
Proceedings of the 31st International Conference on Computational Linguistics, pages 6999–7019
January 19–24, 2025. ©2025 Association for Computational Linguistics

6999

Close or Cloze? Assessing the Robustness of Large Language Models to
Adversarial Perturbations via Word Recovery

Luke Moffett & Bhuwan Dhingra
Department of Computer Science

Duke University
Durham, NC 27708, USA

{luke.moffett,bhuwan.dhingra}@duke.edu

Abstract

The current generation of large language mod-
els (LLMs) show a surprising degree of robust-
ness to adversarial perturbations, but it is un-
clear when these models implicitly recover the
original text and when they rely on surrounding
context. To isolate this recovery faculty of lan-
guage models, we study a new diagnostic task—
Adversarial Word Recovery—an extension of
spellchecking where the inputs may be adver-
sarial. We collect a new dataset using 9 popular
perturbation attack strategies from the litera-
ture and organize them using a taxonomy of
phonetic, typo, and visual attacks. We use this
dataset to study the word recovery performance
of the current generation of LLMs, finding that
proprietary models (GPT-4, GPT-3.5 and Palm-
2) match or surpass human performance. Con-
versely, open-source models (Llama-2, Mistral,
Falcon) demonstrate a material gap between hu-
man performance, especially on visual attacks.
For these open models, we show that perfor-
mance of word recovery without context cor-
relates to word recovery with context, and ul-
timately affects downstream task performance
on a hateful, offensive, and toxic classification
task. Finally, to show improving word recovery
can improve robustness, we mitigate these at-
tacks with a small Byt5 model tuned to recover
visually attacked words.1

1 Introduction

Intentional, often adversarial, character perturba-
tions are common internet content. For instance, so-
cial media users obscure text with similar-looking
characters to avoid content moderation, which can
be used to propagate harmful content (Rodriguez
and Rojas-Galeano, 2018; Le et al., 2023). Despite
their simplicity, these attacks can affect a model’s
ability to perform downstream tasks (Belinkov and
Bisk, 2017; Dionysiou and Athanasopoulos, 2021;

1The code is available at https://github.com/
lmoffett/cloze-or-close.

Figure 1: Perturbation Attack Examples by Class
Using the 9 Attack Strategies in Ad-Word. Each at-
tack strategy is used to perturb each word in Ad-Word
multiple times. Phonetic attacks use phonetic similar-
ity between graphemes. Typo attacks mimic accidental
typographical errors. Visual attacks use homoglyph
character level substitution.

Pruthi et al., 2019; Boucher et al., 2022; Wang
et al., 2023). The attacks are effective when they
target words that are difficult to ascertain from con-
text (Li et al., 2020). While large language mod-
els (LLMs) are generally quite good at recovering
whole tokens, some cannot be reliably predicted
from context. Moreover, when evading moderation,

https://github.com/lmoffett/cloze-or-close
https://github.com/lmoffett/cloze-or-close
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attackers inject their attacks only into contexts of
their choosing. Truly robust models may need to
both implicitly recover the perturbations (by find-
ing “close” words) and use surrounding context
to identify them (i.e., a cloze task). While the lat-
ter is the basis for masked language modeling and
has been shown to improve with model size, little
attention has been paid to the former.

To remediate this, we begin our study with a
new task: Adversarial Word Recovery, which
requires a model to predict the original clean word,
like “antivaxxers”, from a perturbed version, like
“anti۷axxerₛ ”. In the context-free setting, this pro-
vides a lower bound on a model’s ability to de-
noise arbitrary text inputs where surrounding con-
text might make the task easier. To enable these
experiments, we create a new dataset, Ad-Word.
Ad-Word contains 7, 911 words perturbed multi-
ple times with 9 different attack strategies creating
325, 724 unique perturbations. The attack strate-
gies are organized into phonetic, typo, and visual
classes (shown in Figure 1 along with examples).
We also establish human recovery accuracies for
each attack.

We evaluate several LLMs, under both zero-
shot and few-shot settings on Ad-Word: (1) GPT-
4 (ChatGPT, gpt-4-1106-preview), (2) GPT-
3.5 (ChatGPT, Models: gpt-3.5-turbo-0301,
gpt-3.5-turbo-0613), (3) Palm-2
(text-bison-001) (Anil et al., 2023), (4) Llama-2
Instruct 7B, 13B, and 70B (Touvron et al., 2023),
(5) Falcon Instruct 7B and 40B,2 (6) Mistral In-
struct 7B (Jiang et al., 2023).34 We observe a clear
gap between the proprietary models (1-3) and the
open-source ones (4-6). GPT-4 exceeds the accu-
racy of our human annotators, while GPT-3.5 and
Palm-2 are comparable to them. The open-source
models are marginally worse than humans on typo
and phonetic attacks, but the gap on visual attacks
is multiple times larger than the other classes. A
baseline fine-tuned ByT5 model is inferior in recov-
ering typo and phonetic attacks, but surprisingly ex-
ceeds even GPT-4 on visual attacks - but only when
fine-tuned exclusively on those attacks. We also
find that accuracy of these models generally im-
proves with model size, and as few-shot examples
are added to the prompt, even when the examples

2https://huggingface.co/tiiuae/
falcon-40b-instruct

3“Instruct” is omitted from here on.
4Model Licenses are: ChatGPT, Palm2, Llama2 - Propri-

etary; Falcon, Mistral - Apache 2.0

come from attacks not under test.
Are these failures of open-source models in the

context-free setting indicative of their robustness
in the contextual setting? To answer this, we evalu-
ate Llama-2 and Mistral in two adversarial settings
with context. First, we show that even after adding
context in the form of a paragraph surrounding the
attacked word, their accuracy is less than 50% for
words which they are unable recover in the context-
free setting. Second, we evaluate these open mod-
els on a hateful, offensive, and toxic (HOT) speech
classification task, where visual attacks are also
more effective at changing model behavior. To-
gether, these results demonstrate a correlation be-
tween context-free recovery accuracy and task per-
formance, suggesting that improving this capability
is important for improving the robustness of these
models in the future. Meanwhile, we show that a
simple and efficient defense based on fine-tuning
the byte-level ByT5 model on the visual attacks in
Ad-Word (Xue et al., 2022) can mitigate the effects
of these attacks.

The main contributions of this work are to show:
(1) larger LLMs recover words more accurately, a
mechanism by which they spontaneously improve
robustness. The largest, proprietary models are
human-like; (2) There is a significant performance
gap in recovering visual attacks between open and
proprietary models; and (3) vulnerability of open
models to visual attacks can be exploited by attack-
ing words that are hard to recover from context.

2 Related Work

Adversarial Text Perturbation. Phishing at-
tacks such as “spoofing” have long relied on the hu-
man ability to unintentionally match homoglyphs
(Kaushik et al., 2021). An early defense was
Punycode (Costello, 2003b), encoding UNICODE as
ASCII. It is still used in the DNS protocol (Costello,
2003a).

Early neural NLP models, including pretrained
language models, were shown to be susceptible to
text perturbation with attack success rates of over
90% (Liang et al., 2018; Belinkov and Bisk, 2017;
Eger et al., 2019; Eger and Benz, 2020). Belinkov
and Bisk (2017) propose defending against these
attacks by including the perturbations directly in
the model training data (adversarial training) or by
changing the underlying representation of charac-
ters in the model to be similar across synonyms
and homoglyphs. Rust et al. (2022) proposed na-

https://huggingface.co/tiiuae/falcon-40b-instruct
https://huggingface.co/tiiuae/falcon-40b-instruct


7001

tive robustness by using pixels rather than character
embedding to construct a language model.

Adversarial attacks in NLP can largely be di-
vided into two categories. The first category in-
volves replacing words or longer phrases with se-
mantically equivalent units (Alzantot et al., 2018;
Gao et al., 2018; Garg and Ramakrishnan, 2020;
Hofer et al., 2021; Morris et al., 2020). The second
category involves perturbing characters within a
word in such a way that the symbolic representa-
tion changes, but humans can still read the word.
This paper focuses on the second category. Be-
linkov and Bisk (2017) and Pruthi et al. (2019)
show that even a single misplaced character in a
sentence can reduce the accuracy by up to 50% of
BERT-based models. More recent work has pro-
posed homoglyph attacks (Eger et al., 2019; Seth
et al., 2023; Dionysiou and Athanasopoulos, 2021).
Other papers have scraped perturbations from the
internet (Le et al., 2022; Belinkov and Bisk, 2017;
Rodriguez and Rojas-Galeano, 2018). Eger and
Benz (2020) create a benchmark of low-level ad-
versarial attacks called Zeroé, which we leverage.

There is a long history of spell checkers de-
signed to correct natural misspellings (Choudhury
et al., 2007; Whitelaw et al., 2009), but these are
not intended to work with adversarial perturba-
tions. Sakaguchi et al. (2017) explore improving
spellchecking with an RNN, and Pruthi et al. (2019)
and Keller et al. (2021) build shielding models
based on RNNs and BERT, respectively. Rodriguez
and Rojas-Galeano (2018) shield a toxicity classi-
fier from obfuscations using obfuscations collected
from online comments. Jayanthi et al. (2020) de-
veloped a neural toolkit, NeuSpell, that treat spell
checking as a sequence labeling task. Seth et al.
(2023) recover a visual attack using few-shot GPT-
3 prompts. Our work leverages existing attacks
from many of these works to study general purpose
word recovery ability of models.

Content Moderation using NLP. Content mod-
eration is a major evolving concern in the social
media age, which has spurred industry and aca-
demic efforts to clearly define content moderation
policies and automate their implementation (Gille-
spie, 2020). The result has been the creation of
datasets covering a variety of harmful speech types
(e.g., hateful or threatening) and an ongoing appli-
cation of state-of-the-art natural language process-
ing techniques to the detection of such speech (see
reviews by Poletto et al. (2021) and Jahan and Ous-

Train Valid Test

Unique Words 5,131 1,200 1,580

Attack Train Valid Test

U
ni
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e
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ANTHRO Phonetic 17,515 4,063 4,771
Zeroé Phonetic 28,233 6,504 7,443

PhoneE 24,246 5,545 6,434

ANTHRO Typo 15,009 3,549 4,106
Zeroé Typo 19,765 4,697 5,298
Zeroé Noise 26,811 6,209 7,148

DCES 28,722 6,624 7,560
ICES 29,321 6,762 7,713
LEGIT 27,797 6,481 7,398

Total 217,419 50,434 57,871

Table 1: Distribution of perturbations in Ad-Word by
attack strategy. The same words are used for each
attack strategy in each split; each clean word appears in
only one split.

salah (2023)). The most recent work has leveraged
the advent of prompted, transformer-based LLMs.
For instance, Poletto et al. (2021) find that GPT-
3.5 achieves 0.89 AUC on the HateCheck bench-
mark (Röttger et al., 2020) and Bauer et al. (2024)
find it achieved state-of-the-art (69.9 F1-Macro)
on hate speech classification in Tweeteval (Barbi-
eri et al., 2020). Using a Llama-2 based pipeline,
Sasidaran and J (2024) achieve state-of-the-art
(96.7 F1-Macro) on the dataset from Davidson
et al. (2017). Kumarage et al. (2024) and Li et al.
(2024) both demonstrate the prompt format, espe-
cially context, materially affects ChatGPT’s harm-
ful speech classification performance (we leverage
prompts from (Li et al., 2024)). Combining both
threads of our work, Cooper et al. (2023) combine
adversarial attacks and hateful speech classifica-
tion; they study hateful comment classification of
transformer-based language models in the face of
homoglyph attacks, but exclusively using smaller,
fine-tuned models. Our study extends that work to
larger, prompted models and extends previous stud-
ies of prompted large language models for harmful
speech classification to adversarial inputs.

3 Ad-Word Dataset

3.1 Task Definition

Let w be a word from a dictionary D. D may be
multilingual, but in Ad-Word it is English. Let U
be the set of all possible strings constructed with
characters in UNICODE. A word-level perturbation
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function maps words p; Φ : D → U , where Φ is
a set of function-specific parameters, including a
random seed. Note that p(w; Φ) is restricted to
changes to the characters in a string, excluding
text formatting changes. The Adversarial Word
Recovery task is to learn a recovery function r(·)
such that r(p(w; Φ)) = w where p(·), Φ and D are
not observed. Task performance is measured by
recovery accuracy.

3.2 Attack Taxonomy
The Ad-Word dataset is created by aggregating 9
attack strategies from the literature and grouping
them into three classes: phonetic, typo, visual.
Humans have a multifaceted process for decoding
words that uses a mix of letter recognition, com-
plete word recognition, phoneme pronunciation,
and surrounding context (Castles et al., 2018) (see
Appendix A). The attacks in Ad-Word add noise
to which these mechanisms are robust (excluding
context). Since changing letters has the potential
to simultaneously affect multiple recovery paths,
attacks in Ad-Word are organized around the what
characteristic the attack is meant to preserve (Eger
and Benz, 2020; Eger et al., 2019; Seth et al., 2023;
Morris et al., 2020). For instance, visual attacks are
meant to preserve the visual similarity between the
perturbed word and the original word, but they do
not attempt to preserve the phonetic similarity. As
a result, the different attack classes require a differ-
ent mechanism to recover. The main design goal of
Ad-Word is to isolate which of these mechanisms a
model has learned (or can approximate). A short
description of each attack is presented in § 3.3, and
a detailed description in Appendix B.

3.3 Dataset Construction
Following Seth et al. (2023), we use the most fre-
quent 10,000 words from the Trillion Word Corpus
(Kaufman, 2012) excluding words of length less
than four.5 To bound performance of models that
ignore non-ASCII characters or use only common
dictionaries, we add 250 uncommon English words
to the test set, and 100 common English borrow
words that are frequently stylized with accents; 50
to the train set, 25 to the test set, and 25 to the val-
idation set, determined from the Wikitext corpus
(wikitext-103-v1) (CC) (Merity et al., 2016).6

Table 1 shows the overall statistics of each attack
strategy in Ad-Word.

5https://huggingface.co/datasets/dvsth/LEGIT
6https://huggingface.co/datasets/wikitext

Phonetic Attacks. For phonetic attacks,
word-level perturbations are constructed either
through grapheme-level perturbations using sim-
ilarity between their corresponding phonemes
(Zeroé (Apache 2.0) Phonetic (Eger and Benz,
2020) and PhoneE), or through extraction from in-
ternet corpora (ANTHRO Phonetic (Le et al., 2022)).
PhoneE is new to this paper and is described in de-
tail in § 3.4. ANTHRO Phonetic is a subset of ANTHRO
preserving phonetic similarity.

Typo Attacks. Two of the typo strategies,
ANTHRO Typo (Le et al., 2022) and Zeroé Typo
(Eger and Benz, 2020), are composed largely of
perturbations from internet corpora. The Zeroé
Noise strategy is a subset of Zeroé synthetic pertur-
bations that randomly adds, deletes, and rearranges
characters. ANTHRO Typo is a subset of ANTHRO not
preserving phonetic similarity.

Visual Attacks. All visual attacks, VIPER
(Apache 2.0) DCES, VIPER ICES (Eger et al., 2019),
and LEGIT (Seth et al., 2023) use character-level
homoglyph substitutions from a nearest-neighbor
mapping, with different attack strategies using dif-
ferent embedding spaces to construct the mapping.

3.4 PhoneE Algorithm

PhoneE - Phonetic Evasion - occurs in three stages.
First, a word is converted into its phonetic repre-
sentation using the CMU Pronouncing dictionary
(BSD 3).7 Next, the graphemes in the word are
mapped to the phonemes produced by the pro-
nouncing library by using an English grapheme-
to-phoneme dictionary, described below. We then
uniformly sample graphemes gi from the word
to perturb with pg = .2, with a minimum of 1
grapheme. Lastly, for each selected grapheme gi,
we take the phoneme it maps to pi, and sample
from graphemes for the same phoneme excluding
gi: g

′
i ∈ Gpi − gi. g

′
i is determined similarly to

the visual attacks, where we sample f = j + 1,
j ∼ Geom(.05). However, we do not create a
nearest neighbor space of each grapheme, but in-
stead order the graphemes by frequency of use as
the phoneme pi, as observed in the Wikitext corpus
(wikitext-103-v1) (Merity et al., 2016). Finally,
we exclude leading vowels from perturbation, and
only replace leading consonants with other com-
mon leading graphemes for the phoneme.

The grapheme-phoneme dictionary is a modi-
fied version of the English Sound-to-spelling corre-

7http://www.speech.cs.cmu.edu/cgi-bin/cmudict

https://huggingface.co/datasets/dvsth/LEGIT
https://huggingface.co/datasets/wikitext
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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spondences dictionary from Wikipedia, where we
added grapheme-phoneme correspondences that
occur within LEGIT, and remove graphemes that
require interjected letters. For consonants, we also
subcategorize the graphemes as occurring at the
beginning of words or not. The grapheme-for-
phoneme frequency is calculated by performing the
mapping procedure on each word in the Wikitext
corpus. If a word has multiple pronunciations, the
grapheme-phoneme is counted once for each pro-
nunciation in which it occurs. Graphemes of words
in the Wikitext corpus missing from the CMU Pro-
nouncing dictionary are omitted from frequency
calculation.

4 Context-Free Recovery Experiments

We conduct two sets of experiments. In this sec-
tion, we directly apply Ad-Word to state-of-the-art
pretrained models to asses their recovery ability via
prompting without context. In the next section, we
investigate how this recovery ability correlates with
performance against the same attacks with context.

4.1 Setup

We perform both zero-shot and few-shot (50 clean-
perturbed pairs) prompting followed by a batch of
20 or 5 new words for the model to recover using
ChatGPT, Palm2, Llama2, Mistral, and Falcon as
the underlying models. 50 samples are provided to
provide greater coverage of the observed attacks
since an individual sample contains only one word
and few perturbations. In the All few-shot set-
ting, the prompt examples are sampled uniformly
from perturbations generated using all classes. In
the In-Domain setting, perturbations are sampled
uniformly from all strategies in the class being
tested. Finally, in the Out-of-Domain setting, few-
shot prompts include examples from the two attack
classes not being tested. For instance, when test-
ing phonetic recovery, we sample examples from
visual and typo attacks. Example prompts for each
of the models are in Appendix C.

To save on computation costs, we run the largest
models (ChatGPT, Palm2, Llama2 70B, Falcon
40B) on reduced test sets of 1, 400, 1, 400, and
4, 500 for the In-Domain, Out-of-Domain and All
Classes, respectively, sampled to match the length
distribution of Ad-Word.

4.2 Baselines

Spellcheck. We apply a standard spell checker
GNU Aspell (Atkinson, 2019) (GNU).8

Human. Five annotators from the authors’ insti-
tution, proficient in English, provided 500 annota-
tions each via a spreadsheet where perturbed words
are provided in one column. Annotators were asked
to input their guess for the original word in the adja-
cent column. Annotators achieved overall accuracy
of 63.8%, 62.0%, 68.2%, 65.2%, 68.1%. A full
description of the annotation environment, includ-
ing the word sampling procedure, is in Appendix D.
Note that these human accuracies are not an upper
bound on model performance as humans are prone
to spelling mistakes when typing the recovered
words.

Finetuning. We finetune tokenization-free ByT5
(Xue et al., 2022) by varying the fine-tuning sets
instead of the prompt examples (Appendix E). We
use ByT5-Base (580M parameters) for our tests,
but we also replicate the All Class tests on ByT5-
large (1.2B) and ByT5-XL (3.7B). Tokenization-
free byte-level encodings and pretraining on a wide
variety of scripts make it ideal for the word re-
covery task, where we expect the perturbations to
consist of arbitrary combinations of UNICODE char-
acters (Xue et al., 2021). We also evaluated Byt5’s
generalization to unseen attacks by finetuning using
a held-out setting (Appendix F).

4.3 Recovery Results

LLM accuracies, relative to the human baseline,
over the classes of attacks are in Table 2. Figure 2
shows the best performing models on each specific
attack. The annotators and models found the same
attacks relatively difficult within a class (Figure 2).
For instance, ICES is harder than LEGIT which is
harder than DCES.
Zeroé Typo and Zeroé Phonetic were relatively

easier for the models than humans (not shown);
all of the models except Falcon-7B exceeded the
annotators on Zeroé Typo, which is the attack that
looks most like the kinds of typos that randomly
occur on the internet.

Beyond this, the differences in performance are
large. GPT-4 exceeds human annotators by 8.7%
in the 50-shot all-class setting, only not exceeding
on phonetic attacks (−2.9% zeroshot, −5.2% 50-
shot), and Falcon-7B is no better than −30.7%

8http://aspell.net/man-html/

http://aspell.net/man-html/
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Falcon Mis’l Llama2 Palm2 GPT-3.5 GPT-4 Byt5
Ann Asp Set’g 7B 40B 7B 7B 13B 70B bison 0301 0613 1106 base

Ph
on

e
72.3 65.8

ZS -37.4 -9.6 -8.1 -14.6 -9.9 -15.7 1.2 -8.7 -2.4 -2.9 –
ID -19.5 -1.1 -2.5 -6.9 -7.4 -8.9 3.2 -8.9 -2.3 -5.2 -6.4

OoD -20.6 -3.4 -4.0 -8.9 -9.7 -11.6 2.6 -8.9 -2.3 -2.8 -26.2

Ty
po 56.9 47.2

ZS -30.7 -3.3 -6.9 -9.1 -6.4 -2.2 -0.9 -0.4 3.0 9.3 –
ID -14.9 1.1 -5.0 -6.3 -5.1 -2.2 2.5 -0.6 3.4 10.2 -11.5

OoD -15.7 -0.9 -5.4 -6.2 -5.4 -0.8 1.1 -0.7 3.4 9.7 -25.7

V
is

ua
l

63.2 37.9
ZS -54.0 -20.9 -30.4 -30.9 -29.3 -22.9 -8.7 -3.7 -1.0 11.3 –
ID -39.1 -13.9 -28.0 -25.8 -25.1 -18.5 -3.1 -3.6 -0.7 12.1 15.7

OoD -39.4 -14.3 -26.9 -26.6 -25.9 -18.3 -4.8 -4.0 -0.5 10.2 -40.9

A
ll 64.1 50.3

ZS -40.7 -11.3 -15.1 -18.2 -15.2 -13.6 -2.8 -4.3 -0.1 5.9 –
ID -24.5 -4.5 -11.8 -13.0 -12.5 -9.9 0.9 -4.4 0.1 5.7 -0.7
All -22.7 -1.6 -9.9 -13.9 -11.5 -8.0 2.0 -2.0 4.8 8.7 -7.0

Table 2: LLM Performance on Ad-Word. Ann. is Annotators. Asp is GNU Aspell. Set’g, ZS, ID, and OoD are
Setting, Zeroshot, In-Domain, and Out-of-Domain, respectively. Model accuracy is in percentages, reported relative
to annotator accuracy. ID and OoD settings use 50-shot prompts. For All attacks, ZS and ID results are the mean of
class-level tests. All is a separate setting where examples and test samples are uniformly sampled from all classes.
Byt5 tests are performed on fine-tuned using the training sets used for prompting. Proprietary models have a clear
advantage over open-source ones, which particularly struggle with visual attacks. bold - best prompted accuracy.
blue - exceeds annotators.

zeroshot. GPT-4’s performance on visual attacks
is notable given (1) it is the only prompted model
that exceeds human performance, (2) it uses the
same string tokenizer as GPT-3.5.9 Note that we
only used the text API for GPT-4; a study of GPT-
4 vision’s capabilities is beyond the scope of this
work. The same is true of Palm2, which, like GPT-
3.5, has roughly human performance - although,
it does not do as well on visual attacks zeroshot
(−8.7%) as 50-shot (−3.1%). Palm2 is the best
performing model against phonetic attacks (+1.2%
zeroshot, +3.2% 50-shot). Before these tests, it
was unclear if human annotators represented an
upper bound on the performance on these tasks.
Given that multiple models exceed the annotators
on multiple attacks, it is unclear where the upper
bound lies.

Among open-source models, larger sizes work
better (average zeroshot performance): Llama2
−13.6% (70B) vs. −15.2% (13B) vs. −18.2%
(7B), Falcon −11.3% (40B) vs. −40.7% (7B).
This effect was previously undocumented, and may
explain part of the process by which larger models
become more robust (Zhu et al., 2023). It might
also explain the superior performance of propri-
etary models—while we do not know the exact
sizes of these models under the hood, prior versions
of PaLM and GPT were 540B and 175B parame-
ters, respectively (Chowdhery et al., 2023; Brown
et al., 2020).

9https://platform.openai.com/tokenizer

All models recover shorter words at a lower rate,
but word length has a larger effect on smaller mod-
els. Specifically, the Pearson Correlation Coef-
ficient between the accuracy of a model and the
mean length of the words it fails to recover is -
0.869 (p=0.0011, n=10 models) for 0-shot prompt-
ing. As model size increases, the performance
gains increasingly come from the ability to cor-
rectly recover shorter words.

The open models all have difficulty with visual
attacks (as does GNU Aspell). The best model is
Falcon-40B, which is −20.9% in the zeroshot set-
ting and −13.9% in the 50-shot setting. Only one
open model does worse than −20.9% on any other
attack class, Falcon-7B. Fine-tuned Byt5-base does
exceptional on these visual attacks, exceeding both
the annotators and GPT-4. However, this only oc-
curs when Byt5-base has been fine-tuned on the
attacks. In the out-of-domain settings, it is the
worst performing model on all classes. Byt5-large
and Byt5-XL results are omitted from Table 2 be-
cause they change by less than 2% in most settings
from Byt5-base.

Because ChatGPT and Palm2 are proprietary
and invoked via their APIs, we do not know if
the gap between proprietary and open models is
partly the result of preprocessing. Visual attacks,
which use a broad set of UNICODE characters, may
be particularly amenable to preprocessing, as we
investigate in § 5.2.1. These results highlight the
need for strategies to improve the robustness to
visual attacks of open models.

https://platform.openai.com/tokenizer
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Figure 2: Best Performing Models by Type and Attack. Training data for fine-tuning and prompting both come
from all attacks within the class. For instance, for visual attacks, they include DCES, ICES, and LEGIT. Human
baselines come the annotation environment described in Appendix D. Falcon-40B is the best open model on all
attacks, due in large part to improvement under 50-shot prompting.

5 Experiments with Context

We turn to the question of if differences in recovery
ability result in vulnerability to these attacks in the
presence of context, particularly for visual attacks.
We conduct two experiments: First, we attempt
word recovery on a single perturbed word within
a paragraph. Second, we test the impact of these
perturbations on a HOT-classification task.

5.1 With-Context Word Recovery

To test recovery in-context, we perturb a single
word from academic paper abstracts at random,
and then prompt the models to recover the word.
The dataset was constructed by sampling 5,000 ab-
stracts from arXiv, published in October 2023 (after
Llama2 7B and 13B and Mistral 7B were released).
We then randomly select a single word, which we
ensure occurs only once in the abstract using natu-
ral language toolkit’s (NLTK) porter stemming.10

We perturb the selected word using visual, phonetic,
and typo attacks. To ensure the attacked texts re-
main largely recoverable by humans and therefore
valid attacks, we choose an attack mix that has an
expected human word-level recoverability of 65.5%
(the average overall annotator accuracy) for each
class. The mixes are; phonetic: 63.7% PhoneE,
36.3% Zeroé Phonetic; typo: 78.2% Zeroé Noise,
21.8% Zeroé Typo; visual: 77.4% LEGIT, 22.6%
DCES.

We test open models (Mistral-7B, Llama2-7B
and -13B) on this dataset in two settings. First,
we use the prompts from the Ad-Word experiments

10https://www.nltk.org/api/nltk.stem.porter.
html

to get baseline context-free recovery accuracy for
these perturbations. Then, we prompt the model to
recover the word using a prompt containing the en-
tire abstract with the perturbed word replacing the
original. Both sets of prompts are zero-shot (no per-
turbation examples) and available in Appendix C.

As expected, Table 3 clearly shows that perfor-
mance improves in the with-context setting over
the context-free setting. However, it is also clear
that whether or not a word is recovered successfully
without context is strongly predictive of whether
it will be recovered with context. We conclude
that, for words attacked with Ad-Word’s attacks,
while context makes recovery easier for models, it
does not solve the problem: context-free recovery
is highly correlated to with-context recovery.

5.2 Adversarial HOT-Classification

We turn now to the question of context-free word
recovery’s predictive power of downstream task
performance under adversarial perturbations. To
do so, we use the HOT Speech dataset (Propri-
etary License),1112 which has 3,841 English social
media comments labeled as any mix of hateful,
offensive, and toxic, precisely the kind of con-
tent where attackers employ evasive perturbation.
Of the 3,841 comments, 1,460 are labeled at least
one of hateful, offensive, or toxic, with a total
of 404 labeled hateful, 862 offensive, and 803
toxic. We filter comments to be less than 2, 000
characters (to fit in the prompt context window)
(less 8 comments) and have at least 8 words that

11https://socialmediaarchive.org/record/19
12https://socialmediaarchive.org/pages/?page=

Terms%20of%20Use&ln=en

https://www.nltk.org/api/nltk.stem.porter.html
https://www.nltk.org/api/nltk.stem.porter.html
https://socialmediaarchive.org/record/19
https://socialmediaarchive.org/pages/?page=Terms%20of%20Use&ln=en
https://socialmediaarchive.org/pages/?page=Terms%20of%20Use&ln=en
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Phonetic Typo Visual
w/ctx # w/ctx # w/ctx #

L
la

m
a2 13

B ✓ 92.2 3,024 93.1 2,643 91.9 2,858
✗ 52.9 1,976 51.8 2,337 49.6 2,142

7B

✓ 82.2 2,742 84.5 2,500 84.1 2,386
✗ 44.5 2,258 42.0 2,500 42.6 2,614

M
st

l
7B

✓ 91.9 3,067 89.4 2,566 90.4 2,412
✗ 46.7 1,933 34.5 2,434 36.0 2,583

Table 3: With-Context Word Recovery Performance.
The table shows the with-context word recovery ac-
curacy for words sampled from the paper abstracts as
described in §5.1. ✓ rows are words that were success-
fully recovered without context. ✗ rows are words that
were not recovered without context. Individual cells in
the w/ctx column are recovery accuracies with context
conditional on recovery of the word without context.
Cells in the # columns are number of samples that were
or were not recovered without context. For instance,
from the first two cells of the first row, Llama2-13B
successfully recovered 3,024 of 5,000 phonetically at-
tacked words without context (# column). Of those,
92.2% (2,788) words were also recovered correctly with
context (w/ctx column). The w/ctx cells in the ✗ rows
show how much recovery accuracy can be gained from
adding context. In our experiment, adding context at
best fixes about half the errors, but it also introduces
some new errors (every ✓-row accuracy is closer to 90%
than 100%). In short, while context materially improves
word recovery, failure to recover a word without context
is strongly predictive of failure to recover with context.

are not usernames (to allow for gradation when
perturbing individual words) (less 642 comments)
for a final set of 2,830 comments. We use a prompt
adapted from Li et al. (2024) to use Chain-of-
Thought prompting (Wei et al., 2022). The prompt
requests an analysis of the comment against the
provided class definition, then a predicted positive
class probability (score) in [0, 1] (templates are in
Appendix C).

We first prompt each model with unperturbed
comments, establishing baseline performance. We
then perturb increasing percentages of words
(12.5%, 25%, and 50%, excluding usernames and
words less than length 3) and measure changes in
predictions at these levels. We refer to each combi-
nation of a model, HOT-classification task, attack
class and perturbation ratio as a setting. There are 3
models, 3 classification tasks, 3 attacks, and 3 per-
turbation ratios, for a total of 81 attacked settings,
plus 3 baselines, for a total of 84 settings.

Perturbation strategies are applied in the same
manner as the with-context experiment. We choose
the order in which we perturb the words by word-
importance to hateful classification as calculated
by a RoBERTa model from Vidgen et al. (2021).13

For each perturbation percentage, we perturb the
same words in each comment for each attack.

Because we are primarily interested in the rela-
tive effectiveness of the attacks, we analyze the
attacks in two ways. First, we use a pairwise
difference-in-difference model to measure relative
change in positive class predictions (scores) be-
tween attacks (i.e., betweeen visual and phonetic
attacks). This tells us if the models respond more to
visual attacks than other attacks (described below).
Second, to see if the responses in scores correlate
to changes in task performance, we analyze the
model AUC at each perturbation ratio. We report
the average AUCs across HOT-classes in Table 4.

The first difference in the pairwise difference-in-
difference model is the difference between the base-
line model scores on a HOT-class and the scores
for that model under each attack. We call this the
perturbation response. For instance, the difference
in scores between Llama2-13B on toxic classifi-
cation using visual attacks at a 50% perturbation
ratio and baseline Llama-13B scores on toxic clas-
sification. The second difference is the difference

13https://huggingface.co/facebook/
roberta-hate-speech-dynabench-r4-target

Attack 0% 12.5% 25% 50%

L
la

m
a2 13B

phonetic 0.76 0.74 0.74 0.71
typo 0.76 0.73 0.72 0.69

visual 0.76 0.73 0.72 0.68

7B
phonetic 0.77 0.76 0.74 0.73

typo 0.77 0.75 0.73 0.71
visual 0.77 0.75 0.74 0.73

M
is

tr
al

7B
phonetic 0.80 0.75 0.74 0.70

typo 0.80 0.74 0.71 0.67
visual 0.80 0.73 0.69 0.65

Table 4: Adversarial HOT Classification Perfor-
mance. HOT classification is three different tasks,
hateful, offensive and toxic classification. The
same comments are used for each task, but the labels de-
pend on the content of the comment. Attacks are applied
to to 12.5%, 25%, and 50% of words in each comment
(rounded up), respectively. Columns are percentage of
words perturbed. AUCs are average AUC for all HOT
classification tasks. Prompts do not include examples
of perturbed words (zeroshot). Note that average AUCs
mask task-level differences for the Llama2 models.

https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
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between the perturbation responses for each attack.
There are 3 HOT-classes, 3 perturbation ratios, and
2 comparisons (visual-to-phonetic, and visual-to-
typo) for a total of 18 per model. Using these
comparisons, we performed a one-sided pairwise
T-test with the hypothesis that visual attacks result
in greater absolute perturbation response than pho-
netic or typo attacks. We apply a Bonferroni correc-
tion to p = 0.05 for 18 hypotheses for each model,
yielding a significance level of p < 0.00278.

For Mistral-7B, all 18 perturbation responses to
visual attacks are significantly greater than pertur-
bation responses to phonetic and typo attacks. For
Llama 7B, 2 out of 18 is significantly greater - com-
paring visual to phonetic and typo on offensive clas-
sification at 12.5% perturbation. For Llama-13B,
10 out of 18 responses are significantly greater,
with 5 out of 6 at the 12.5% (all 3 phonetic, 2
typo), 3 out of 6 at 25% (2 phonetic, 1 typo), and
2 out of 6 at 50% (2 phonetic). Complete statis-
tics are in appendix Table 8. With respect to AUC
(Table 4), Mistral is the most affected by the at-
tacks, falling from 0.80 to at best 0.70 AUC on
50% phonetic attacks and at worst 0.65 on 50%
visual attacks. Llama2-7B is less affected by all at-
tacks than Llama2-13B. Llama2-13B performance
is most impacted by typo and visual attacks.

These attacks are meant to remain recoverable
to humans, altering only a small percentage of to-
tal characters in the comment. Despite this, of the
three models we tested, we observe two (Mistral-
7B and Llama2-13B) have a statistically greater
response to visual attacks than phonetic or typo
attacks. For one of the models, Mistral-7B, this
correlates with a relative decrease in task perfor-
mance at all perturbation ratios.

5.2.1 HOT Classification Shielding
In the HOT Classification setting, Mistral-7B is
both the most performant model and most suscepti-
ble to perturbation attacks; especially to the visual
attacks which it struggled to recover in § 4.3. This
raises the question—can we improve the robustness
of open-source LLMs aside from increasing their
size? Here we show that a simple shielding defense
built to leverage complementary recovery abilities
between models can go a long way.

To do so, we leverage Byt5-base fine-tuned on
visual perturbations (where it had a high in-domain
accuracy in § 4.1). Our defense consists of running
Byt5 recovery on words with non-ASCII characters
(mostly visual attacks) and replacing these words in

the comments with the words Byt5 recovered. The
resulting comment is then given to the downstream
model - Mistral-7B in this experiment.

We run this experiment for all three HOT-classes
with a perturbation ratio of 50%, which was Mis-
tral’s worst performing setting we tested; its aver-
age AUC dropped from its baseline performance
of 0.80 to 0.65. In short, the defense works, restor-
ing the overall performance to 0.77 AUC, which is
80% of the performance lost to the attack.

While more sophisticated shielding defenses
have been studied (Keller et al., 2021; Pruthi et al.,
2019), this defense relies exclusively on Byt5’s per-
turbation recovery, thereby demonstrating that it is
word recovery itself that is improving robustness.

6 Summary

We introduced a new diagnostic task, Adversarial
Word Recovery, and a supporting dataset, Ad-Word,
for assessing language model recovery of perturbed
text. Applying Ad-Word to the current genera-
tion of large language models, we observe that the
largest proprietary models already achieve human-
like performance, with GPT-4 exceeding human
annotators. In this regard, word recovery is yet
another example of an emergent capability.

However, a significant gap exists between the
proprietary models (GPT-4, GPT-3.5, and Palm2)
and open-source models (Llama2, Mistral, Falcon),
most prominently on visual attacks. While increas-
ing model size helps, these models are still at least
20% worse than humans in recovering words per-
turbed with visual attacks. The presence of con-
text does not completely mitigate this vulnerability.
Hence, improving the word recovery capabilities of
these models is an important area for future work
where Ad-Word can be useful. In the meantime, we
show mixed-model approaches, like shielding with
small models like ByT5, can improve robustness
by exploiting complementary recovery strengths.

7 Ethics Statement

Intentional text perturbations have been an effective
method for escaping content moderation since the
early days of the internet (Mitchell, 2005). These
kinds of evasions can be used to enable publishing
and sharing content online that may be illegal in
the users’ jurisdiction or disallowed by terms of
service. In general, better identification of these
evasions through text recovery can lead to more
complete and predictable enforcement of relevant
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statutes, with the hope of reducing the presence
and impact of harmful content.

However, when information control is central-
ized, these recovery models can aid in identify-
ing and eventually suppressing dissident ideas. As
sophistication of model-based text recovery im-
proves, legitimate activists using obfuscation to
avoid detection may find it harder to spread their
messages. However, in security critical domains,
obfuscation via text perturbation is not a replace-
ment for encryption because confidentiality cannot
be ensured.

8 Limitations

We know little about the bounds of human word
decoding (the term used in psycholinguistic liter-
ature to describe identification of words), but we
do know that humans can compensate for decoding
difficulty with extra decoding time (Davis, 2003;
Rayner et al., 2006). Our annotation environment
did not restrict time taken per perturbation and an-
notators annotated hundreds of words in immediate
succession, which may bias our human baselines
in either direction.

The large language model landscape is evolving
rapidly. Since the these experiments were con-
ceived and executed, newer versions of some mod-
els tested have been released (e.g., the Llama 3
series). Continual benchmarking of new models is
beyond the scope of this work, but Ad-Word will
be useful as a diagnostic for these newer models as
well.

We do not have access to any preprocessing that
is done by ChatGPT and Palm2. It is possible
that preprocessing contributes significantly to the
overall performance of these models, and our tests
would not illuminate this effect. Moreover, each of
the different model families in our experiments use
different tokenizers. Our experiments only control
for the role of tokenizers within the same model
family. While we know that the differences in
model performance within a model family are not
the result of tokenization, our work does not pro-
vide insights into the impact of tokenization across
model families.

The perturbations in Ad-Word are meant to pro-
vide enough variety to test the different mecha-
nisms to reverse the visual, phonetic, and typo at-
tacks. However, these examples do not - and could
not - represent all possible perturbations within
these classes. In particular, the ANTHRO attacks have

a larger volume of perturbations for some words
from popular discourse than Ad-Word’s common
English words. For instance, ANTHRO has more
than a dozen perturbations for ‘republican’ and
‘democrat’. Some Ad-Word words only have cas-
ing changes in ANTHRO (which also retain phonetic
similarity). As a result, Ad-Word ANTHRO Phonetic
is less diverse than PhoneE or Zeroé Phonetic. In
addition, the majority of the attacks in Ad-Word
are synthetic. For our experiments, we believe it is
necessary to incorporate synthetic attacks to avoid
bias from data contamination during model train-
ing. However, it may be the case that these LLMs
perform better in real word scenarios than on our
study’s synthetic attacks.

While having a breadth of both attacks and per-
turbations for the same word in Ad-Word provides
a diverse set of conditions for testing recovery,
no dataset could cover all perturbations or attacks.
Moreover, a general trend of decoding a particular
attack well - like decoding phonetic attacks well -
does not mean a model must recover all phonetic
attacks well. A specifically constructed attack from
a given class may still be successful even against
a model that is, in general, capable of recovering
attacks from that class.

Finally, when testing downstream tasks, attacks
may change not only the character representation
of the samples but the resulting semantics. It is
possible that certain types of attacks have a more
significant impact on semantics than others even if
they remain recoverable. In our HOT classification
experiments, we do not establish new ground truth
for every perturbed sentence. Some of the effects
we observed may be attributable to genuine ambi-
guities in semantics, which our experiments would
not distinguish.
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used for words with familiar spellings. Importantly,
information flow in these models is not unidirec-
tional; the two modalities can influence one another
(and be influenced by semantics).

Our attack classes attempt to change words with-
out breaking those mechanisms. The visual at-
tacks add noise to the spelling mechanism at the
grapheme level. The typo attacks add noise to the
spelling mechanism at the word level. The phonetic
attacks add noise to the phonetic mechanism in the
first mode. Note that any phonetic attack must nec-
essarily include changes to spelling for a reading
task. Also, any attack with sufficient change to the
word will obviate the direct mode, which is why in-
clusion of typo attacks is important. They allow for
changes not beholden to integrity of graphemes or
phonemes. This is what we mean by ‘typo attacks
preserve edit distance’ above.

Of course, these reading models are theoretical
and we could have used any one specific model
more directly at the cost of added complexity. We
think our 3-part taxonomy strikes a nice balance
between generality and complexity for the purpose
of benchmarking NLP models.

Within each of these attack classes, we could
have chosen other or more attacks. For example,
visual attacks that allow 1-to-many or many-to-
1 substitutions. What attack strategies are viable
(in the sense they allow human decoding) is an
empirical question. A full treatment of that topic
is an open area of research. However, we believe
our current settings have a nice mix of empirically
sourced and synthetic attacks.

B Adword Attack Definitions

Phonetic Attacks
For phonetic attacks, word-level perturbations are
constructed either through grapheme-level pertur-
bations using similarity between their correspond-
ing phonemes (Zeroé Phonetic and PhoneE), or
through extraction from internet corpora (ANTHRO
Phonetic).

Strategy 1: PhoneE - Phonetic Evasion works
similarly to visual attacks, but entire graphemes
are substituted instead of individual characters. A
word is first converted into its phonetic represen-
tation, then candidate graphemes that represent
the same phoneme are sampled, weighted towards
graphemes that frequently represent the original
phoneme. PhoneE is new to this paper, and is de-
scribed in detail in subsection 3.4.

Strategy 2: ANTHRO (Phonetically Similar) (Le
et al., 2022) - ANTHRO is a database of perturbations
meant to replicate or imitate human-generated per-
turbations sourced from the internet. The perturba-
tions are identified using a combination of phonetic
similarity (via a modified version of SOUNDEX (Rus-
sell, 1918) called SOUNDEX++) and edit distance.
For the ANTHRO Phonetic attack, we produce pertur-
bation candidates using ANTHRO a maximum edit
distance 6 and equivalent SOUNDEX++ representa-
tions, selecting uniformly from the candidates.

Strategy 3: Zeroé Phonetic (Eger and Benz,
2020) - The Zeroé (Apache 2.0) Phonetic attack is
an encoder-decoder model. The encoder transforms
a character sequence to a phoneme sequence, and
the decoder transforms the phoneme sequence to
a (potentially different) character sequence. We
make two modifications to the original attack: we
use beam search with beam size 10 (instead of
greedy decoding) and prune beams that end in the
original word.

Typo Attacks
Two of the typo strategies, ANTHRO Typo and Zeroé
Typo, are composed largely of perturbations con-
structed from internet corpora. The Zeroé Noise
strategy represents a subset of Zeroé synthetic per-
turbations that imitate the kinds of typos a human
may naturally introduce.

Strategy 1: ANTHRO (Edit Distance) (Le
et al., 2022) - ANTHRO Edit Distance is similar to
ANTHRO Phonetic except it excludes exact modified
SOUNDEX++ matches, which provides candidates
that have edit distance similarity but phonetic dis-
similarity. We also sample the allowed edit dis-
tance from a geometric distribution.

Strategy 2: Zeroé-Noise (InnerShuffle, Ran-
dom Deletion, Intruders (Eger and Benz, 2020) -
We group three attack strategies from Zeroé, which
we sample from uniformly. InnerShuffle rearranges
the letters of the word, but keeps the first and last
letter in place. Random deletion randomly deletes
a character from the word with probability p = .1,
deleting at least 1. Intruders interjects randomly
selected punctuation characters with p = .1 for
each pair of characters, adding at least 1.

Strategy 3: Zeroé-Typo (Natural Typos, Key-
board Typos) (Eger and Benz, 2020) - Strategy 2
adds noise to words in a manner that looks similar
to human typos. Zeroé includes a dictionary of real
typos extracted from the Wikipedia corpus, origi-
nally constructed by Belinkov and Bisk (2017). For
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words not available in the typo dictionary, we em-
ploy the Zeroé Keyboard Typos attack, which uses
locality of characters on the QWERTY keyboard to
create a nearest neighbor space. We uniformly sam-
ple characters to perturb with probability p = .15,
choosing at least 1.

Visual Attacks

All visual attacks use character-level homoglyph
substitutions from a nearest-neighbor space, with
different attack strategies using different spaces.
For each attack, first, we sample characters to per-
turb with probability pc. Then, for each selected
character ci, we sample k = j +1, j ∼ Geom(gk),
where Geom(gk) represents a geometric distribu-
tion with parameter gk, and take the k-th nearest
neighbor of ci in the attack space. To set pc and
gk, we use the LEGIT dataset released by Seth et al.
(2023) which includes an ordinal ranking of legibil-
ity for each perturbation as judged by humans, and
approximate them by fitting a model to LEGIT’s
perturbations with positive legibility scores. This
results in pc = .37 and gk = .05.

Strategy 1: VIPER DCES (Eger et al., 2019) The
Description-Based Character Embedding Space
(DCES) is constructed by finding characters that
have the same case and name in the UNICODE
standard description.

Strategy 2: VIPER ICES (Eger et al., 2019)
Image-based Character Embedding Space (ICES)
uses a pixel embedding for each character in a
244 × 244 space and similarity calculated using
cosine distance.

Strategy 3: LEGIT (Seth et al., 2023) - We use
the perturbed words in the original LEGIT dataset
directly, which was constructed using a combina-
tion of 3 different visual embedding spaces. We
perturb added words using LEGIT-TrOCR-MT.

C Prompting

C.1 Model Configurations

For all models, max_new_tokens is set to 3 times
the length of the perturbed words.

GPT-3.5, GPT-4. Temperature was set to 0 in
the request. The prompt is provided as a system
prompt. Occasionally, ChatGPT would still re-
spond with a score that expressed a range rather
than a single value (ie, 0− .4 instead of .2). Those
requests were retried.

Palm2. Temperature is set to 0. However, infre-
quently, Palm2 would not obey the response format.
In that case, the temperature was increased by .1
and retried.

Llama2, Falcon, Mistral. Huggingface14 mod-
els are used. Generation is done with beam search
with beam size of 3 with sampling disabled.

C.2 Ad-Word Recovery
Below are examples of the prompts provided to the
LLMs under tests, with the number of examples
and queries truncated from 50 and 20 to 2 and 2, re-
spectively. For zero-shot prompting, we remove the
provided examples and replace them with three rep-
etitions of 1. "Perturbed Word" -> "Original Word".

C.2.1 ChatGPT

You are trying to recover the original text from
words that have been perturbed. The
Perturbed Words were created by taking the
Original Word in English and changing some
of the letters.

Respond with you your best guess about the
original word that was used to create the
Perturbed Word. Casing does not matter, but
if the word has punction (like Amy's or half
-pipe), please include it. Please do not
omit any words and do not submit multiple
answers for the same Perturbed Word. Respond
just with the Perturbed Word followed by `
-> ` and then your guess about the Original
Word.

Below there are examples of some Perturbed Words
and Original Words labeled `Examples:`.
Perturbed Words come before `->` and
Original Words come afterwards.

Examples:

1. "dstridued" -> "distributed"
2. "mtro" -> "metro"

The new words are after `New Perturbed Words:`,
each followed by `->`. There are 2 words,
numbered 1 to 2. Please provide 2 responses,
numbered 1 to 2 in the format

```
1. "Perturbed Word" -> "Original Word".
2. "Perturbed Word" -> "Original Word".
...

```
New Perturbed Words:
1. "h3llo" ->
2. "w0rld" ->

Your first of 1 answers should start with
1. "h3llo" -> "

14https://huggingface.co/models

https://huggingface.co/models
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C.2.2 Palm2

You are trying to recover the original text from
words that have been perturbed. The

Perturbed Words were created by taking the
Original Word in English and changing some
of the letters.

Respond with you your best guess about the
original word that was used to create the
Perturbed Word. Casing does not matter, but
if the word has punction (like Amy's or half
-pipe), please include it. Please do not
omit any words and do not submit multiple
answers for the same Perturbed Word. Respond
just with the Perturbed Word followed by `

-> ` and then your guess about the Original
Word.

Below there are examples of some Perturbed Words
and Original Words labeled `Examples:`.

Perturbed Words come before `->` and
Original Words come afterwards.

Examples:
1. "dstridued" -> "distributed"
2. "mtro" -> "metro"

The new words are after `New Perturbed Words:`,
each followed by `->`. There are 2 words,
numbered 1 to 2.

New Perturbed Words:
0. "h3llo" ->
1. "w0rld" ->

Please provide 2 responses, numbered 1 to 1 in
the format

```
1. "Perturbed Word" -> "Original Word".
2. "Perturbed Word" -> "Original Word".
...

Your answers should begin with the number (ie,
1.) and word (ie, "h3llo") in the New
Perturbed Words list followed by -> (all
copied exactly from the input). Then, your
guess for the original word should follow
the -> in quotes (ie, "word", (not the
answer for 1.)). ALWAYS INCLUDE AN ORIGINAL
WORD AFTER THE ->.

You should have answers numbers 1., 2.. Finish
your response with the word DONE on a single
line after the 2th Original Word. Like this

:
```
2. "Perturbed Word" -> "Original Word"
DONE
```

C.2.3 Llama2

[INST] <<SYS>>
You are trying to recover the original text from

words that have been perturbed.
The Perturbed Words were created by taking the

Original Word in English and changing some
of the letters.

<</SYS>>

Below there are examples of some Perturbed Words
and Original Words labeled 'Examples:'.
Perturbed Words come before '->' and
Original Words come afterwards.

Respond with you your best guess about the
original word that was used to create the
Perturbed Word. Casing does not matter, but
if the word has punction (like Amy\'s or
half-pipe), please include it. Please do not
omit any words and do not submit multiple
answers for the same Perturbed Word. Respond
just with the Perturbed Word followed by `
-> ` and then your guess about the Original
Word.

Examples:

1. "h3llo" -> "hello"
2. "w0rld" -> "world"

[/INST]

Sure, I'm ready to help! Please provide the new
perturbed words and I will give you my best
guesses for the original words in the format
'n. perturbed\_word -> original\_word' for
each word.

[INST]
The new words are after 'New Perturbed Words:',

each followed by '->'.

New Perturbed Words:
1. haqqy ->
2. berthday ->

[/INST]
Here are my answers for the new perturbed words:

1. "happy" -> "

In the zeroshot setting, the Examples clause is
replaced with:

Below there is an example of the format for
Perturbed Words and Original Words labeled `
Format:`. Perturbed Words come before `->`
and Original Words come afterwards.

Format:
1. "Perturbed" -> "Original"

C.2.4 Mistral
The Mistral prompt is the same as the Llama2
prompt, except the «SYS» and «/SYS» markers are
removed.

C.2.5 Falcon
Falcon prompt is the same as the Llama2 prompt,
except

1. [INST] and <<SYS>> markers are removed

2. >>CONTEXT<< is prepended to the prompt
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3. >>QUESTION<< is added before New Perturbed

Words

4. >>ANSWER<< is added before the starting word.

C.3 HOT Classification

The HOT classification prompt includes instruc-
tions to return a rating of 0−1 for each of hateful,
offensive, and toxic. Each class is a separate
prompt, with the only change being the name of
the class and the definition of the class. The class
definitions are:

1. hateful - expresses hatred towards a targeted
group or is intended to be derogatory, to hu-
miliate, or to insult the members of the group

2. offensive - contains hurtful, derogatory, or
obscene comments

3. toxic - a rude, disrespectful, or unreasonable
comment that is likely to make readers want
to leave a discussion

Example prompts are given for hateful classifi-
cation.

Llama2. Prompts for Llama2 are given in two
stages using Chain-of-Thought prompting.

First Prompt.
[INST]<<SYS>> You are trying to assess whether

or not a comment is hateful. A comment is `
hateful' if you perceive that it "expresses
hatred towards a targeted group or is
intended to be derogatory, to humiliate, or
to insult the members of the group".

<</SYS>>

Please analyze this comment and concisely
describe which, if any, of the criteria from
the definition of hateful the comment meets
and why.

Comment:
"thanks."

[/INST]
The main factors in determining whether or not

this specific comment meets the criteria to
be considered hateful are:

Second Prompt. The second prompt includes
the first response and adds:

[INST]
Finally, considering the factors that suggest

the comment is hateful and the factors that
suggest it is not hateful, provide a score
on a scale of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 and 1.0 that the comment
is hateful.

A score of 1.0 means the comment is certainly
hateful and a score of 0.0 means it
certainly is *not* hateful.

[/INST]
SCORE:

Mistral. The Mistral prompt is the same as
Llama2, except the <<SYS>> and <</SYS>> markers
are removed.

C.4 In-Context Word Recovery

For in-context word recovery, we use a single, zero-
shot prompt that includes the entire quoted paper
abstract, including the perturbed word, and then
highlight which word has been perturbed. The
prompt is constructed so that the model gives an
immediate completion with the correct spelling of
the word.

[INST]<<SYS>>
You are trying to correct a potential minor

typographical error in a single word of a
medical paper's abstract.

<</SYS>>

Please analyze the following abstract and
determine how to correct this minor error.

The potential minor typographical error is in
the word "mizbelled" in the following
abstract:

"This is where the text of the abstract would be.
It would include a single mizbelled word."

[/INST]
The word "mizbelled" should be written using the

correct spelling "

Mistral. The Mistral prompt is the same as
Llama2, except the <<SYS>> and <</SYS>> markers
are removed.

D Annotations

Annotators were solicited as volunteers through
informal communication with contacts from the
author’s lab. From our trials of the annotation envi-
ronment, we expected annotating 500 words to take
less than an hour. When soliciting for volunteers,
potential volunteers were told the task would take
“about an hour”. We did not time annotation, as
discussed in section 8.

Annotation datasets contain 9 sets of 53 ran-
domly selected words such that word length distri-
bution matches the overall dataset distribution from
4 to 12 characters. We apply each attack to one of
the subsets. Each annotator received a different
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Figure 3: Annotator Interface. Left: The instructions presented to annotators on the first sheet. Right: The
annotation sheet showing example perturbations with a column to fill out.

subset-strategy combination so that each set has
same words with different perturbations.

Finally, we include 23 identity words for a total
of 500 words per annotator. Annotator accuracy is
90.2% on the identity set. Annotator accuracies are
only comparable to settings where the models are
trained/prompted with all attacks since annotators
were not told the strategy used.

The annotation environment is a spreadsheet. On
the first sheet, annotators were presented with in-
structions that summarize the task and the environ-
ment. Alongside the task definition, 160 pertur-
bations taken from the training sets of all attack
strategies (including identity) were provided as ex-
amples. Annotators were instructed to “review the
examples”. The full instructions are on the left-
hand size of Figure 3.

Each annotator was provided with their list of
500 perturbed words in a single sheet like the right-
hand side of Figure 3.

E Finetuning Byt5

We fine-tune ByT5-base, -large and -XL with the
following settings. First, we finetune the model to
predict the input word, a setting we call identity. In
our early experiments we compared this pre-fine-
tuning with directly fine-tuning on the perturbed
datasets, and saw no material difference in perfor-
mance the validation set but faster convergence.

When finetuning on perturbed datasets, we use
a constant learning rate of 0.0001 and a batch size
of 168. but faster convergence For Byt5-large and
Byt5-XL, we use gradient accumulation to achieve

an effective batch size of 168. We implement early
stopping on validation accuracy with a patience of
8 epochs. We tried fine-tuning with a learning rate
of 0.00001, 0.00005, and 0.0001 on visual attacks
during model development. We observed no differ-
ence in accuracy on the validation set (after early
stopping), so we we used 0.0001 for all settings.

Training on an NVIDIA A6000, models con-
verge in between 1 and 10 hours, with training
time generally increasing in both dataset size and
diversity.

F Byt5 Intra-Class (Attack Level) Results

Byt5 and the annotators all exhibit similar rela-
tive performance intra-class. For instance, all three
find Zeroé Phonetic harder than PhoneE which is
harder than ANTHRO Phonetic for phonetic attacks
(Table 5). This provides assurance that differences
in model performance across strategies is a func-
tion of difficulty of the strategy. However, this
pattern does not hold for class-level attacks. Byt5
outperforms significantly on visual attacks (possi-
bly by memorizing the character substitutions from
its fine-tuning set) (Table 7).

Notably, Byt5’s superiority on visual attacks is
true of all visual attacks, even though its relative
performance on the strategies is the same as the
annotators. In-domain, Byt5 achieves 98.0% accu-
racy on the DCES attacks. It does about 20% better
than the annotators in-domain on ICES and LEGIT.
Together with the fact that Byt5 does very poorly
on all visual attacks when trained on phonetic and
typo attacks, this suggests that Byt5 is memorizing
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Train Dataset(s) PhoneE ANTHRO Zeroé All

Baselines

GNU Aspell 69.9% 84.8% 42.3% 65.8%
Annotators 74.3% 86.3% 50.0% 70.3%

ByT5-Base

Identity 4.7% 73.8% 8.2% 29.3%

PhoneE 69.6%5 71.7%O* 35.5%O 59.1%
ANTHRO 24.4%O 86.2%5 23%O 45.0%
Zeroé 38.2%O 65.9% 54.4%5 53.0%

PhoneE+ANTHRO 68.0% 82.9% 36.2%O* 62.5%
PhoneE+Zeroé 65.2% 70.1%O 53.4% 63.1%
ANTHRO+Zeroé 42.5%O* 81.7% 52.3% 59.1%

All Phonetic 61.7% 83.6% 52.6% 66.2%5

Table 5: Byt5 Phonetic Attack Recovery Perfor-
mance. Columns show test set accuracies for different
strategies of phonetic attacks.

blue5 - best accuracy for a Byt5 model. orangeO - out of
domain test setting. orangeO* - best accuracy for an out of
domain test setting.

the homoglyphs in the visual attacks. However, it is
not only executing homoglyph replacement; when
Byt5 is wrong about a visual attack, it predicts a
different English word 22.5% of the time. It is, in
effect, combining decoding with a fuzzy dictionary.

We are interested in understanding the degree to
which this attack level fine-tuning procedure leads
to generalization to attacks unseen during training,
so we repeated the class-level In-domain and Out-
of-Domain tests from the body of the paper on
Byt5 within each attack class. For instance, we
train on Zeroé Typo and test on Zeroé Noise. We
do this for all combinations of attacks intraclass.
See Table 7, Table 6, Table 5.

In this setting, Byt5 is consistent in its lack of
generalization. In-domain Byt5 always outper-
forms out-of-domain, both for single strategy or
class and multi-strategy or class training. When
only out-of-domain training is available, train-
ing Byt5 on multiple out-of-domain strategies
within class outperforms training on a single out-
of-domain strategy, with two exceptions having
similar performance (Train: PhoneE, Test: ANTHRO
and Train: LEGIT, Test: ICES). However, at the
class level, adding more out-of-domain data is not
necessarily advantageous: adding visual attacks to
typo attacks drops phonetic recovery accuracy by
5.3%.

Overall, Byt5’s performance is promising:
57.7% vs. 63.6% for annotators on our attacks,

Train Dataset(s) ANTHRO Z-Typo Z-Noise All

Baselines

GNU Aspell 38.9% 48.6% 54.2% 47.2%
Annotators 48.6% 53.3% 68.9% 56.9%

ByT5-Base

Identity 40.3% 53.8%5 39.7% 2.8%

ANTHRO 44.7%5 21.8%O 19.7%O 28.8%
Z-Typo 28.9%O 47.6% 19.1%O 31.8%
Z-Noise 23.2%O 21.7%O 64.6%5 36.4%

ANTHRO+Z-Typo 43.3% 43.3% 20.5%O* 35.6%
ANTHRO+Z-Noise 42.3% 25.5%O* 55.8% 41.2%
Z-Typo+Z-Noise 30.4%O* 45.5% 60.4% 45.5%5

All Typo 40.2% 40.7% 55.6% 45.5%5

Table 6: Byt5 Typo Attack Recovery Performance.
Columns show test set accuracies for different strategies
of phonetic attacks. Z-Typo and Z-Noise refer to Zeroé-
Typo and Zeroé-Noise, respectively.

blue5 - best accuracy for a Byt5 model. orangeO - out of
domain test setting. orangeO* - best accuracy for an out of
domain test setting.

Train Dataset(s) DCES ICES LEGIT All

Baselines

GNU Aspell 52.7% 26.6% 34.6% 37.9%
Annotators 83.0% 47.2% 60.4% 63.5%

ByT5-Base

Identity 1.3% 11.7% 6.7% 6.8%

DCES 98.0%5 12.4%O 22.5%O 44.3%
ICES 52.0%O 67.9%5 36.2%O 52.0%
LEGIT 62.7%O 40.6%O* 81.3%5 61.5%

DCES+ICES 95.6% 67.2% 36.5%O* 66.4%
DCES+LEGIT 96.8% 39.1%O 81.0% 72.3%
ICES+LEGIT 64.6%O* 67.6% 77.0% 69.7%

All Visual 93.9% 66.8% 76.4% 78.9%5

Table 7: Byt5 Visual Attack Recovery Performance.
Columns show test set accuracies for different strategies
of visual attacks. For ChatGPT, the prompt includes
examples from all the visual attacks.

blue5 - best accuracy for a Byt5 model. orangeO - out of
domain test setting. orangeO* - best accuracy for an out of
domain test setting.
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especially given byt5-base only has 580 million
parameters. However, it only achieves that per-
formance when trained on the attacks in Ad-Word.
Solving this generalization issue, intra-class and
inter-class, is an important step to using Byt5 as a
lightweight recovery model.

G Hot Statistics

Complete statistical calculations for every hypothe-
sis considered in our difference-in-difference anal-
ysis of HOT-classification perturbation response is
in Table 8. The test is a one-side T-test with the
hypothesis that the perturbation response (see Ex-
periments with Context) to visual attacks is greater
than the perturbation response to typo or phonetic
attacks. We perform this test for each HOT-class
(hateful, offensive, toxic) at each perturbation
ratio 12.5%, 25%, and 50%.



7019

Model Size Ratio Baseline HOT Class Diff-in-Diff T-stat P-value Sig. 0.05 Sig. Model Sig. All

Mistral 7B 0.125 phonetic hateful -0.04866 -12.01 9.354e-33 True True True
offensive -0.08806 -17.96 1.030e-68 True True True
toxic -0.05989 -13.21 5.567e-39 True True True

typo hateful -0.02855 -7.17 4.769e-13 True True True
offensive -0.05035 -10.66 2.325e-26 True True True
toxic -0.03449 -7.638 1.502e-14 True True True

0.25 phonetic hateful -0.04756 -11.24 5.011e-29 True True True
offensive -0.08565 -17.63 2.187e-66 True True True
toxic -0.06965 -15.03 1.793e-49 True True True

typo hateful -0.02781 -6.704 1.215e-11 True True True
offensive -0.03721 -8.254 1.160e-16 True True True
toxic -0.03929 -9.2 3.367e-2 True True True

0.5 phonetic hateful -0.04788 -11.04 4.727e-28 True True True
offensive -0.07102 -15.77 4.726e-54 True True True
toxic -0.05431 -12.93 1.679e-37 True True True

typo hateful -0.02385 -5.679 7.476e-09 True True True
offensive -0.02141 -5.149 1.396e-07 True True True
toxic -0.02102 -5.439 2.904e-08 True True True

Llama2 7B 0.125 phonetic hateful -0.007809 -2.714 3.343e-03 True False False
offensive -0.007986 -3.271 5.422e-04 True True True
toxic -0.007032 -2.508 6.104e-03 True False False

typo hateful -0.007597 -2.704 3.448e-03 True False False
offensive -0.007208 -3.035 1.215e-03 True True False
toxic -0.002191 -0.799 2.122e-01 False False False

0.25 phonetic hateful 0.000177 0.05522 5.220e-01 False False False
offensive -0.004629 -1.705 4.418e-02 True False False
toxic -0.007032 -2.224 1.310e-02 True False False

typo hateful 0.001731 0.5486 7.083e-01 False False False
offensive 0.003251 1.215 8.878e-01 False False False
toxic -0.00477 -1.582 5.692e-02 False False False

0.5 phonetic hateful 0.01198 3.376 9.996e-01 False False False
offensive 0.003852 1.275 8.989e-01 False False False
toxic 0.004912 1.443 9.255e-01 False False False

typo hateful 0.01099 3.23 9.994e-01 False False False
offensive 0.006113 2.124 9.831e-01 False False False
toxic 0.01134 3.475 9.997e-01 False False False

13B 0.125 phonetic hateful -0.01929 -6.398 9.192e-11 True True True
offensive -0.008057 -3.826 6.648e-05 True True True
toxic -0.02848 -9.724 2.632e-22 True True True

typo hateful -0.01138 -3.772 8.268e-05 True True True
offensive 0.001166 0.55 7.088e-01 False False False
toxic -0.00841 -2.782 2.716e-03 True True False

0.25 phonetic hateful -0.0164 -5.077 2.042e-07 True True True
offensive -0.005618 -2.582 4.933e-03 True False False
toxic -0.03604 -10.73 1.211e-26 True True True

typo hateful -0.002261 -0.6944 2.438e-01 False False False
offensive 0.006502 3.068 9.989e-01 False False False
toxic -0.01018 -3.034 1.216e-03 True True False

0.5 phonetic hateful -0.002014 -0.5534 2.900e-01 False False False
offensive -0.008198 -3.473 2.613e-04 True True True
toxic -0.05074 -13.64 2.381e-41 True True True

typo hateful 0.00947 2.644 9.959e-01 False False False
offensive 0.002792 1.17 8.790e-01 False False False
toxic -0.141 -0.03693 4.853e-01 False False False

Table 8: Adversarial Hot Classification Statistical Tests. Tests are a pairwise one-side T-test that visual attacks
cause a greater change in predicted score that phonetic or typo attacks. Phonetic and typo are the Baselines in the
table, and one test compares to each of them. Diff-in-Diff is the mean difference between scores in the visual and
non-visual setting. Here, we apply two different Bonferroni Corrections. Sig 0.05 is significant a p < 0.05. Sig
Model is significant applying Bonferroni Correction to p < 0.05 to all hypotheses for one model (n = 18), with
effective p < 0.00278, which is reported in the paper body. Sig All is significant applying Bonferroni Correction to
all hypotheses for all models (n = 54), with effective p < 0.000926
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