; Zhong et al., 2024; Tong et al.,
2024; Wu et al., 2024; Cao et al., 2024; Huang
et al., 2024b; Mubarak et al., 2024; Jing et al., 2024;
Lovenia et al., 2023; Zhai et al., 2023a; Wan and
Bansal, 2022; Zhang et al., 2024b; Min et al., 2023;
Yan et al., 2024). Concurrently, significant atten-
tion is directed towards analyzing the underlying
causes of hallucinations (Tao et al., 2024; Sui et al.,
2024; Fadeeva et al., 2024).

Moreover, various approaches have been pro-
posed to mitigate hallucinations in MLLMs, includ-
ing training-free and training-based approaches.
Training-free approaches address potential halluci-
nations by post-processing the outputs of MLLMs
(Leng et al., 2024; Huang et al., 2024a; Yin et al.,
2023; Manevich and Tsarfaty, 2024; Wang et al.,
2024a). For example, VCD (Leng et al., 2024) aims
to address the model’s over-reliance on linguistic
priors and statistical biases by comparing the output
distributions from unaltered and visually perturbed
inputs. However, training-free approaches tend
to reduce the inference speed. Instead, training-
based approaches seek to mitigate hallucinations
in MLLMs via further training, such as Supervised
Fine-Tuning (SFT) (Liu et al., 2023) or preference
learning (Sun et al., 2023a; Yu et al., 2024a; Li
et al., 2023a; Zhao et al., 2023; Gunjal et al., 2024;
Liu et al., 2024a; Yu et al., 2024b; Zhou et al.,
2024b; Jiang et al., 2024; Jing and Du, 2024). For
example, LRV (Liu et al., 2023) performs length
controlled fine-tuning on visual instructions to mit-
igate hallucinations. LLaVA-RLHF (Sun et al.,
2023a) is the first to train an MLLM to align with
human preference. RLHF-V (Yu et al., 2024a)

manually collects segment-level human preference
and conduct dense direct preference optimization
(DDPO) over the human feedback to reduce hallu-
cinations. HA-DPO (Zhao et al., 2023) proposes
a style-consistent DPO, which converts preference
data pairs into a consistent format.

However, existing DPO-based methods typically
use pair-responses (where a pair-response consists
of one non-hallucinatory response and one hallu-
cinatory response) to align MLLMs, addressing
the hallucination problem. Moreover, most ap-
proaches heavily rely on manual annotation or GPT-
4V (Achiam et al., 2023) when constructing pair-
response datasets. Therefore, we aim to expand
the number of hallucinatory responses and, for the
first time, propose using rank-responses to miti-
gate multimodal hallucinations. Additionally, we
introduce an automatic method for constructing
rank-responses based on scene graphs, along with
a training objective tailored for rank-responses.

3 Methodology

An overview of our proposed RRHF-V framework
is shown in Figure 2, which consists of two main
components: Rank-response Construction Pipeline
and Training Objective.

3.1 Rank-response Construction Pipeline

3.1.1 Data Source
We utilized the ShareGPT4V (Chen et al., 2023)
dataset, which contains rich content and accurate
textual descriptions. We randomly selected 5,000
images and their corresponding questions and tex-
tual descriptions (answers) from the ShareGPT4V
dataset, denoted as I , Q, and D, respectively.

3.1.2 Divide and Conquer
In the ShareGPT4V dataset, each image descrip-
tion typically consists of multiple sentences, a sin-
gle pair-response construced from these sentences
could hinder the model’s ability to learn rich seman-
tic information across various dimensions of the
image. To address this, we introduce a fine-grained
divide-and-conquer strategy that decomposes a de-
scription into atomic responses based on our de-
signed Divide-and-conquer Prompt TD as detailed
in Appendix E.1. Specifically, as illustrated in Fig-
ure 2 (Step 1⃝), we employ the LLaMA3-8B model
to exclude subjective statements and extract objec-
tive facts from the description Di (Di ∈ D), and
decompose them into a series of atomic responses
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D!: In the image, there
is a woman standing in
front of a white sign.
The woman is holding
a pink umbrella in her
hand and is wearing a
colorful swimsuit. She
is smiling, adding a
cheerful vibe to the
scene. The background
of the image features a
serene lake surrounded
by lush green trees
under a clear blue sky.
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Figure 2: Overview of the RRHF-V framework: (1) Rank-response Construction Pipeline aims to automatically
construct a rank-response for an image, which consists of four steps. Initially, the description of the image is
decomposed into atomic responses (Step 1⃝). Subsequently, for each atomic response, a corresponding scene graph
is constructed (Step 2⃝) and then further tuned to generate an atomic hallucinatory response (Step 3⃝). Finally, by
combining these atomic responses and atomic hallucinatory responses, a rank-response for the image, consisting of
one non-hallucination R̃0

i and multiple ranking hallucinations Rj
i , is generated (Step 4⃝). (2) We design a training

objective based on SFT loss, rank loss, and margin loss to achieve the goal of mitigating hallucinations.

ri = {r1i , r2i , . . . , r
j
i }. These atomic responses con-

vey complete semantic information independently,
thereby enhancing the model’s capability to under-
stand fine-grained descriptions.

3.1.3 Scene Graph Generation

The hallucination issue in MLLMs primarily per-
tains to objects, their attributes, and the relation-
ships among them (Zhou et al., 2024c). Con-
sidering that scene graphs are key components
for understanding visual scenes, as they encapsu-
late rich semantic information, including objects,
their attributes, and the relationships between them
(Huang et al., 2024c). Therefore, we propose to
generate a corresponding scene graph for each
atomic response in order to construct high-quality
hallucinatory responses.

Specifically, given an atomic response rji (rji ∈
ri), we parse it into a scene graph G(rji ), where
G(rji ) = ⟨O(rji ), R(rji ), E(rji ), A(r

j
i ),K(rji )⟩.

Here, O(rji ) is the set of objects mentioned in
rji , R(rji ) is the set of relationship nodes, and
E(rji ) ⊆ O(rji ) × R(rji ) × O(rji ) is the set of
hyper-edges representing actual relationships be-

tween objects. K(rji ) ⊆ O(rji )× A(rji ) is the set
of attribute pairs, where A(rji ) is the set of attribute
nodes associated with objects. To achieve this, in
our framework we also use LLaMA3-8B model to
parse atomic responses into scene graphs according
to our carefully designed Scene-graph-generation
Prompt TG as shown in Appendix E.2.

As shown in Figure 2 (Step 2⃝), a scene graph for
the atomic response r2i is generated, where the ob-
jects, such as “woman”, “umbrella” and “swimsuit”
are the fundamental elements. The associated at-
tributes, such as “pink” and “colorful” characterize
the color or other attributes of objects. Relations
such as “hold on” represent the spatial connections
between objects.

3.1.4 Atomic Hallucinatory Response
Generation

Our objective is to construct atomic hallucinatory
responses with similar composition but different
detailed semantics compared to atomic responses.
Given an image-text pair (Ii - Di) (Ii ∈ I , Di ∈ D)
and a related scene graph G(rji ) generated from the
atomic response rji (rji ∈ ri), as shown in Figure
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2 (Step 3⃝), an atomic hallucinatory response rji is
generated via

rji = F (rji , G(rji )) , (1)

where F is our defined sampling functions. Specifi-
cally, for triples (object, relation, subject) in the
scene graph, rji is generated randomly through the
following two sampling functions:

ObjSwap((O1, Rel, O2)) = (O2, Rel, O1) , (2)

ObjReplace((O1, Rel, O2)) = (O3, Rel, O2) ,
(3)

where ObjSwap is the function to swap the ob-
ject O1 and the subject O2 in the sentence, Rel
denote the relation. ObjReplace is a function that
replaces O1 with O3. O3 is an entity that frequently
co-occurs with O1 in the real world.

For attribute pairs (A1, O1) and (A2, O2) in the
scene graph, rji is generated via

AttrSwap((A1O1), (A2O2)) =

{
(A2O1), (A1O2) if O1 ̸= O2,
pass if O1 = O2,

(4)
where AttrSwap is the function to exchange at-
tributes between (A1, O1) and (A2, O2) in the
scene graph.

3.1.5 Rank-response Construction
As illustrated in Figure 2 (Step 4⃝), we construct the
final rank-responses. Formally, a rank-response Ri

constructed for an image-text pair (Ii - Di) consists
of one non-hallucinatory response R̃0

i and N hallu-
cinatory responses Rj

i , where N is the number of
the atomic responses rji (where j ranges from 1 to
N ) into which Di is divided. We further introduce
the concept of “hallucination rate”, where the hal-
lucination rate hr of each response represents the
proportion of the atomic responses rji (Step 1⃝ in
Figure 2) that are replaced by atomic hallucinatory
responses rji (Step 3⃝ in Figure 2). Additionally,
each response in the rank-response Ri is assigned
a score Sk

i , calculated as follows:

Sk
i = N · (1− hrki ), (5)

where Sk
i , which represents the score correspond-

ing to the k-th response in Ri (0 ≤ k ≤ N ), is in-
versely related to the hallucination rate. Ultimately,
we obtain a rank-response for each image-text pair
(Ii - Di) . The process of rank-response construc-
tion is summarized in Algorithm of Appendix A.

3.2 Training Objective
For an MLLM π, it starts from an input image
xv and a question prompt xq, drawn from I and
Q, respectively, and then generates a response y.
Our target is to utilize an MLLM to produce an
appropriate response y with xv and xq, while learn-
ing to distinguish hallucination differences by an-
alyzing hallucination phenomena across multiple
rank-responses with varying scores.

To achieve this, we introduce three loss func-
tions: SFT loss, rank loss, and margin loss.

3.2.1 SFT Loss
For a given xv and xq, we expect model π to gen-
erate a better response. Therefore, we require the
model to learn the response with the highest score
Si. Consequently, the Supervised Fine-Tuning
(SFT) loss is defined as follows:

i′ = argmax
i

Si (6)

Lsft = −
∑
t

logPπ(yi′,t|xv, xq, yi′,<t) (7)

3.2.2 Rank Loss
To align with scores S, we use our model π to give
an implicit reward pi for each yi by:

pi =

∑
t logPπ(yi,t|xv, xq, yi,<t)

∥yi∥
, (8)

where pi is conditional log probability (length-
normalized) of yi under the model π. Following
the idea of RRHF (Yuan et al., 2024), we also let
the model π give larger probabilities for better re-
sponses and give smaller probabilities for worse
responses. We optimize this object by rank loss:

Lrank =
∑

Si<Sj

max(0, pi − pj) (9)

3.2.3 Margin Loss
To further enhance the model’s ability to discern
the differences between hallucinatory responses
within a rank-response, and to prevent the implicit
reward difference between yi and yj within a rank-
response from becoming excessively large or small,
we introduce a margin loss

Lmargin =

n∑
i=2

(p0 − pi − (i− 1)γ)2 , (10)

where pi denotes the implicit reward of the i-th
response, and γ is a constant offset.



6803

Size AMBER POPE MMHal
Bench

Object
HalBench

Acce Acca Accs Accn Accact Accall F1all Score Accadv F1adv Score Cs ↓ Ci ↓

VCD 7B 68.3 66.3 63.3 68.4 78.4 71.8 74.9 79.5 81.0 80.1 2.12 48.8 24.3
OPERA 7B 77.8 26.3 29.6 22.8 15.9 75.2 78.3 36.2 79.1 86.4 2.15 45.1 22.3
Less is more 7B 78.9 72.9 72.9 79.0 83.3 72.4 75.8 85.3 81.9 83.2 2.03 40.3 17.8
LLaVA-RLHF 7B 64.5 72.7 71.1 72.1 83.7 68.7 74.4 83.1 75.8 78.9 1.80 46.2 24.5
HA-DPO 7B 78.9 72.4 67.0 80.4 84.1 75.2 79.9 86.6 81.4 82.5 1.97 39.9 19.9
FGAIF 7B - - - - - - - - 79.6 79.9 3.09 3.9 6.2
LURE 10B - - - - - 73.5 77.7 - - - 1.64 27.7 17.3
Qwen-VL 10B 93.9 74.7 70.4 80.4 85.9 73.5 77.7 86.3 82.5 82.8 2.03 40.3 17.8
RLHF-V 13B 92.1 78.3 77.0 77.9 87.0 72.6 75.0 84.3 81.8 79.4 2.81 12.2 7.5

Tiny-LLaVA-1B 1B 68.9 66.3 62.2 72.4 74.9 65.0 63.9 79.6 78.8 80.6 1.56 61.4 32.5
+ DPO 1B 52.1 60.8 56.9 66.7 68.6 57.4 55.3 71.9 73.3 77.6 1.69 61.4 33.8
+ RRHF-V 1B 83.6 69.5 66.0 72.1 83.5 70.5 77.6 83.1 82.6 82.1 1.38 58.5 33.7

APG - 14.7 3.2 3.8 -0.3 8.6 5.5 13.7 3.5 3.8 1.5 -0.18 -2.9 1.2
RPG (%) - 21.34 4.83 6.11 -0.41 11.48 8.46 21.44 4.40 4.82 1.86 -11.54 -4.72 3.69

LLaVA-1.5-7B 7B 72.5 74.2 70.1 79.7 84.3 72.0 74.7 83.5 78.8 80.8 2.19 50.7 26.9
+ DPO 7B 53.5 69.3 66.0 72.2 82.1 64.2 64.1 78.6 72.8 77.6 2.05 52.1 26.9
+ RRHF-V 7B 86.2 80.2 76.9 85.7 86.0 79.4 84.6 88.8 82.6 82.3 1.93 38.2 21.9

APG - 13.7 6.0 6.8 6.0 1.7 7.4 9.9 5.3 3.8 1.5 -0.26 -12.5 -5.0
RPG (%) - 18.9 8.09 9.70 7.53 2.02 10.28 13.25 6.35 4.82 1.86 -11.87 -24.65 -18.59

Table 1: Main results of Tiny-LLaVA-1B and LLaVA-1.5-7B trained with RRHF-V and base DPO. The best
result for each metric in each group is in bold. APG and RPG indicate the absolute performance gains and the
relative performance gains achieved by our model compared with the base model (Tiny-LLaVA-1B and LLaVA-
1.5-7B). APG and RPG can be calculated by APG = Rrrhf−v −Rbase and RPG = (Rrrhf−v −Rbase)/Rbase,
where Rrrhf−v and Rbase denote the results of our model and base model (Tiny-LLaVA-1B or LLaVA-1.5-7B),
respectively. For reference, we also provide results for some typical methods using various MLLMs. The results on
AMBER and POPE are our reproductions based on their original settings, while the results on MMHal and Object
HalBench are from their original papers.

3.2.4 RRHF-V Loss
The final loss is defined as the weighted sum of
three individual loss functions:

L = Lsft + α · Lrank + β · Lmargin, (11)

where α and β denote the hyperparameters.

4 Experiment

4.1 Experimental Setup

4.1.1 Models
We apply RRHF-V on two multimodal large mod-
els in different sizes, Tiny-LLaVA-1B (Zhou et al.,
2024a) and LLaVA-1.5-7B (Liu et al., 2024b).
More details about these MLLMs can be found
in Appendix B.1.

4.1.2 Training Data
We sample 5K data from ShareGPT4V (Chen et al.,
2023) for constructing rank-responses and training.
More details about ShareGPT4V can be found in
Appendix B.2.

4.1.3 Evaluation Benchmarks

We evaluate the performance of RRHF-V on four
widely used benchmarks (POPE (Li et al., 2023b),
AMBER (Wang et al., 2023), MMHalBench (Sun
et al., 2023b), Object HalBench (Rohrbach et al.,
2018)) for MLLMs with a special focus on halluci-
nation. The benchmarks are detailed in Appendix
B.3.

4.1.4 Baselines

We primarily compare RRHF-V with standard
DPO. We also provide the results of general
leading-edge MLLMs (Tiny-LLaVA-1B (Zhou
et al., 2024a), LLaVA-v1.5-7B (Liu et al., 2024b)
and Qwen-VL-Chat-10B (Bai et al., 2023b)) and
several training-free approaches (VCD (Leng et al.,
2024), OPERA (Huang et al., 2024a)). Regarding
the training-based approaches, we select some typi-
cal methods, including FGAIF (Jing and Du, 2024),
Less is more (Yue et al., 2024), LLaVA-RLHF (Sun
et al., 2023a) and HA-DPO (Zhao et al., 2023) un-
der the same model size, as well as methods based
on larger model sizes, such as RLHF-V (Yu et al.,
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2024a) and LURE (Zhou et al., 2024c).

4.1.5 Implementation Details
We conducted experiments on both the Tiny-
LLaVA-1B and LLaVA-1.5-7B models. More de-
tails can be found in Appendix B.4.

4.2 Main Results
Table 1 presents the primary experimental results.
We observe the following points:

• Across four benchmark tests, both LLaVA-1.5-
7b and Tiny-LLaVA-1b generally outperform
the DPO method, indicating that the rank-
response strategy by extending the number of
hallucinatory responses significantly enhances
model performance.

• LLaVA-1.5-7B achieved improvements of
13.25% and 4.82% on AMBER(F1all) and
POPE(ACCadv). Similarly, Tiny-LLaVA-1B
achieved increases of 21.44% and 21.34% on
AMBER(F1all) and AMBER(F1e). These re-
sults demonstrate the effectiveness of RRHF-
V in mitigating hallucinations of MLLMs.

• Furthermore, RRHF-V consistently outper-
forms a range of training-free and training-
based methods at the same model size (7B),
and also demonstrates superior performance
compared to the larger model (10B) across
most metrics. These results further demon-
strate the effectiveness of our approach.

4.3 Analysis
We conduct analysis on RRHF-V considering the
following questions: (Q1) Has the introduction of
scene graphs effectively enhanced the quality of
rank-responses? (Q2) Are all three loss functions
in the training objective necessary? (Q3) How does
RRHF-V’s performance scale with feedback data
amount? (Q4) Does the number of rank-responses
have a significant impact on the final results? (Q5)
How does the overhead of the rank-response data
construction pipeline proposed in RRHF-V? (Q6)
How do the training time and memory overhead of
the RRHF-V compare to DPO?

A1: Rank-responses constructed based on
scene graphs is better. To validate the effec-
tiveness of rank-responses constructed from scene
graphs, we employ the Llama3-8B to directly gen-
erate atomic hallucinatory responses from atomic
responses, rather than through scene graph trans-
formations. The results are presented in Table 2.

POPE AMBER

ACC F1 ACC F1

w Scene Graph 82.6 82.3 79.4 84.6
w/o Scene Graph 77.7 80.3 73.8 77.0

Table 2: Comparison of generated rank-responses
depending on whether scene graphs are used. The
results indicate that the RRHF-V’s performance signifi-
cantly deteriorates in the absence of scene graphs.

POPE AMBER

ACC F1 ACC F1

Lsft 80.4 80.4 74.8 79.1
Lsft + Lrank 80.6 81.2 76.3 81.6
Lsft + Lmargin 79.7 81.3 75.9 79.6
Lrank + Lmargin 79.1 81.0 74.7 77.7

Lsft + Lrank + Lmargin 82.6 82.3 79.4 84.6

Table 3: Ablation results of different loss functions
in RRHF-V. The results indicate that the sft loss, rank
loss, and margin loss each play an indispensable role in
achieving the training objectives.

We observe that the results are not ideal without
using scene graphs. We suggest that directly con-
verting atomic responses into atomic hallucinatory
responses introduces uncertainty, hindering effec-
tive learning. This further validates the effective-
ness of our proposed method for constructing rank-
responses based on scene graphs.

A2: Each component in our loss enhances
model performance. To validate the contribution
of each loss function to model performance, we
conduct an ablation study in Table 3. The results
demonstrate that all three loss functions are es-
sential for achieving the training objectives. They
complement each other, and their combined use is
crucial for improving overall model performance.
More detailed experiments on hyperparameters α,
β, and γ in the loss can be found in Appendix C.

A3: Scaling feedback data leads to promis-
ing results. We sample 5k data from ShareGPT4V
as mentioned in Section 4.1.2 for training in our
main implementation. To further ensure fairness
in data selection, we randomly sample 10,000 in-
stances from the COCO image dataset within Share-
GPT4V and construct datasets of varying sizes:
10k, 5k, 2k, and 1k. Rank-responses are con-
structed based on these datasets. As shown in Table
4, hallucinations are effectively mitigated as the
data scale increases. Based on this trend, we con-
jecture that further expanding data scale may lead
to additional improvements in model performance.
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POPE AMBER

ACC F1 ACC F1

coco-1k 77.2 79.9 71.9 74.3
coco-2k 77.3 80.0 73.5 76.2
coco-5k 80.9 81.7 75.7 80.8

coco-10k 83.3 82.2 76.8 83.9

Table 4: Comparison of different amounts of feed-
back data. A set of 10k image-text pairs was selected
from the COCO dataset and divided into four different
data scales for training. The results indicate that model
performance improves as the data scale increases.

POPE AMBER

ACC F1 ACC F1

Number = 1 78.2 80.5 71.2 73.2
Number = 2 78.9 81.1 74.2 77.0
Number = 3 80.4 81.5 76.0 80.0
Number = 4 81.2 81.7 77.1 82.3
Number = 5 82.6 82.3 79.4 84.6
Number = 10 78.9 80.9 55.6 60.3

Table 5: Comparison of the number of hallucinatory
responses in a rank-response. The results show that as
the number increases, the RRHF-V’s performance grad-
ually improves; however, when the number becomes
too large, performance begins to deteriorate.

A4: Rank-responses necessitate a reasonable
number. Although we observe that the occurrence
of hallucination phenomena decreases with the in-
crease in the number of rank-responses, a higher
number of hallucinatory responses are not neces-
sarily beneficial for model performance. As shown
in Table 5, an excessive number of hallucinatory
responses may actually lead to a decline in model
performance during training.

A5: The cost of rank-response construction
may be acceptable. As illustrated in Figure 3,
we present the time cost for generating 5000 rank-
responses using the LLaMA3-8B model. Com-
pared to manually annotated response methods, our
approach is automated. Moreover, due to limita-
tions in resources and data scale, we do not provide
a direct comparison of the time cost for generating
a similar scale of rank-responses using the GPT-
4V. Nevertheless, the time cost of generating rank-
responses with open-source models remains within
an acceptable range for practical applications.

A6: RRHF-V lags behind DPO in LoRA, but
excels in full parameter fine-tuning. Figure 4(a)
illustrates the results of applying the LoRA method
to train the LLaVA-1.5-7B model. The experi-
mental results indicate that RRHF-V has slightly

6.5 13.3 5.3

Divide and Conquer Scene Graph Generation Atomic Hallucinatory Response Generation

Time (h)

Figure 3: The time overhead for each step involved in
constructing 5000 rank-responses using the LLaMA3-
8B model.

6.6

37.8

3.8

35.4

Run time（h）

Memory (GB)

DPO RRHF-V

(a) LLaVA-v1.5-7B (LoRA)  

9.1

28.6

4.4

34.1

Run time（h）

Memory (GB)

DPO RRHF-V

(b) Tiny-LLaVA-1B (Full Parameter)  

Figure 4: Figure (a) and Figure (b) respectively illus-
trate the performance and computational overhead of
the LLaVA-1.5-7B model with LoRA fine-tuning us-
ing DPO and RRHF-V, and the Tiny-LLaVA-1B model
with full parameter fine-tuning, under identical training
parameters and dataset scales.

higher memory usage and training time compared
to DPO, suggesting that even with the extended
rank-responses, the computational overhead in-
crease is minimal. Howerve, our RRHF-V only
needs to adjust the parameters of a single model,
unlike DPO which need multiple models. This ad-
vantage is particularly prominent in full parameter
fine-tuning. Due to hardware resource constraints,
we performed full parameter fine-tuning on the
Tiny-LLaVA-1B model. Figure 4(b) illustrates that
RRHF-V outperforms DPO in terms of memory
usage. Based on these results, we anticipate that
for larger models with full parameter fine-tuning,
RRHF-V will further excel in memory consump-
tion, thus enhancing its practical advantages. We
will conduct more extensive exploration and exper-
imentation in future work.

4.4 Case Study

To provide a more intuitive demonstration of
RRHF-V’s performance in mitigating hallucina-
tions, we conducted case studies of the RRHF-V
and the original LLaVA-1.5-7B model. For detailed
results, please refer to the Appendix D.

5 Conclusion

In this paper, we present RRHF-V, a novel approach
to mitigate multimodal hallucinations in MLLMs.
By using rank-responses instead of pair-responses,
we expand the number of hallucinatory responses,
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enabling the model to capture richer semantic infor-
mation of an image-text input. We further propose
a scene graph-based approach to automatically con-
struct high-quality rank-responses, avoiding man-
ual annotation. We also design a training objective
tailed for training the models on rank-responses.
Experiments on two MLLMs and four benchmarks
show that RRHF-V effectively mitigates halluci-
nations, outperforming traditional pair-response
methods like DPO.

Limitations

Firstly, although extensive experiments have
demonstrated the superior effectiveness of RRHF-
V over DPO, we have yet to combine it with other
DPO-based improvement methods. The analysis
of such combined approaches will be left for future
work. Secondly, our exploration of the number
of hallucinatory responses remains insufficient.
We believe that the optimal approach should
adaptively determine the appropriate number of
hallucinatory responses based on the data rather
than relying on pre-defined values. In future work,
we will further investigate methods for optimally
determining the number of hallucinatory responses.
Lastly, our current data construction pipeline is
limited to image description data and has not yet
been extended to tasks such as visual reasoning or
visual question answering. In the future, we will
explore how to extend RRHF-V to more complex
and diverse data types.
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A Algorithm of Constructing
Rank-responses

The pseudocode for Rank-response Construction is
shown in Algorithm 1.

Algorithm 1: Rank-Response Construction
Input:
D: Set of image-text pairs {(Ii, Di)} where
i = 1, 2, . . . ,K
N : Number of atomic responses rji into
which each Di is divided
Output: R: Set of rank-responses {Ri}

with corresponding scores {Sk
i }

1 R ← ∅
2 for each image-text pair (Ii, Di) ∈ D do
3 Divide Di into N atomic responses:

Di = {r1i , r2i , . . . , rNi };
4 for each atomic response rji ∈ Di do
5 Construct corresponding atomic

hallucinatory response rji ;
6 Initialize Ri = {R̃0

i , R
1
i , R

2
i , . . . , R

N
i },

where R̃0
i is the non-hallucinatory

response, and Rj
i are hallucinatory

responses;
7 for k = 0 to N do
8 Rk

i represents a description with
some atomic responses rji replaced
by their corresponding
hallucinatory responses rji ;

9 Calculate the hallucination rate hrki
as the proportion of atomic
responses in Rk

i that are replaced
by hallucinatory responses;

10 Compute score Sk
i for Rk

i :

Sk
i = N · (1− hrki )

11 R ← R∪ {(Ri, {Sk
i })};

12 returnR

B Evaluation Details

We introduce more evaluation details, including
baseline models and evaluation benchmarks.

B.1 Models

• Tiny-LLaVA-1B (Zhou et al., 2024a) is a
1.1B model building upon SigLIP (Zhai et al.,
2023b) and TinyLlama (Zhang et al., 2024a).

It is pretrained on 1.8M image-text pairs and
finetuned on 1.3M instruction tuning data.

• LLaVA-1.5-7B (Liu et al., 2024b) is a 7B
model based on CLIP (Radford et al., 2021)
and Vincuna (Chiang et al., 2023). It is pre-
trained on 558K image-text pairs and fine-
tuned on 665K instruction tuning data.

B.2 Datasets
The ShareGPT4V(Chen et al., 2023) dataset is a
comprehensive and diverse collection of image
descriptions specifically gathered for supervised
fine-tuning, utilizing the GPT-4 Vision (Achiam
et al., 2023). This dataset comprises approxi-
mately 100,000 images compiled from various data
sources, including images for detection (Lin et al.,
2014) and segmentation (Kirillov et al., 2023), im-
ages containing complex text (Sidorov et al., 2020),
and various web images featuring artworks, land-
marks, celebrities, etc. (Schuhmann et al., 2021;
Sharma et al., 2018; Ordonez et al., 2011).

In the original ShareGPT4V text, it is ex-
plained that for each image, carefully designed
data-specific prompts to guide GPT-4 Vision in pro-
ducing detailed descriptions that account for world
knowledge, object attributes, spatial relationships,
and aesthetic assessments. To maintain the qual-
ity and consistency of these descriptions, a general
prompt structure is established for basic descrip-
tions, with additional specific prompts tailored for
each data source. These specific prompts are de-
signed to incorporate relevant knowledge about the
images, such as the names and geographical loca-
tions of landmarks, ensuring the descriptions go
beyond superficial appearances. For example, the
Eiffel Tower should not merely be described as a
“tall iron tower”, and a photo of Einstein should not
simply be summarized as “an old man”.

Furthermore, some images included prompts re-
lated to aesthetics to enhance the comprehensive-
ness of the descriptions. The careful design of these
prompts and the high-quality image descriptions
generated by GPT-4 Vision make the ShareGPT4V
dataset a valuable resource for fine-tuning visual
language models.

B.3 Evaluation Benchmarks
We introduce additional details about the bench-
marks we used for evaluation.

• POPE (Li et al., 2023b) is a main-
stream dataset for hallucination evaluation
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in MLLMs, contains 9,000 questions of 3
types. POPE targets at object existence of
fixed categories (80 COCO) in images, supply-
ing Yes/No response. The model’s accuracy is
benchmarked against the ground truth answer.
We use adversarial questions and report the
accuracy and F1 metric.

• AMBER (Wang et al., 2023) is a multi-
dimensional hallucination benchmark com-
prising more than 15k samples. We focus on
the discriminative task and report the accuracy,
F1 metric and AMBER Score.

• MMHalBench (Sun et al., 2023b) is a practi-
cal question answering benchmark containing
eight question categories and 12 object topics.
Following the official setting, we use GPT-
4 (Achiam et al., 2023) to assess the overall
quality of response with a score between zero
and six.

• Object HalBench (Rohrbach et al., 2018) is
a widely adopted benchmark to assess object
hallucination. We report the CHAIR scores
(Rohrbach et al., 2018) assessing hallucina-
tion rate of response level (CHAIRs) and ob-
ject level (CHAIRi), with GPT-3.5 participat-
ing in the evaluation.

B.4 Implementation Details

For the construction of rank-responses, we em-
ployed the LLaMA3-8B-PF16 model. The entire
data generation process produced a total of 5k data,
with a completion time of less than 26 hours. The
detailed breakdown of each step’s cost is illustrated
in Figure 3.

For the training of RRHF-V, we set N (the
number of hallucinatory responses) to 5 and use
5k data in total. We primarily compare RRHF-
V with standard DPO. The DPO baseline shares
the same training process, data (we consider that
DPO performs best when training on responses
with large gaps (Yang et al., 2023; Meng et al.,
2024; Pace et al., 2024), so we selected the highest-
scoring and lowest-scoring responses to form a
pair-response), and hyper-parameters, despite hav-
ing different learning objectives.

• RRHF-V for LLaVA-1.5-7B. We train it for
2 epochs with LoRA (Hu et al., 2022) where
lora rank is 100 and lora alpha is 50. Learn-
ing rate is 1.4e-5 and batch size is 1 and the

Hyperparameters POPE AMBER

α β γ ACC F1 ACC F1

50 20 0.4 82.8 82.1 74.1 84.0
50 50 0.4 82.3 82.3 78.0 83.1
50 50 0.5 82.3 82.5 77.4 82.9
50 50 0.6 81.8 82.2 78.9 83.6
100 100 0.35 80.8 81.8 76.5 80.8
100 100 0.4 82.7 82.3 79.4 84.6
100 100 0.5 81.3 81.9 77.7 82.2
150 150 0.4 81.2 82.0 76.8 81.5
200 200 0.4 79.9 81.4 76.9 80.9

Table 6: Comparison of different hyperparameters
α, β, γ. The results show that different values of hy-
perparameters α, β, γ have a significant impact on the
experimental results.

hyperparameter α is 100, β is 100, and γ is
0.4.

• DPO for LLaVA-1.5-7B. We train it for 2
epochs with LoRA where lora rank is 100
and lora alpha is 50. Learning rate is 1.4e-5
and batch size is 1.

• RRHF-V for Tiny-LLaVA-1B. Due to the in-
stability of small-sized models, we adopted a
two-stage training strategy for Tiny-LLaVA-
1B. In the first stage, We train it for 5 epochs
with LoRA where lora rank is 256 and lora
alpha is 128. Learning rate is 1.4e-5 and batch
size is 3 and the hyperparameter α is 100, β
is 100, and γ is 0.4. In the second stage, we
only change γ to 0.1 and train it for 2 epochs.

• DPO for Tiny-LLaVA-1B. We train it for 2
epochs with LoRA where lora rank is 256 and
lora alpha is 128. Learning rate is 1.4e-5 and
batch size is 3.

C Additional Experiments of
hyperparameters α, β, and γ in the
Loss

To systematically evaluate the impact of hyperpa-
rameters α, β, and γ on model performance, we
conducted ablation experiments as shown in Ta-
ble 6. Through a series of experimental analyses,
we systematically compared the effects of different
values of α, β, and γ on the loss function. Based
on the experimental results, we ultimately deter-
mined α = 100, β = 100, and γ = 0.4 as the final
hyperparameter configuration for the loss function.
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Describe this image. The image features a large, ancient temple with a tall, ornate structure in the background. The temple is adorned 
with several statues, including one on the left side and another on the right side. The statues are positioned at 
various heights and angles, adding to the temple's grandeur. In addition to the statues, there are two people visible 
in the scene, one near the center and the other towards the right side. The overall atmosphere of the image is one of 
historical significance and architectural beauty.

The image showcases a majestic temple with intricate stone carvings, towering over the landscape. The temple 
features a mix of architectural styles, including a mix of stone and brick. The temple is adorned with a variety of 
statues, adding to its grandeur. The scene is further enhanced by the presence of a large, imposing mountain in the 
background, creating a breathtaking contrast between the natural and architectural worlds.

LLaVA-1.5-7b

RRHF-V-7b

Yes, there are fish jumping out of the water in the picture.

No, there are no fish jumping out of the water in the picture. The image features a boat filled with people, birds, 
and possibly a fishing boat, traveling across the water. The main focus of the scene is the interaction between the 
boat and the birds flying above the water.

Are there any fish jumping out of the water in the picture? 

LLaVA-1.5-7b

RRHF-V-7b

Figure 5: RRHF-V’s performance in mitigating hallucinations. We compared the performance of RRHF-V with
the original LLaVA-1.5-7B model. Specifically, the top section of the image illustrates the model’s ability to provide
detailed descriptions of visual information, while the bottom section evaluates the model’s accuracy in recognizing
co-occurring entities—an area particularly prone to hallucinations. Text highlighted in red denotes hallucinatory
descriptions.

D Case Study

Details of RRHF-V’s performance in mitigating
hallucinations are shown in Figure 5. We present
two case studies involving the RRHF-V model: (1)
In the upper part, the original LLaVA-1.5-7B model
exhibits hallucinations when describing the image,
incorrectly identifying two people in front of a tem-
ple, whereas the RRHF-V accurately depicts the
image content without hallucinations. (2) In the
lower part, we compare the ability of RRHF-V and
the original LLaVA-1.5-7B to recognize entities
within the image. We introduced the hallucination
of “fish”, which is most likely to co-occur with
entities in the image. The LLaVA-1.5-7B mistak-
enly identified the presence of “fish” in the im-
age, while RRHF-V remained unaffected by the
co-occurrence information and made the correct
judgment. These findings further support the ear-
lier conclusion that RRHF-V effectively mitigates
hallucination in MLLMs.

E Prompts in Rank-response
Construction Pipeline

E.1 Details of Divide-and-conquer Prompt
Templates

Details of our Divide-and-conquer prompt template
are shown below in Figure 6.

E.2 Details of Scene-graph-generation
Prompt Templates

Details of our Scene-graph-generation prompt tem-
plate are shown below in Figure 7.
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Task：
Given a paragraph, divide it into 5 sentences.

For example:
input: {

"In the tranquil setting of a park, a row of six neatly trimmed spherical bushes stand in 
line, their vibrant green color contrasting beautifully with the verdant grass beneath them. 
On the left foreground, a red fire hydrant adds a pop of color to the scene. In the distance, 
a building and a tree can be seen against the backdrop of a clear blue sky. The image 
captures the essence of a peaceful day in the park.”
}
output:{

"1": "In the tranquil setting of a park, a row of six neatly trimmed spherical bushes stand 
in line.",

"2": "Their vibrant green color contrasts beautifully with the verdant grass beneath 
them.",

"3": "On the left foreground, a red fire hydrant adds a pop of color to the scene.",
"4": "In the distance, a building and a tree can be seen against the backdrop of a clear 

blue sky.",
"5": "The image captures the essence of a peaceful day in the park.”

}

Require:
1. Divide the paragraph into 5 sentences based on the overall semantics.
2. Excluding subjective statements.
3. If the number of sentences exceeds 5, merge some sentences to make it 5 sentences.
4. If the number of sentences is less than 5, split some sentences to make it 5 sentences.
5. Try not to change the style of the sentence.

Attention:
1.Your answer only needs to give answer, no explanation is required!
2.Your answer should be in the same format as the example, given in JSON format

input: {Input}
output: {Your Answer}

Figure 6: Divide-and-conquer Prompt Template
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Task：
Extract entity and triples from a sentence (Before extracting triples, please fully understand 
the meaning of this passage and extract it after grasping the global semantics.)

For example:
input: { 
"sentence": "A young man standing on stage wearing a white shirt and black pants." 
}
output:{

"entity": ["man","stage","shirt","pants"],
"attribute pairs": [

["man","young"],
["shirt","white"],
["pants","black"]

],
"triples": [

["man","stand","stage"],
["man","wear","shirt"],
["man","wear","pants"],
["man","is","young"],
["shirt","is","white"],
["pants","is","black"]
]

}

Attention:
1.Your answer only needs to give answer, no explanation is required!
2.Strictly the same output format as the example, given in json format!
3.Your answer should be in strict JSON format and no comments should be added to the 
content!

input: {Input}
output: {Your Answer}

Figure 7: Scene-graph-generation Prompt Template
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