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Abstract

URIEL is a knowledge base offering geograph-
ical, phylogenetic, and typological vector rep-
resentations for 7970 languages. It includes
distance measures between these vectors for
4005 languages, which are accessible via the
lang2vec tool. Despite being frequently cited,
URIEL is limited in terms of linguistic in-
clusion and overall usability. To tackle these
challenges, we introduce URIEL+,1 an en-
hanced version of URIEL and lang2vec that
addresses these limitations. In addition to ex-
panding typological feature coverage for 2898
languages, URIEL+ improves the user experi-
ence with robust, customizable distance calcu-
lations to better suit the needs of users. These
upgrades also offer competitive performance
on downstream tasks and provide distances that
better align with linguistic distance studies.

1 Introduction

The URIEL knowledge base and its lang2vec
query tool (Littell et al., 2017) provide a standard-
ized approach to representing languages as geo-
graphical, phylogenetic, and typological vectors.
Geographical vectors contain distances between
the locations where languages are spoken and 299
latitude/longitude coordinates. Phylogenetic and
typological vectors consist of binary indicators that
denote membership in language families or struc-
tural features, respectively. URIEL enables lan-
guage comparisons through language distance cal-
culations, which are performed using mathematical
operations on these vectors.

Typological distance, or differences in language
structure, is foundational for cross-linguistic com-
parisons (Haspelmath, 2023) and plays a crucial
role in multilingualism, second language acqui-
sition, and natural language processing (NLP)

* The authors contributed equally.
1The code is available at https://github.com/

Masonshipton25/URIELPlus

(Christina Nelson and Wrembel, 2021; Haspel-
math, 2020). The challenge in defining typological
distance lies in the structural uniqueness of each
language, which complicates direct comparisons
(Haspelmath, 2020). To navigate this complexity,
linguists measure typological distance by focus-
ing on particular linguistic domains (e.g., syntax,
phonology, or phonemic inventory) (Nerbonne and
Hinrichs, 2006).

Syntactic Distance Syntactic distance measures
similarities and differences in grammatical struc-
tures using frameworks such as dependency trees
and part-of-speech distributions. These meth-
ods provide quantitative comparisons of syntac-
tic patterns between languages (Hammarström and
O’Connor, 2013).

Phonological Distance Phonological distance
measures similarities and differences in the over-
all sound systems of languages, including both
segmental and suprasegmental features. This in-
volves analyzing phonetic properties like voicing
and place of articulation, as well as prosodic el-
ements such as stress and intonation. Tools like
n-gram models and phoneme frequency analysis
position languages in a multidimensional space
based on these comprehensive phonological char-
acteristics (Gamallo et al., 2017).

Phonemic Inventory Distance Phonemic inven-
tory distance measures the similarities and differ-
ences between the sets of phonemes in two lan-
guages, including both vowels and consonants.
This involves comparing the number and types of
phonemes present in each language, as well as their
specific combinations, thereby providing insights
into their phonemic structure to quantify how sim-
ilar or different the phonemic inventories of the
languages are (Bradlow et al., 2010).

While incorporating all of the domains men-
tioned above as feature categories within typologi-

https://github.com/Masonshipton25/URIELPlus
https://github.com/Masonshipton25/URIELPlus
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Figure 1: Overview of URIEL+. (A) We integrated five databases to incorporate more linguistic features across
multiple languages, and (B) made several improvements on top of current URIEL. (C) We later verified the quality
of URIEL+ through various experiments.

Language Pair geo gen fea syn pho inv

English-French
0.00 0.90 0.50 0.46 0.43 0.48
0.02 0.94 0.48 0.45 0.39 0.48

Croatian-Serbian
0.0 0.13 0.90 0.71 0.83 0.68
0.02 0.00 0.00 0.00 NA NA

Table 1: Geographical (geo), genetic (gen), featural (ty-
pological) (fea), syntactic (syn), phonological (pho), and
inventory (inv) distances for English-French in URIEL
and URIEL+. Bolded entries indicate distances with
URIEL+. NA entries indicate distances that could not
be computed with URIEL+ (see Section 2.3).

cal vectors (featural vectors according to URIEL),
URIEL aggregates linguistic data from multiple
sources to provide a standardized, all-in-one mea-
sure of language distance. An example of URIEL
distances can be seen in Table 1, where English
and French are geographically identical, moder-
ately distant typologically (syntactic, phonological,
inventory), and genetically distant. This unified
framework simplifies cross-linguistic comparisons
by representing complex linguistic features as a
single vector. By making these distances easily ac-
cessible, URIEL enables seamless integration into
machine learning models, facilitating large-scale
analysis and supporting diverse tasks, as outlined
in Table 2.

Despite URIEL’s established significance in
measuring language distance, several areas for im-
provement have been identified regarding its fea-
ture coverage and usability (Toossi et al., 2024).
For this reason, we introduce URIEL+, which aims
to improve URIEL, with a focus on typological
features and typological distance. Figure 1 out-
lines our contributions in enhancing both feature
coverage and the overall usability of URIEL.

Feature Coverage Expansion Currently, 31%
of the languages for which URIEL supports dis-
tance calculations have no data for any typological
features, resulting in the use of undocumented de-
fault values (Toossi et al., 2024). These default
values prevent meaningful differentiation between
languages with missing data, rendering the cal-
culated distances unreliable (Khiu et al., 2024).
We addressed this issue by integrating additional
databases into URIEL+ (Section 2.1). Incor-
porating these databases significantly enhances
URIEL+’s feature coverage, increasing the number
of languages available for featural distance calcu-
lations from 2724 to 4366.2 Unlike the previous
version, URIEL+ now includes morphological fea-
tures, which are critical for representing morpho-
logically rich languages (Samardzic et al., 2024).

Data Integrity and Imputation URIEL’s use
of default values for missing data without user
awareness (Toossi et al., 2024) results in distances
that may not be meaningful, especially when the
calculation involves low resource languages. Re-
searchers have mitigated this by developing their
own imputation methods (Jin and Xiong, 2022) or
by using URIEL’s k-nearest-neighbor-imputed fea-
ture vectors3 (Üstün et al., 2020; Glavaš and Vulić,
2021; Choenni et al., 2023), although the details
and quality of URIEL’s imputation remain undoc-
umented. To address this issue, we integrated three
well-evaluated imputation algorithms (Section 2.2)
and provided users with the ability to choose their
preferred imputation method. This functionality
allows distance calculations for all languages in

2In URIEL, 4005 languages are available for distance
calculation. However, only 2724 of these languages have
actual data (the remaining 1281 rely on default values due to
missing data).

3URIEL calls these vectors k-nearest-neighbour aggre-
gated vectors.
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NLP Task Related Papers # of citations

Cross-lingual transfer Lin et al., 2019; Lauscher et al., 2020; Ruder et al., 2021 678
Dependency parsing Üstün et al., 2020 108
Machine translation Zhang and Toral, 2019; Li et al., 2024b; Dankers et al., 2022 160
Speech recognition Adams et al., 2019; Zanon Boito et al., 2020 140
Performance prediction Xia et al., 2020; Srinivasan et al., 2021; Khiu et al., 2024; Anugraha et al., 2024 65

Table 2: Natural language processing (NLP) tasks, related papers utilizing URIEL feature vectors and/or distances,
and their total forward citation counts.

the knowledge base and enables users to select the
most suitable method for their research needs.

Robust Distance Calculations with Confidence
Scores Three issues affect lang2vec distance
computations. First, distances are pre-computed,
preventing modifications to feature vectors for up-
dated distances. Second, Toossi et al., 2024 iden-
tified reproducibility issues, citing conflicting doc-
umentation on aggregation methods4 and distance
metrics. Third, lang2vec allows distance com-
putations for languages without values known for
both languages (shared data), leading to potentially
meaningless results. Furthermore, calculations use
all features across all URIEL data sources, limiting
users to one-size-fits-all calculations. To meet spe-
cific needs, researchers have manually calculated
distances between subsets (Papadimitriou and Ju-
rafsky, 2020), concatenations (Adams et al., 2019),
or both (Zhang and Toral, 2019; Hossain et al.,
2020) of URIEL vectors. URIEL+ addresses these
issues with a rigorous dynamic calculation sys-
tem (Section 2.3), that allows customization of ag-
gregation methods, metrics, features, and sources.
URIEL’s language distances often differ from lin-
guistic measures. For example, URIEL shows
Croatian and Serbian as distant languages (Table 1),
although they should be similar (Samardzic et al.,
2024). This mismatch could be indicative of poor
data quality. Therefore, we introduce new con-
fidence scores to assess the reliability of the dis-
tances between languages (Section 2.4).

To assess the improvement brought by the
URIEL+ enhancements, we replicated three no-
table downstream usages of the original URIEL
knowledge base (see Section 4.1): 1) LANGRANK

for selecting transfer languages in cross-lingual
learning (Lin et al., 2019); 2) LINGUALCHEMY

4In lang2vec, distance is computed on data that aggre-
gates feature information for each language (using union or
average aggregation). Union aggregation sets each feature
value to the max value across all sources, while average aggre-
gation sets it to the average value.

for typological feature-driven language analysis
(Adilazuarda et al., 2024); and 3) PROXYLM for
performance prediction in multilingual settings
(Anugraha et al., 2024). Our experimental results
demonstrate that URIEL+ not only augments fea-
ture coverage and usability but also leads to better
performance in practical NLP applications.

To assess how well URIEL+ distances align
with linguistic distance metrics, we conducted a
case study comparing typological distances be-
tween Central and South American Indigenous
languages in URIEL and URIEL+ to a metric
from Hammarström and O’Connor, 2013, which ac-
counts for predictable traits, quirks, and historical
dependencies (see Section 5.1). URIEL+ shows a
higher correlation with the linguistic distances than
URIEL, suggesting that URIEL+ is more aligned
with linguistic measurements of typological dis-
tance.

2 From URIEL to URIEL+

This section outlines the expansions to URIEL and
lang2vec. URIEL+ incorporates new databases
to enhance feature coverage and implements impu-
tation algorithms to handle missing values. Further-
more, lang2vec improves distance computations
between languages and introduces new confidence
scores to evaluate the reliability of these distances.

2.1 Integrating New Databases

URIEL+ includes five additional databases (Table
3), incorporating data for 2898 languages (2858 of
which are low resource). Users can select databases
(e.g., BDPROTO for ancient and reconstructed lan-
guages) based on their needs. By default, all five
databases are included, providing data for 8071 lan-
guages, with 4366 capable of typological distance
calculations. Data from the five databases was first
preprocessed separately, then integrated altogether
into URIEL to create URIEL+. We detail the
process below.
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Database Reference Contribution

SAPhon Michael et al., 2015 Phonology and inventories for South American indige-
nous languages.

BDPROTO Marsico et al., 2018 Phonology and inventories for ancient and reconstructed
languages.

Grambank Skirgård et al., 2023 Syntax and morphological data for ∼2500 languages.
APiCS Mufwene, 2013 Typological data for pidgin and creole languages.
eWAVE Kortmann et al., 2020 Syntax and morphological data for English dialects.

Table 3: Summary of database contributions and updates. Bolded entries highlight databases that have been newly
added to URIEL+ and were not present in the original URIEL.

Binarization for Non-Binary Features While
URIEL (and thus, URIEL+) supports only binary
features, Grambank, APiCS, and eWAVE contain
non-binary features, specifically, nominal and or-
dinal variables. Nominal variables are categori-
cal variables with no inherent order, while ordinal
variables represent different levels of a feature’s
presence in a language. To collect data from these
databases, we first binarized the features. Nominal
features were binarized using one-hot encoding,
and ordinal features were binarized by creating a
replacement feature that indicates whether that fea-
ture is present in the language.

Combining Redundant Features The Gram-
bank, APiCS, and eWAVE databases contain fea-
tures that overlap with those in URIEL or with
each other, which can cause redundancy.

Suppose the values for a feature (say f1) from
one database can be inferred from another fea-
ture (f2) in a different database. In such cases,
we update the values in f1 using inferred values
from f2, but not necessarily the other way around.
For example, if a language has the URIEL fea-
ture “S_ARTICLE_WORD_BEFORE_NOUN,” it
necessarily has the Grambank feature “Are there
prenominal articles?” Alternatively, if f1 is equiva-
lent to f2, we infer values from f2 and remove f2
from its database. This reduces redundancy when
we integrate the preprocessed datasets into URIEL.

Classifying and Renaming Features New fea-
tures are classified as either syntactic, phonological,
inventory, or morphological. This is implemented
in the code by adding a prefix to the feature name.
The prefixes are S_, P_, INV_, and M_ for syn-
tactic, phonological, inventory, and morphological
features, respectively - matching the conventions
in the original URIEL knowledge base. In addi-
tion to adding these prefixes, we rename the feature

names to align with the naming conventions in the
original URIEL knowledge base. This involves
capitalizing features, truncating their names, and
replacing spaces with underscores.

Incorporating Glottocode Identifiers URIEL
uses ISO 639-3 codes to identify languages. While
these codes remain compatible with the updated
SAPhon database,5 the other databases now require
glottocode identifiers (Forkel et al., 2022). There-
fore, URIEL+ employs glottocodes to better sup-
port low resource languages, including those not
covered by ISO 639-3, such as Eskimo Pidgin and
Singlish. Outdated ISO 639-3 codes that coexisted
with their replacements in URIEL, such as gre
for Greek (now ell) and alb for Albanian (now sqi),
have been removed to ensure up-to-date and unique
language identifiers.

Summary of Implementation Details URIEL
is structured as a three-dimensional matrix, with
languages, features, and data sources as the three
dimensions. To incorporate data from the new
databases, we extend URIEL by adding new en-
tries for corresponding languages, features, and
sources. Initially, these new entries are marked
as missing and are subsequently updated with the
available data, ensuring that URIEL+ integrates
new information while preserving existing data.
For the updated SAPhon database, the new data
replaces the missing values in the existing SAPhon
data rather than creating any new feature columns.

2.2 Automatic Imputation Algorithms
Despite expanding URIEL and increasing its fea-
ture coverage, after combining the five databases
into a single source, 87% of values remain missing.
To address this, URIEL+ includes methods for

5The SAPhon database identifies languages with ISO 639-
3 codes.
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imputing missing feature data, enabling compre-
hensive distance calculations between languages
even with incomplete data.

We provide several imputation algorithms in
URIEL+, including k-NN imputation, which was
also an option in URIEL. Additionally, we include
MIDASpy (Lall and Robinson, 2023), a multiple
imputation method implemented with deionizing
autoencoders, and SoftImpute (Mazumder et al.,
2010), which fits a low-rank matrix approximation
via nuclear-norm regularization.

2.3 Robust Distance Calculations
We replaced pre-computed queries with a new func-
tion that dynamically computes distances based on
current data in the knowledge base, allowing it to
reflect database updates.

Since Toossi et al., 2024 found that union ag-
gregation with angular distance produces distances
most aligned with URIEL’s, these are set as the
default options for computing distances. To resolve
the documentation ambiguity, we offer users the
option to choose between union or average aggre-
gation and between cosine or angular distances,
enhancing flexibility and clarity. In addition, to
address the issue of meaningless distances, we ex-
clude languages without shared data from compu-
tations. Instead, we provide imputation algorithms
for users who need these distances.

We offer a distance function that computes dis-
tance based on provided features rather than all
available features under a provided feature cate-
gory, allowing for any combination of features.
Furthermore, users can specify a particular source
to use data from rather than using aggregated data.
For example, one could calculate the distance of
languages using 49 syntactic features exclusively
from the WALS source (Dryer and Haspelmath,
2013), as was done manually in Papadimitriou and
Jurafsky, 2020.

These changes preserve all existing function-
alities while introducing feature and source cus-
tomizations in calculations.

2.4 Confidence Scores of Distance
Calculations

To evaluate the quality of the calculated distances,
confidence scores are often used, as suggested by
prior studies (Salati et al., 2016; Bayram et al.,
2023, 2024). These scores typically aggregate sev-
eral key metrics, including: 1) the amount of inac-
curate data (accuracy), 2) the proportion of miss-

ing data (completeness), 3) the agreement across
different sources or adherence to established con-
straints (consistency), 4) the recency of the data
(timeliness), and 5) the deviation from a reference
distribution (skewness) (Bayram et al., 2023; Batini
et al., 2009).

However, not all of these metrics are applicable
or necessary in our case. Accuracy cannot be evalu-
ated due to the absence of ground truth, timeliness
is irrelevant since the data is non-temporal, and
there is no natural reference distribution to mea-
sure skewness. Therefore, following Salati et al.,
2016, our confidence scores focus solely on data
completeness, data consistency, and a new metric
we introduce: imputation quality.

Formally, given languages L1 and L2, we define
data completeness M(L1, L2) as:

M(L1, L2) = 1− p(L1) + p(L2)

2

where p(Li) is the proportion of missing values for
language Li.

Next, recall there may be multiple sources of
feature value j for language Li. Let Si,j denote
the set of sources that provide values for feature
j on language Li and let ni,j be the cardinality of
Si,j . Let vi,j,s denote the value of feature j for
language Li from source s ∈ Si,j . Define mi,j as
the mode of the set {vi,j,s : s ∈ Si,j}. We can then
define zi,j , the number of sources that agree with
the mode mi,j , as:

zi,j =
∑
s∈Si,j

1{vi,j,s = mi,j}

where 1{·} is the indicator function.
Following this definition, we now define data

consistency C(L1, L2) as:

C(L1, L2) =
a(L1) + a(L2)

2

where a(Li) is computed as:

a(Li) =
1

ki

ki∑
j=1

zi,j
ni,j

with ki representing the number of non-empty lan-
guage features in URIEL+ for language Li. If
ki = 0, we set a(Li) = 1.

Finally, we define imputation quality I as a con-
stant γ, where γ ∈ [0, 1] depends on the metric
chosen to define imputation quality. For specific
numerical values of γ, see Table 4.
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Figure 2: Number of languages with available syntactic
(syn), phonological (pho), inventory (inv), and morpho-
logical (mor) data in URIEL and URIEL+ with all five
databases.

3 Validating the Knowledge Base

Two of the ways we validated URIEL+ were
through an analysis of feature coverage and im-
putation quality tests on the three algorithms.

3.1 Feature Coverage Analysis

Experimental Setup To compare feature cover-
age between URIEL and URIEL+, we calculated
the number of languages in each that have available
syntactic, phonological, inventory, and morpholog-
ical data. For URIEL+, all five databases were
integrated in this comparison. Additionally, we an-
alyzed feature coverage by categorizing languages
into high resource languages (HRLs), medium re-
source languages (MRLs), and low resource lan-
guages (LRLs), as defined by Joshi et al., 2020.

Results By integrating all five URIEL+
databases, the number of languages available for
typological distance calculations increases from
4005 to 4366, representing a 9.01% increase. This
expansion includes ancient, reconstructed, pidgin,
creole, and dialectal languages. Figure 2 provides
a detailed view of this expansion, highlighting
that the number of languages with syntactic data
increases from 2269 to 3730, a 64.39% increase,
driven by the inclusion of Grambank, APiCS, and
eWAVE. Phonological data coverage rises from
1089 to 2530, representing a 132.3% increase,
facilitated by SAPhon, BDPROTO, APiCS.
Inventory data experiences the smallest increase,
expanding from 1469 to 1932, a 31.5% increase,
with contributions from SAPhon, BDPROTO, and
APiCS, which mainly augment existing data.

Figure 3 shows the breakdown of feature cov-

Method Union-Agg Average-Agg

Accuracy Precision Recall F1 RMSE MAE

Mean 0.8024 0.7248 0.5656 0.6354 0.3597 0.2608
MIDASpy 0.8435 0.7819 0.6737 0.7238 0.3302 0.2171
k-NN 0.8678 0.8136 0.7338 0.7717 0.3069 0.1809
SoftImpute 0.8875 0.8801 0.7300 0.7980 0.2883 0.1886

Table 4: Summary of imputation quality test results,
with metrics grouped by union-aggregated and average-
aggregated data. We maximise F1 on union-aggregated
data and minimise RMSE on average-aggregated data.
For k-NN, we choose k = 9 for union-aggregated data
and k = 15 for average-aggregated data. Bolded entries
indicate the best results in each category.

erage by language resource level. For HRLs,
URIEL+ now includes syntactic data for Arabic.
The feature coverage for MRLs and LRLs improve
substantially across all feature categories, with the
most significant gains in phonology (70.8% more
languages for MRLs and 134.5% more languages
for LRLs). These increases are expected, given that
SAPhon, BDPROTO, and APiCS focus on LRLs
and contribute substantial new phonological data.
In addition, LRLs see a large increase in syntax,
with a 65.6% increase in the number of languages
with syntactic information compared to URIEL.
With these feature coverage expansions, URIEL+
provides more comprehensive distance calculations
to more languages.

3.2 Imputation Quality Test

Experimental Setup To evaluate the three im-
putation algorithms and validate our choice of im-
putation algorithm for downstream tasks, we used
the imputation quality test from Li et al., 2024a.
This test involves removing 20% of non-missing
data, imputing it, and comparing the predictions to
known values using metrics like F1 for binary data
and root mean square error (RMSE) for continuous
data. Since the URIEL paper (Littell et al., 2017)
did not include detailed metrics and procedures for
its k-NN aggregation, the imputation quality test
focuses solely on URIEL+ and does not compare it
with URIEL. Imputation was performed on aggre-
gated data (union or average), with missing dialect
data filled using the parent language’s data, which
typically has similar typological features. More
details on the data used and the methodology of the
quality test can be found in Appendix A.1.

Results For both imputed union and average data,
all imputation algorithms outperform the mean im-
putation as our baseline across all metrics (Table 4).
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Figure 3: Number of languages with available syntactic (syn), phonological (pho), inventory (inv), and morphological
(mor) data in URIEL and URIEL+ with all five databases, is shown for high resource languages (HRLs), medium
resource languages (MRLs), and low resource languages (LRLs) (Joshi et al., 2020) from left to right.

Comparing the performance on union-aggregated
data, all algorithms have at least 6% higher preci-
sion compared to the baseline. However, for each
algorithm, recall is always worse than precision,
meaning that each algorithm is good at imputing
binary values of 1 but is too conservative in doing
so. The algorithm that performs the best at maxi-
mizing both precision and recall is SoftImpute, as
it has the highest F1 score.

On average-aggregated data, all algorithms have
lower RMSEs and MAEs than the baseline. How-
ever, SoftImpute is the most preferable of these
algorithms. This is because SoftImpute performs
almost the same as k-NN at minimizing errors over-
all since its MAE exceeds k-NN’s by only 0.0057.
However, it does much better at minimizing large
errors (it has the lowest RMSE).

Since SoftImpute performed the best, we used
URIEL+ with union source aggregation and this
method in both downstream tasks experiments (ex-
cept for LINGUALCHEMY where we used union-
and average-aggregation) and the linguistic case
study. A more granular analysis of how these impu-
tation methods fare on specific feature categories
can be found in Appendix A.2.

4 URIEL+ on Downstream Tasks

As shown in Table 2, URIEL has been used in var-
ious downstream NLP tasks. Building on this, we
apply URIEL+ to different NLP tasks by compar-
ing its performance with URIEL distances and vec-
tors across three frameworks (LANGRANK, LIN-
GUALCHEMY, PROXYLM). These frameworks are
employed to evaluate multiple NLP tasks.

4.1 Experimental Setup

LANGRANK (Lin et al., 2019) LANGRANK pre-
dicts cross-lingual transfer languages using multi-
ple data-related features, including features from
all six URIEL distance categories. LANGRANK

is evaluated on part-of-speech tagging (POS), ma-
chine translation (MT), dependency parsing (DEP),
and entity linking (EL) using top-3 Normalized Dis-
counted Cumulative Gain (NDCG@3), and shows
higher average scores than other baselines.

LINGUALCHEMY (Adilazuarda et al., 2024)
LINGUALCHEMY employs a regularization tech-
nique that utilizes URIEL’s syntactic and geo-
graphic vectors to guide language representations
in pre-trained models. The evaluation was con-
ducted on three tasks: semantic relatedness using
SemRel2024 (Ousidhoum et al., 2024), news classi-
fication using MasakhaNews (Adelani et al., 2023),
and intent classification using MASSIVE (FitzGer-
ald et al., 2023). Semantic relatedness was assessed
using Pearson correlation, while intent and news
classification were measured by accuracy. LIN-
GUALCHEMY improves performance on mBERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020), benefiting LRLs and unseen language gen-
eralization.

PROXYLM (Anugraha et al., 2024) PROXYLM
estimates the performance of language models in
multilingual NLP tasks, using proxy models and
URIEL distances without fine-tuning, saving time
and computational resources. PROXYLM outper-
forms state-of-the-art performance prediction meth-
ods in terms of RMSE, while also demonstrating
robustness and efficiency. PROXYLM was eval-
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Downstream Tasks Subtasks URIEL URIEL+

LANGRANK

POS 22.9 24.6 (↑ 7.42%)
MT 42.55 45.45 (↑ 6.82%)

DEP 71.7 72.85 (↑ 1.60%)
EL 66.50 66.80 (↑ 0.45%)

LINGUALCHEMY

SemRel2024 0.008 0.012 (↑ 50.00%)
MasakhaNews 76.13 76.43 (↑ 0.39%)

MASSIVE 72.95 73.16 (↑ 0.29%)

PROXYLM
Unseen 4.35 4.08 (↑ 6.21%)

Random 2.92 2.82 (↑ 3.42%)
LOLO 3.84 3.85 (↓ 0.26%)

Table 5: Results for each subtasks in LANGRANK, LIN-
GUALCHEMY, and PROXYLM. URIEL refers to tasks
using the URIEL knowledge base, and URIEL+ to
tasks using the URIEL+ knowledge base. Higher val-
ues indicate better performance for LANGRANK and
LINGUALCHEMY, while lower values do so for PROX-
YLM. ↑ indicates an improvement, and ↓ signifies a
decline relative to URIEL. Bolded numbers indicate
results that are statistically significant at a 0.05 signif-
icance level using the Wilcoxon signed-rank test (Rey
and Neuhäuser, 2014). More detail about the metrics
used along with the breakdown of the results can be
found in Appendices B.1 and B.2, respectively.

uated on M2M100 (Fan et al., 2020) and NLLB
(Costa-jussà et al., 2022) under three settings: Un-
seen (generalization on unseen languages to the
pre-trained language models), Random (random
split), and LOLO (Leave-One-Language-Out).

For each of the frameworks, we will refer to each
of the tasks, datasets, or settings evaluations as
“subtasks” for convenience. Further details on the
experimental settings for each of the frameworks
along with the downstream tasks can be found in
Appendix B.1.

4.2 Results

Table 5 compares the summary of URIEL and
URIEL+ on the three downstream tasks. LAN-
GRANK with URIEL+ distances consistently out-
performs URIEL distances across all subtasks.
The most significant performance gain is observed
in the POS subtask, followed by MT, DEP, and EL
(detailed breakdown in Table 11 in the Appendix),
which compares LANGRANK using only language
features (referred to as LANGRANK (lang feats))
and both dataset and language features (referred to
as LANGRANK (all)).

Both LANGRANK (lang feats) and LANGRANK

(all) show performance gains in the POS and MT
subtasks, with a notable boost in MT from includ-
ing dataset features. This is because MT often
emphasizes data-specific characteristics over lin-

guistic features, resulting in a larger improvement
for LANGRANK with all data and language fea-
tures rather than with only language features (Lin
et al., 2019). For the EL subtask, LANGRANK (all)
performs slightly worse, likely due to the absence
of dataset-specific information. Interestingly, us-
ing only language features improves performance
for the EL subtask. In the DEP subtask, integrat-
ing both dataset and language features enhances
performance, reinforcing the value of combining
URIEL+ features with dataset-specific information
(Lin et al., 2019).

In LINGUALCHEMY, URIEL+ shows a slight
performance increase across all subtasks, highlight-
ing its advantage. Table 12 in the Appendix in-
dicates that average syntax vectors yield mixed
results, with both increases and decreases in perfor-
mance compared to syntax k-NN vectors. This
suggests that syntax k-NN vectors, which used
union-aggregation, retain more feature diversity by
including any available presence. Meanwhile, aver-
age aggregation might lose key distinctions since it
smooths out differences between features. There-
fore, k-NN vectors are more reliable when incorpo-
rating URIEL+ features for LINGUALCHEMY.

For PROXYLM, competitive performance is ob-
served, with significant improvements in Unseen
and Random settings, as detailed in Tables 5 and
13 in the Appendix. These results suggest that
URIEL+ features improve generalization to previ-
ously unseen languages. The insignificant change
in performance for the LOLO setting may indicate
that the existing URIEL features across multiple
languages are already sufficient for maintaining
robust predictions when leaving one language out
from the regressor.

The Wilcoxon signed-rank test (Rey and
Neuhäuser, 2014) indicates that most results in Ta-
ble 5 are statistically significant (p-values less than
0.05), except for PROXYLM’s Random and LOLO
settings, and LANGRANK’s POS, EL, and DEP
tasks. The non-significance of PROXYLM’s LOLO
setting suggests that the small performance drop
is negligible. In contrast, the non-significance of
LANGRANK’s POS, EL, and DEP tasks is likely
due to the limited number of target languages in
LANGRANK.

Overall, URIEL+ demonstrates competitive per-
formance across all tasks compared to URIEL,
especially where language-specific features are cru-
cial.
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Language Pair URIEL URIEL+ Gd

Paez-Bintucua 0.50 0.55 0.49
Sambu-Cayapa 0.50 0.54 0.48
Ulua-Paez 0.70 0.74 0.45
Sumo-Paez 0.70 0.74 0.45
Paez-Misquito 0.80 0.58 0.43
Quiche-Paez 0.60 0.64 0.43
Quiche-Boruca 0.80 0.65 0.41
Quiche-Huaunana 0.60 0.61 0.40
Xinca-Cofan 0.70 0.73 0.39
Xinca-Boruca 0.90 0.79 0.39
Quiche-Colorado 0.60 0.64 0.38
Quiche-Cayapa 0.60 0.62 0.36
Quiche-Cuna 0.80 0.56 0.35
Paya-Bintucua 0.60 0.50 0.35
Cuna-Boruca 0.00 0.51 0.35
Paya-Muisca 0.60 0.51 0.33
Huaunana-Boruca 0.80 0.51 0.32
Paya-Cagaba 0.50 0.43 0.31
Xinca-Camsa 0.70 0.76 0.30
Quiche-Lenca 0.70 0.73 0.28

Rank Correlation with Gd −0.05 0.19 N/A

Table 6: Language distances from URIEL, URIEL+
and the dependency-sensitive Gower coefficient (Gd),
and rank correlation of URIEL and URIEL+ with Gd.

5 Distance Alignment Case Study

In this section, we demonstrate that the distances
provided by URIEL+ align more closely with a lin-
guistic distance metric. This is illustrated through
a case study on distance measures between two
languages, as conducted by Hammarström and
O’Connor, 2013.

5.1 Experimental Setup

We assessed the accuracy of URIEL and URIEL+
distance measures by comparing them to a modified
Gower coefficient, Gd (Gower, 1971), for typologi-
cal distance (Hammarström and O’Connor, 2013).
This metric weights scores based on both pre-
dictable and idiosyncratic traits, while accounting
for dependencies and historical contact. The case
study focused on Isthmo-Colombian languages,
which now have more data in URIEL+, due to
updates in the SAPhon database. We evaluated
which knowledge base aligns better with Gd by us-
ing Kendall’s rank correlation. This approach was
chosen over direct comparisons with Gd distances
due to differences in unit scales, opting instead
for unit-agnostic rank correlation. To compare dis-
tances from URIEL and URIEL+ with those de-
rived from the coefficient, we computed featural

distances using lang2vec.6

5.2 Results

Table 6 shows the distances for each language pair
in the case study, where Kendall’s rank correlations
between Gd and the distances from URIEL and
URIEL+ are −0.05 and 0.19 respectively.

We used the Perm-Both hypothesis test (Deutsch
et al., 2021) to compare the significance between
these two correlations. The p-value was found to
be 0.307 which is not statistically significant at the
0.05 level. The lack of significance is likely due
to the small sample size, as smaller datasets tend
to have higher p-values (Johnson, 1999). Compar-
ing additional language pairs could help further
validate these findings. Although the difference in
correlation is not statistically significant, URIEL+
shows a trend toward better alignment with Gd,
suggesting that it may improve the alignment of ty-
pological distance metrics in NLP with those used
in linguistics.

6 Conclusion

We introduce URIEL+, an enhanced knowledge
base that expands the coverage of typological fea-
tures by integrating five additional databases, pro-
viding data for 2858 LRLs. Furthermore, URIEL+
improves the robustness and usability of lang2vec
distances through carefully selected imputation
methods, a rigorous study of appropriate distance
calculations, and the establishment of new con-
fidence scores to validate distance reliability. In
addition, we demonstrate URIEL+’s competitive
performance on downstream NLP tasks and its
closer alignment with real-world linguistic dis-
tances through a case study. These improvements
are critical for a wide range of multilingual appli-
cations and contribute to the linguistic inclusion of
LRLs. As an open-source tool, we hope the com-
munity will contribute to its ongoing improvements
and database expansions in the future.

Limitations

With the new features from Grambank, APiCS, and
eWAVE databases, URIEL+ predominantly em-
phasizes syntactic (474 features) and morphologi-
cal (133 features) data, with fewer contributions to
phonological (30 features) and inventory (163 fea-
tures) data. This shift skews the focus of featural

6The ISO 639-3 codes and glottocodes required for these
distances are provided in the Appendix, Table 10
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distance towards grammar (607 features overall)
over sound, potentially underrepresenting phono-
logical aspects (193 features overall). To address
this imbalance, we plan to include more phono-
logical features, creating more specific distinctions
based on current features in future work.

Similar to URIEL, URIEL+ does not have in-
formation on language scripts. To address this, we
will introduce scripts as a feature category using
ScriptSource (Holloway, 2013), which covers 8290
languages in future work.

Other future work would be integrating URIEL+
as an external knowledge base with large language
models, merging structured knowledge with flexi-
ble language modeling.
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A Imputation Quality Test

In this section, we describe more details about the
experimental setup and results of the imputation
quality test.

A.1 Experimental Settings

Imputation on our data is always performed on
aggregated data, either union or average. Before
imputation, we allow users to fill in missing dialect
data with parent language data, assuming typologi-
cal similarity (e.g., filling American English with
English data). This method is applied across all
imputation quality tests and downstream tasks (see
section B.1).

We follow the imputation quality test from Li
et al. (2024a), where 20% of non-missing data is
randomly removed, imputed, and the imputed val-
ues ypred are compared to the original values ytrue
using a metric L. Metrics L include accuracy, pre-
cision, recall, and F1 for union data (binary), and
RMSE/MAE for average data (continuous). We op-
timize RMSE for average data to penalize outliers
and F1 for union data due to class imbalance (more
0s). The method that optimizes L is selected as the
best imputation approach.

We compare k-NN, MIDASpy, and SoftImpute
against mean imputation as a baseline. Note that
two additional steps are used in this methodology,
depending on the imputation method.

k-NN Imputation We perform a hyperparameter
search over k = 3, 6, 9, 12, 15 using 5-fold cross-
validation to select k, optimizing L, prior to com-
paring k-NN with other imputation methods.

MIDASpy Imputation MIDASpy performs mul-
tiple imputations, pooling results based on Rubin’s
rules (Rubin, 1987). We report the average L across
5 imputed datasets. The network is initialized with
3 layers and 256 units per layer, following Lall and
Robinson (2023).

A.2 Detailed Results

A more granular analysis of imputation perfor-
mance by feature type is shown in Tables 7 and
8. SoftImpute consistently performs best across
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Imputation
Method

Feature
Type

Accuracy Precision Recall F1

Mean

mor 0.7428 0.6456 0.2914 0.4016
syn 0.7386 0.6491 0.5445 0.5922
inv 0.8975 0.8453 0.6970 0.7640
pho 0.8426 0.8174 0.8397 0.8284

MIDASpy

mor 0.7962 0.6937 0.5582 0.6186
syn 0.8034 0.7580 0.6397 0.6939
inv 0.9101 0.8484 0.7577 0.8005
pho 0.8574 0.8492 0.8328 0.8409

k(9)-NN

mor 0.8388 0.7611 0.6644 0.7095
syn 0.8263 0.7830 0.6942 0.7359
inv 0.9301 0.8806 0.8173 0.8477
pho 0.8566 0.8547 0.8231 0.8386

SoftImpute

mor 0.8485 0.8259 0.6188 0.7075
syn 0.8475 0.8518 0.6808 0.7568
inv 0.9444 0.9249 0.8342 0.8772
pho 0.9376 0.9657 0.8938 0.9284

Table 7: Summary of feature type (syntactic (syn),
phonological (pho), inventory (inv), and morphological
(mor)) analysis of imputation quality test over union-
aggregated data. Bolded entries indicate the best results
in each category.

all feature types. Notably, all methods perform far
better on inventory and phonological data than on
syntactic or phonological data. In particular, for
SoftImpute, there is at least a +7% gap between
1) inventory and phonological data, and 2) syntac-
tic and morphological data. This performance gap
correlates with the proportion of missing values in
each feature type. Specifically, we see that:

• 85.73% of morphological data is missing

• 91.25% of syntactic data is missing

• 77.06% of inventory data is missing

• 81.88% of phonological data is missing

Notably, syntactic and morphological data have
the highest proportions of missing values. This
suggests that the imputation algorithms perform
better when when there are fewer missing values
to impute.

Remark The imputation quality γ in Section 2.4
can be the F1 score for union-aggregated data or
1− RMSE for average-aggregated data.

B Downstream Tasks

In this section, we describe more details about
the experimental setup and results for downstream
tasks.

Imputation Method Feature Type RMSE MAE

Mean

mor 0.4103 0.3370
syn 0.4089 0.3352
inv 0.2636 0.1428
pho 0.3464 0.2442

MIDASpy

mor 0.3771 0.2814
syn 0.3688 0.2695
inv 0.2516 0.1278
pho 0.3227 0.2120

k(15)-NN

mor 0.3471 0.2315
syn 0.3482 0.2339
inv 0.2234 0.0965
pho 0.3219 0.1857

SoftImpute

mor 0.3398 0.2485
syn 0.3344 0.2451
inv 0.1987 0.1024
pho 0.2296 0.1447

Table 8: Summary of feature type (syntactic (syn),
phonological (pho), inventory (inv), and morphological
(mor)) analysis of imputation quality test over average-
aggregated data. Bolded entries indicate the best results
in each category.

Language URIEL code URIEL+ code

Albanian alb alba1267
Arabic ara stan1318
Azerbaijani aze nort2697
Chinese zho mand1415
Estonian ekk esto1258
Malay msa stan1306
Oromo orm east2652
Persian fas west2369
Swahili swa swah1253

Table 9: Languages used in downstream task experi-
ments with ISO 639-3 codes in URIEL but without
equivalent glottocodes in URIEL+, and the glottocodes
that were used as replacements.

B.1 Experimental Settings

To run LANGRANK and PROXYLM experiments
with URIEL+ distances, we simply replaced the
URIEL distances with the new URIEL+ distances.

While most languages used for downstream
tasks had ISO 639-3 codes with corresponding glot-
tocodes, some did not, often because the ISO 639-3
codes were outdated. In these cases, we assigned
the glottocode of the most appropriate language
from URIEL+. The languages without glottocodes
and their replacements are listed in Table 9.

No GPU was required for LANGRANK and
PROXYLM experiments. All experiments for LIN-
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GUALCHEMY were run on two Tesla V100 32GB
GPUs.

Experimental Settings for LANGRANK We
could not completely replicate the original LAN-
GRANK baselines (Lin et al., 2019) due to unclear
parameter specifications. We attempted to keep
most of the experimental setup the same as the
original paper, except for the following:

• When assigning relevance to languages that
have the same BLEU or accuracy score, the
lowest rank in the group is used, as it made
the most sense and produced good results.

• For calculation of Normalized Discounted Cu-
mulative Gain (NDCG), we attempted to use
the original paper’s formula where the Dis-
counted Cumulative Gain is defined as

DCG@p =

p∑
i=1

2γi − 1

log2(i+ 1)
.

However, an alternative formulation of DCG,
defined as

DCG@p =

p∑
i=1

γi
log2(i+ 1)

,

was chosen instead, as it produced baseline
results much closer to the original paper.

Experimental Settings for LINGUALCHEMY
We could not find the source code for the vectors
for the MasakhaNews (Adelani et al., 2023) news
classification dataset and the SemRel2024 (Ousid-
houm et al., 2024) semantic relatedness dataset, as
well as a pipeline for SemRel2024. To address this,
we created vectors with both URIEL and URIEL+
feature data for these datasets and constructed a
pipeline for SemRel2024, using the approach ap-
plied to the MASSIVE (FitzGerald et al., 2023)
intent classification dataset and MasakhaNews.

Only new syntactic vectors needed to be cre-
ated, as the geography vectors for all languages
in the LINGUALCHEMY datasets remained un-
changed. Despite their names, the syntax_knn
and syntax_average vectors used SoftImpute with
union and average aggregation, respectively, rather
than k-NN, since SoftImpute was employed for im-
putation in all other downstream task experiments.

A 10× URIEL loss scaling factor was used as
it provided the best results in Adilazuarda et al.,
2024.

Language URIEL code URIEL+ code

Sambu emp nort2972
Cayapa cbi chac1249
Paya pay pech1241
Bintucua arh arhu1242
Cágaba kog cogu1240
Ulua sum sumu1234
Paez pbb paez1247
Sumo sum sumu1234
Cuna cuk sanb1242
Boruca brn boru1252
Muisca chb chib1270
Huaunana noa woun1238
Misquito miq misk1235
Quiche quc kich1262
Lenca len lenc1239
Xinca xin xinc1237
Camsa kbh cams1241
Cofan con cofa1242
Colorado cof colo1256

Table 10: Languages used in the distance accuracy case
study with corresponding identifiers. The table includes
URIEL code using ISO 639-3 identifiers and URIEL+
code using glottocode identifiers.

Experimental Settings for PROXYLM The
proxy regressor in PROXYLM had two different
datasets: an English-centric dataset borrowed from
the MT560 dataset (Gowda et al., 2021) and a
Many-to-many languages dataset borrowed from
the NUSA dataset (Cahyawijaya et al., 2023). The
Many-to-many languages dataset contained the lan-
guage Batak which does not have an ISO 639-3
code. Anugraha et al., 2024 used the code “bhp”
for Bima, a Batak family member, which has a
glottocode equivalent: “bima1247”. We used the
Ensemble model, which performed best for PROX-
YLM. The hyperparameters of the proxy regressor
were the same as in Anugraha et al., 2024.

B.2 Detailed Results
Tables 11, 12, and 13 show the results for using
URIEL+ on LANGRANK, LINGUALCHEMY, and
PROXYLM respectively.
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Method Machine Translation Entity Linking POS Tagging Dependency Parsing
URIEL URIEL+ URIEL URIEL+ URIEL URIEL+ URIEL URIEL+

LANGRANK (lang feats) 35.2 35.4 (↑ 0.20) 64.7 66.4 (↑ 1.70) 18.3 20.4 (↑ 2.10) 73.2 70.4 (↓ 2.8)
LANGRANK (all) 49.9 55.5 (↑ 5.60) 68.3 67.2 (↓ 1.10) 27.5 28.8 (↑ 1.30) 70.2 75.3 (↑ 5.10)

Avg. LANGRANK 42.55 45.45 (↑ 2.90) 66.50 66.80 (↑ 0.30) 22.9 24.6 (↑ 1.70) 71.7 72.85 (↑ 1.15)

Table 11: The results for two LANGRANK model (Lin et al., 2019) on predicting cross-lingual transfer measured
using average NDCG@3 multiplied by 100 (higher is better). LANGRANK (lang feats) considers only language
vectors, while LANGRANK (all) denotes LANGRANK with language vectors and additional dataset-dependent
features such as size and type-token ratio.

Model Feature Type MASSIVE MasakhaNews SemRel2024
URIEL URIEL+ URIEL URIEL+ URIEL URIEL+

mBERT

syntax_avg 66.01 65.71 (↓ 0.30) 70.96 71.52 (↑ 0.56) 0.005 0.009 (↑ 0.004)
syntax_avg+geo 65.59 65.74 (↑ 0.15) 70.77 70.75 (↓ 0.02) 0.01 0.008 (↓ 0.002)

syntax_knn 65.83 65.85 (↑ 0.02) 71.08 72.07 (↑ 0.99) 0.014 0.012 (↓ 0.002)
syntax_knn+geo 65.45 66.00 (↑ 0.55) 70.91 71.36 (↑ 0.45) 0.008 0.013 (↑ 0.005)

syntax_knn+syntax_avg 65.45 66.25 (↑ 0.80) 71.22 70.52 (↓ 0.70) 0.013 0.015 (↑ 0.002)
syntax_knn+syntax_avg+geo 65.59 65.82 (↑ 0.23) 70.99 71.13 (↑ 0.14) 0.01 0.012 (↑ 0.002)

XLM-R

syntax_avg 80.51 80.47 (↓ 0.04) 81.31 80.91 (↓ 0.40) 0.007 0.012 (↑ 0.005)
syntax_avg+geo 80.20 80.35 (↑ 0.15) 81.58 81.71 (↑ 0.13) 0.015 0.013 (↓ 0.002)

syntax_knn 80.11 80.53 (↑ 0.42) 81.18 81.40 (↑ 0.22) 0.017 0.013 (↓ 0.004)
syntax_knn+geo 80.00 80.33 (↑ 0.33) 81.32 81.90 (↑ 0.58) 0.005 0.007 (↑ 0.002)

syntax_knn+syntax_avg 80.47 80.19 (↓ 0.28) 80.63 82.00 (↑ 1.37) 0.012 0.014 (↑ 0.002)
syntax_knn+syntax_avg+geo 80.17 80.39 (↑ 0.22) 81.58 81.89 (↑ 0.31) 0.008 0.010 (↑ 0.002)

Avg. 72.95 73.16 (↑ 0.21) 76.13 76.43 (↑ 0.30) 0.008 0.012 (↑ 0.004)

Table 12: The results for LINGUALCHEMY (Adilazuarda et al., 2024) using URIEL loss scale of 10 obtained by
averaging the accuracy for MASSIVE and MasakhaNews datasets and the Pearson correlation for SemRel2024
dataset across all languages under different benchmarks (higher is better). URIEL denotes LINGUALCHEMY
with URIEL vectors, while URIEL+ denotes LINGUALCHEMY with URIEL+ vectors.

Dataset Experimental Setting M2M100 NLLB
URIEL URIEL+ URIEL URIEL+

English Centric
Random 3.64 ± 0.19 3.62 ± 0.18 (↓ 0.02) 3.80 ± 0.37 3.79 ± 0.39 (↓ 0.01)

LOLO 3.90 ± 0.22 3.84 ± 0.22 (↓ 0.06) 4.14 ± 0.23 4.10 ± 0.23 (↓ 0.04)
Unseen 4.35 ± 0.25 4.08 ± 0.25 (↓ 0.27) NA NA

Many-to-Many Random 2.47 ± 0.35 2.36 ± 0.29 (↓ 0.11) 1.76 ± 0.42 1.49 ± 0.32 (↓ 0.27)
LOLO 3.64 ± 0.24 3.67 ± 0.24 (↑ 0.03) 3.67 ± 0.18 3.79 ± 0.26 (↑ 0.12)

Avg. 3.60 3.51 (↓ 0.09) 3.34 3.29 (↓ 0.05)

Table 13: The results for PROXYLM (Anugraha et al., 2024) using XGBoost Ensemble in average RMSE ± standard
deviation under different datasets and settings (lower is better). URIEL denotes PROXYLM with URIEL as its
language features, while URIEL+ denotes PROXYLM with URIEL+ as its language features.
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