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Abstract

We study extractive question-answering in the
medical domain (Medical-EQA). This prob-
lem has two main challenges: (i) domain
specificity, as most AI models lack neces-
sary domain knowledge, and (ii) extraction-
based answering style, which restricts most
autoregressive LLMs due to potential halluci-
nations. To handle those challenges, we pro-
pose TOP-Training, a target-oriented pre-
training paradigm that stands out among all
domain adaptation techniques with two desir-
able features: (i) TOP-Training moves
one step further than popular domain-oriented
fine-tuning since it not only moves closer to
the target domain, but also familiarizes itself
with the target dataset, and (ii) it does not
assume the existence of a large set of unla-
beled instances from the target domain. Specif-
ically, for a target Medical-EQA dataset,
we extract its entities and leverage large
language models (LLMs) to generate syn-
thetic texts containing those entities; we
then demonstrate that pretraining on this syn-
thetic text data yields better performance
on the target Medical-EQA benchmarks.
Overall, our contributions are threefold: (i)
TOP-Training, a new pretraining technique
to effectively adapt LLMs to better solve a tar-
get problem, (ii) TOP-Training has a wide
application scope because it does not require
the target problem to have a large set of unla-
beled data, and (iii) our experiments highlight
the limitations of autoregressive LLMs, empha-
sizing TOP-Training as a means to unlock
the true potential of bidirectional LLMs.1

1 Introduction

The escalating volume of electronic health records
(EHR) underscores the growing significance of
information extraction (IE) from these datasets.

1Our codebase is available https:
//github.com/saptarshi059/
CDQA-v1-Targetted-PreTraining

This includes tasks like identifying the medica-
tions a patient is currently taking and uncovering
recorded drug allergies or adverse reactions. Ex-
tractive Question Answering (EQA) plays a central
role in EHR-based IE, wherein the system must
provide a relevant textual excerpt from medical
records based on a query. This is commonly re-
ferred to as Medical Extractive Question Answer-
ing (Medical-EQA) (Tian et al., 2023). The pri-
mary challenges in Medical-EQA stem from i)
limited data availability, especially expert-labeled
data; ii) the presence of rare medical terminologies,
which many AI models struggle to recognize and
interpret; and iii) privacy concerns that restrict the
unfettered use or scraping of open resources.

Despite considerable research efforts and ad-
vancements in Medical-EQA, prior work grap-
ples with two main issues: i) Some approaches rely
on the assumption of having access to extensive un-
labeled data for domain adaptation, which is often
impractical due to privacy constraints (Brown et al.,
2022); ii) The recent adoption of decoder-only gen-
erative large language models (LLMs) pre-trained
on vast datasets holds promise but suffers from hal-
lucination issues (Ji et al., 2023; Pal et al., 2023),
limiting their reliability in medical applications.
This raises critical questions: firstly, how can mod-
els be trained effectively when the target medical
dataset is severely limited, with scarce training data
and unavailable unlabeled data? Secondly, how can
we harness the rich pre-trained knowledge in LLMs
while mitigating hallucination problems?

In this study, we propose TOP-Training, a
target-oriented pretraining technique as a solution
to these challenges, addressing them from two
angles: i) For target datasets with constrained
scales, TOP-Training extracts medical entities
and prompts LLMs to generate large-scale syn-
thetic data tailored to the target domain, thereby en-
hancing the model’s comprehension of rare medical
terminologies; ii) TOP-Training reconfigures

https://github.com/saptarshi059/CDQA-v1-Targetted-PreTraining
https://github.com/saptarshi059/CDQA-v1-Targetted-PreTraining
https://github.com/saptarshi059/CDQA-v1-Targetted-PreTraining
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LLMs as bidirectional encoders to ensure output
consistency, alleviating hallucination issues. The
fundamental rationale behind TOP-Training is
to utilize the resource-limited target data as a seed,
without accessing gold outputs, and to prompt
generative LLMs to produce substantial unlabeled
data, thus bolstering extractive LLMs for improved
Medical-EQA performance.

We evaluate TOP-Training on two proto-
typical Medical-EQA datasets: COVID-QA
(Möller et al., 2020) and RadQA (Soni et al., 2022).
Our experiments reveal that: i) generative LLMs
underperform significantly on these datasets; ii)
TOP-Training achieves state-of-the-art perfor-
mance with moderate-sized synthetic data, offering
advantages over baselines that rely on billion-level
pre-trained data, often inaccessible in practical set-
tings; iii) TOP-Training demonstrates robust-
ness across different encoder-based LLMs, such
as BERT and RoBERTa, as well as varying sizes
and lengths of synthetic data. In summary, our
contributions are threefold:

• We propose a novel LLM-based synthetic data
generation approach that leverages medical
domain-specific entities to bridge knowledge be-
tween target data and synthetic data, facilitating
a pretraining stage closely aligned with the target
problem and boasting broad application poten-
tial.

• We offer insights into why generative LLMs
struggle in Medical-EQA and why extractive
LLMs are better suited for this task.

• We present a fresh perspective on domain adapta-
tion, suggesting a redefinition of "domain" to in-
corporate not only textual genre but also dataset-
specific characteristics, thereby providing a more
nuanced understanding of adaptation challenges.

2 Related Work

In this section, we discuss prior work on domain-
specific pre-training, decoder-based Foundation
Models (FM) for QA, highlighting their limitations,
and, efficient methods for Medical-EQA.

Autoregressive modelling for QA On release,
GPT-4 (Achiam et al., 2023) became the bench-
mark FM on almost all canonical NLP tasks. Re-
markably, Nori et al. (2023) showed that just by
careful prompting, GPT-4 can achieve SOTA on

various medical QA datasets. Initiatives such as
Meditron-70B (Chen et al., 2023) came next to
parallel GPT-4’s medical expertise. On closer in-
spection, however, we see that the datasets on
which these two models are applied are all multiple-
choice style. Thus, their capability of handling
EQA datasets, especially in the medical domain,
remains unexplored (cf. App. C).

Xu et al. (2021) train BART (Lewis et al., 2020a)
for span extraction by considering cross-attention
weights as start/end token probabilities to align
the generated and true spans while Mallick et al.
(2023) reframe the problem as generating numeric
indices indicating either token or sentence-level
spans. However, we see two issues, i) marginal per-
formance gains, and ii) only Mallick et al. (2023)
test a Medical-EQA dataset, that too without
much success as compared to their encoder-based
SOTA indicating their ineffectiveness. Luo et al.
(2022) show that encoders outperform decoders in
span-detection with the added advantage of being
better at out-of-domain generalization. While they
do make a case for autoregressive FMs, Liu et al.
(2024) demonstrate how newer instruction-tuned
FMs are sensitive to the location of the gold span.

Domain Specific Pre-Training Gururangan et al.
(2020) introduced DAPT (Domain-Adaptive Pre-
training) and TAPT (Task-Adaptive Pretraining),
which share similarities with our work. DAPT
involves extended pretraining on domain-specific
corpora without labels, while TAPT focuses on
pretraining on the unlabelled training set of the
downstream task. Although they demonstrate the
effectiveness of TAPT compared to DAPT, closed-
domain datasets like COVID-QA typically lack a
separate unlabelled training set and may not even
have train/dev/test splits. Further, DAPT considers
knowledge beyond what is necessary to the task
data, whereas our approach confines training to
only required concepts.

DAPT/TAPT requires high quantities of unla-
belled corpora to yield useful results, thus raising
the question: What happens when we do not have
enough “relevant” domain data, either in style or
volume? This inspires TOP-Training, which
focuses on a subset of a domain, tailor-made for
the downstream dataset, similar in motivation with
Gunasekar et al. (2023); Zhou et al. (2023), who
make use of smaller yet better quality corpora.

Efficient Methods in Medical-EQA We iden-
tify seven relevant works on COVID-QA. First off,
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Figure 1: TOP-Training. First, we extract relevant entities from the target dataset to generate our synthetic pre-
training corpora. Next, we train an open-domain model on this corpus followed by two rounds of EQA fine-tuning,
i.e., first on an open-domain dataset to learn what EQA is as a task and then on the target Medical-EQA dataset.

Haddouche et al. (2023) perform a simple evalu-
ation of BERT and RoBERTa and achieve scores
similar to ours, thus serving as a sanity check. Za-
far et al. (2024a,b); Poerner et al. (2020) incor-
porate medical information either via knowledge
graphs or training external embeddings on biomed-
ical corpora ranging from 2 to 94 GB. While the
former method is ineffective (as showcased by the
results), the latter uses much more resources than
our method and is still inferior to us. Levy et al.
(2021) create a pipeline to provide high-quality
references for user queries and shows strong perfor-
mance on COVID-QA. However, there is a caveat
to these results. Apart from Poerner et al. (2020),
Zafar et al. (2024a,b); Levy et al. (2021) all use a
subset of COVID-QA. Samuel et al. (2023) train
on synthetic data from GPT-4 but show weak over-
all performance as GPT might be unable to create
text in the style of COVID-QA. Finally, Seo et al.
(2024) generates training data by retrieving sam-
ples from a related dataset and prompting an LLM
using the original and retrieved data. Although
they use fewer samples than us, they generate ques-
tions, contexts and answers while we only generate
contexts leading to an overall simpler framework
capable of outperforming theirs.

For RadQA, we identify three relevant papers.
Ghosh et al. (2023) train RadLing, an ELECTRA
(Clark et al., 2020) model on a collection of 500K
radiology reports which we outperform using far
less data (c.f. Table 2). Hernandez et al. (2023) con-
duct a comprehensive analysis of clinical FMs in

the radiology domain and show SOTA performance
by BioClinicalRoBERTa (Lewis et al., 2020b) once
more reinforcing encoder models superiority to
causal models for EQA. Finally, Lu et al. (2024)
propose a method to encode input text once and
have it be shared across each decoder prompt and
apply their method to RadQA to obtain similar EM
as the best T5 model shown in Hernandez et al.
(2023). Both Lu et al. (2024) and Hernandez et al.
(2023) show strong performance using Clinical-
T5LARGE which uses much more data and is a larger
model than ours. Despite this, we show how com-
petitive our method is at a fraction of the cost.

3 Formulation of Medical-EQA

Each labelled data point consists of three elements,
I) CONTEXT (C): A piece of text in the medical
domain that introduces the necessary information
about a topic; II) QUESTION (Q): A question sen-
tence acquiring the information from CONTEXT. It
can be answerable or unanswerable and III) AN-
SWER (A): A consecutive span in CONTEXT that
acts as the answer of QUESTION.

Typical datasets for Medical-EQA are split
into train, test and optional dev sets. There are
two main challenges for Medical-EQA i) do-
main specificity; most AI models lack the necessary
knowledge; ii) extraction-based answering style,
which restricts most autoregressive LLMs due to
hallucination concerns. These challenges motivate
us to propose TOP-Training accompanied with
bi-directional LLMs for this particular problem.
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4 TOP-Training

TOP-Training, shown in Figure 1, first extracts
entities from the target Medical-EQA dataset,
then leverages an existing LLM to generate entity-
related CONTEXT (Section 4.1), which acts as the
data for further tuning a bi-directional LLM for the
target problem (Section 4.2).

4.1 LLM generates target-oriented CONTEXT

Entity collection from the target problem. In
this work, we use entities in the target dataset as
the connection between it with the newly gener-
ated synthetic data. To extract entities from the
target EQA dataset, first, we combine all the QUES-
TIONS and CONTEXTS from the train split of the
Medical-EQA dataset. Next, we extract en-
tities through Named Entity Recognition (NER)
using spaCy2. This step identifies roughly 47k
and 11k entities in COVID-QA and RadQA. These
entities are aligned with the medical space such
as DC-SIGNR, MTCT, C-terminal domain,
etc. which are quite different from general-domain
entities (person/place/thing) such as New York,
John Doe, etc.

Synthetic CONTEXT generation. Next, we cre-
ate prompts for the identified entities to generate
CONTEXTS mimicking the target datasets. This
required studying the characteristics of the target
datasets such as the text genre (full research articles
in COVID-QA and radiology reports in RadQA),
lengths, and relevant keywords. Galactica (Taylor
et al., 2022), a generative LLM pre-trained on a
collection of text encompassing research articles,
knowledge bases, code and LATEX markup, is used
to generate our synthetic data3. We choose Galac-
tica over other LLMs for two reasons, a) It pos-
sesses a built-in ability to generate research paper-
like content (see 4.1) b) Galactica is a general-
purpose science model that allows future work to
extend our framework to domains beyond biomedi-
cal.

The prompts used to generate aligned data 4 for
each dataset are described below.

• Prompt for COVID-QA. Since COVID-QA
comprises research papers, based on this char-
acteristic, we develop the following prompt for

2With “en_core_sci_sm” (https://allenai.
github.io/scispacy/).

3Other generative models such as BLOOM (Scao et al.,
2022) and PubMedGPT performed worse in our experiments.

4See Appendix. B

Galactica to generate pseudo-research articles
based on retrieved entities. Note, Title is the
prompt handle/keyword and entity is the entity
identified in the above stage.

Title : Entity

• Prompt for RadQA. RadQA’s CONTEXTS

are redacted radiology reports without any consis-
tent format (Hartung et al., 2020). The Findings
and Impressions sections are the most vital in a
patient’s report (akin to the experiment and results
section in a research paper). Inspired, we propose
the following prompt:

Patient has Entity . FINDINGS

AND IMPRESSION :

It is worth noting that Galactica had not been
trained on radiology reports. Through this
prompt, we synthesize pseudo-reports bypass-
ing any privacy concerns. To maintain size parity
between the two target datasets, five CONTEXTS

are generated for each entity identified in RadQA,
yielding around 55k (11k*5) total CONTEXTS, and
one CONTEXT for each identified entity in COVID-
QA, resulting a set of size 47K.

4.2 System pre-training on synthetic data

After generating CONTEXTS for each target data,
we perform TOP-Training i.e., extended pre-
training of BERT/RoBERTa on our generated cor-
pus. In addition, TOP-Training is followed
by two rounds of fine-tuning where a) the model
will first be fine-tuned on the SQuAD dataset (Ra-
jpurkar et al., 2016, 2018) to learn what EQA is in
a general domain and b) it is further fine-tuned on
the train of each target data (either COVID-QA or
RadQA), to solve the test.

5 Experiments

We focus on two datasets: COVID-QA, compris-
ing 2,019 answerable QA pairs (no train/dev/test
splits) sourced from CORD-19 (Wang et al., 2020),
and RadQA, consisting of 6,148 QA pairs from
radiology reports, with a train/dev/test split of
4,878/656/614. We experiment in two areas: base-
lines and TOP-Training, and provide mean and
standard deviation scores over three random seeds.

https://allenai.github.io/scispacy/
https://allenai.github.io/scispacy/
https://github.com/stanford-crfm/BioMedLM
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5.1 Baselines & influencing factors

Apart from comparison with existing works (c.f.
2), we consider 13 encoder models in total taking
into account which model made the most sense to
apply to either dataset. On COVID-QA, we applied
models from checkpoints fine-tuned on SQuAD v1
(Rajpurkar et al., 2016) while RadQA, containing
unanswerable questions, was tackled with those
fine-tuned on SQuAD v2 (Rajpurkar et al., 2018).
We begin with SQuAD-trained checkpoints as it
has been shown (Soni et al., 2022; Castelli et al.,
2020) that models benefit from a first round of train-
ing on SQuAD. For consistency, we use the cased,
base version of each architecture when available.
We use five-fold cross-validation for fine-tuning
and report the results in Table 1 (COVID-QA).
Results of models applied to the prescribed splits
(RadQA) are presented in Table 2. The metrics
used are exact match (EM), a binary measure of
whether the prediction and gold-standard spans are
identical and F1, the harmonic mean of the number
of shared words in the two spans with respect to
the number of words in the prediction (precision)
and with respect to the number of words in the
gold-standard span (recall).

We use Galactica-1.3B for consistency with our
corpus generation experiments, MedLLaMA(13B)
and MedAlpaca(13B) as strong open-source
medical checkpoints. We measure the ability of
the three decoder models to generate answers
without fine-tuning, considering that decoders
do not extract spans, but generate answers, for
comparison to the gold-standard spans. Following
Yue et al. (2021), each sample is formatted as,

Question:<question_text>
Context:<part_of_context>
Answer:

Due to the large size of COVID-QA contexts,
they were segmented as they exceeded the maxi-
mum sequence length of each model (2,048 tokens).
We report overall EM/F1 on each dataset and aver-
age best EM/F1 (parenthesis in Table 1) from each
Q+C+A chunk for COVID-QA (N/A for RadQA
since the context size was much smaller than the
models’ maximum input length).

Corpus Size. We investigated the impact of syn-
thetic dataset size on downstream performance in
COVID-QA. We examined the effects of generat-
ing one and 10 contexts per entity.

Context Length. The average context length for
COVID-QA is 6K tokens, and Galactica has a max-
imum window of 2K, resulting in a misalignment
between the synthetic corpus and the target dataset.
We cannot increase the context size of Galactica.
Training it from scratch with architectural changes
is infeasible for us. Thus, we explore the impact of
sequence length in the synthetic corpus by limiting
the records to only 1k tokens. We cannot determine
if longer sequences are beneficial; we can see if
shorter ones are detrimental.

Prompting Style. We explore the use of two dif-
ferent prompts when encouraging Galactica to gen-
erate pseudo radiology reports - as defined in sec-
tion 4.1 which we call Fancy prompt and Normal
prompt as simply “[entity]”.

Human-Generated Contexts. We establish a
Wikipedia baseline alongside our domain-specific
models to assess the influence of content and text
structure during domain adaptation. Additionally,
Micallef et al. (2022) have shown that mBERTu
Wiki, pre-trained on Maltese Wikipedia data, sur-
passed the performance of mBERT, thereby prov-
ing to be a competitive baseline. For each entity,
we query Wikipedia and retrieve the complete page
associated with the top search result. The num-
ber of entities available for this baseline is much
smaller than that in our approach since most of
the entities do not exist in Wikipedia due to ei-
ther being extremely esoteric, e.g., pulmonary
parenchymal infiltrate or improperly
formed, e.g., Bao &.

6 Results & Discussion

Results for COVID-QA and RadQA are presented
in Table 1 and 2. Each table is organized as
scores from related work, our benchmarks and
TOP-Training. The last 3 rows of the bench-
mark section provide the zero-shot performance
of our chosen decoder models on each dataset.
We do not perform multiple trials here as the ex-
tremely poor performance would not benefit from
additional runs. Overall, we see that MedAlpaca
is the best among the three for RadQA and only
marginally poorer in terms of F1 for COVID-QA.
On COVID-QA, no model generates text w.r.t the
gold standard and only shows positive F1.

6.1 COVID-QA
We now discuss the results of the benchmarking
trials on COVID-QA contrasting the methods.
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Approach/Model Training Corpus Corpus Size Time# EM F1

R
el

at
ed

W
or

k
Haddouche et al.
(2023)

N/A N/A N/A

38.61 64.87

Möller et al. (2020) 25.9 59.53
Levy et al. (2021) 39.16 72.03
Poerner et al. (2020) 34.62 60.23
Zafar et al. (2024a) 31.92 59.57
Zafar et al. (2024b) 35.3 58.64
Samuel et al. (2023) 31.9 58.66
Seo et al. (2024) - 67.95* (68.36)

O
ur

B
en

ch
m

ar
ks

BioBERT PubMed 4.5B words

N/A

37.62± 0.18 65.73± 0.35
SciBERT Semantic Scholar 3.2B words 37.52± 0.23 65.58± 0.18

+CORD-19 + CORD-19 3.2B words + 20GB 35.61± 0.30 63.60± 0.59
PubMedBERT PubMed 3.1B words / 21GB 39.87± 0.74 68.47± 0.13
BlueBERT 1 PubMed + MIMIC 4.5B words 27.35± 0.30 52.18± 0.40
CODER 2 UMLS N/A 39.33± 0.47 67.01± 0.30
Longformer 3 General Domain 6.5B tokens 37.79± 0.39 66.58± 0.22
BigBird 4 General Domain 160GB 32.79± 0.13 60.06± 0.41
LUKE 5 Wikipedia 3.5B words 41.01± 0.30 68.23± 0.19
XLNET General Domain 32.89B words 2.45± 0.08 8.64± 0.19
Galactica c.f. section 4 106B tokens 0 (0) 5.01 (11.11)
MedLLaMA Medical Corpora N/A 0 (0) 5.81 (12.79)
MedAlpaca Medical Meadow N/A 0.03 (0.2) 5.21 (12.73)

Pr
op

os
ed

M
et

ho
d

BERT
Vanilla Fine-Tuning N/A N/A

33.62± 0.59 60.01± 0.36
RoBERTa 38.89± 0.52 67.44± 0.47

BERT
Wikipedia 139.6 MB ≈ 2.5 hrs

33.95± 0.13 60.76± 0.78
RoBERTa 40.33± 0.60 68.30± 0.54

BERT
Gal(47k) 67.4 MB ≈ 6.5 hrs

34.97± 0.18 62.11± 0.32
RoBERTa 41.51 ± 0.48 69.10 ± 0.27

BERT
Gal(470k) [10x] 558.2 MB ≈ 2.5 days

36.39 ± 0.27 63.84 ± 1.16
RoBERTa 41.31± 0.22 68.84± 0.28

BERT
Gal(25k*2 = 50k)♣ 64.0 MB ≈ 6.5 hrs

35.03± 0.38 62.14± 0.48
RoBERTa 41.36± 0.35 69.00± 0.52

BERT
Gal(47k)♠ 44.8 MB ≈ 2.5 hrs

34.90± 0.14 62.02± 0.95
RoBERTa 41.57± 0.33 68.98± 0.31

Existing Best 41.01 (LUKE) 67.95* (68.36) ((Seo et al., 2024))
Our Best 41.51 69.10

Table 1: Results for COVID-QA. Top: Scores from Existing Works. *: Seo et al. (2024) claims this score as
statistically significant. | Middle: Our Benchmarks. 1Peng et al. (2019); 2Yuan et al. (2022); 3Beltagy et al. (2020);
4Zaheer et al. (2020); 5Yamada et al. (2020); Blue = best/red = worst scores overall; bold = best decoder | Bottom:
Scores from TOP-Training. Time#: Time to generate the corpus; ♣: entity filter; ♠: maximum context length =
1k tokens; Gal = Galactica; Blue = best/red = worst scores overall; bold = best BERT/RoBERTa setup.

6.1.1 Baselines

Our experiments demonstrate that a one-size-fits-
all approach does not work always for domain adap-
tation. BioBERT and PubMedBERT were trained
on similar corpora and yet scored in the same range,
indicating no clear winner. PubMedBERT which
is trained from scratch using a custom vocabulary
covering a range of medical jargon performs better.

SciBERT (+CORD-19), trained on CORD-19 ar-
ticles, performs worse than regular SciBERT, sug-
gesting potential issues in training choices or noisi-
ness in the data. Notably, LUKE, trained solely on
Wikipedia data, emerges as the best baseline model,
possibly due to its entity-recognition pre-training
objective, which aids in identifying relevant en-
tities for QA tasks (van Aken et al., 2019) and
highlighting the need for entity representations in

closed domains. Models capable of handling longer
context, i.e., Longformer, BigBird and XLNet do
not show marked improvements. XLNet degrades
completely on COVID-QA potentially due to token
permutation hindering its reasoning across large
and conceptually dense contexts.

Concerning prior work, we analyze Poerner et al.
(2020) and Seo et al. (2024) as these are the only
two directly comparable works. Poerner et al.
(2020) equips BERT with Word2Vec embeddings
trained on corpora ranging from 2-94 GB whereas
we use a 67.4 MB corpus and obtain slightly better
EM and ∼3% more F1 (BERT: proposed method,
row 3, Table 1). Additionally, RoBERTa with
TOP-Training shows 1.7% more F1 (proposed
method, row 3, Table 1) compared to Seo et al.
(2024) who use a much larger model (T5) for their
approach. Both instances show the resource bene-

https://github.com/kbressem/medAlpaca/blob/main/DATA_DESCRIPTION.md#medical-meadow
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fits coming from TOP-Training.

6.1.2 TOP-Training

Wiki Baseline: Fine-Tuning BERT on Wikipedia
yields marginal improvement of 0.9% EM and
1.2% F1; RoBERTa shows a 3.7% increase in EM
and a 1.3% increase in F1. Our Wikipedia corpus,
while small, contains relevant information about
COVID literature, which in turn aids in answering
related questions.

47k corpus: With TOP-Training, BERT
achieves a 4.01% increase in EM and a 3.5% in-
crease in F1, while RoBERTa shows a 6.7% in-
crease in EM and a 2.5% increase in F1, setting a
new SOTA on COVID-QA. RoBERTa even out-
performs the previous SOTA model (LUKE) by
1.2% in EM and 1.3% in F1, despite using a train-
ing corpus significantly smaller (67.4 MB/0.032B
words) than LUKE’s 3.5B-word corpus (0.9% of
the size). Moreover, any variation of our approach,
ablation or otherwise, improves performance for
both models over the Wikipedia baseline. These
results indicate that our models benefit from addi-
tional training on corpora aligned with entity infor-
mation from the downstream dataset.

470k [10x] corpus: Training with a 10x cor-
pus (10 contexts per entity) led to the most im-
provements for BERT with EM increasing by 8.2%
and F1 by 6.4%. This is consistent with Liu et al.
(2019) who argue that BERT was significantly
under-trained. Though this improvement does not
achieve RoBERTa performance, it demonstrates the
scalability of our approach. RoBERTa improves
too, but not as much as when using the base 47k
corpus as compared to BERT, which, being under-
trained, is more malleable to learning new concepts
while RoBERTa seems to have hit its ceiling for
learning in this domain.

Filtration - 50k corpus: Surprisingly, on re-
moving ill-formed entities (proposed method, row
5, Table 1) the performance declined with respect
to the best BERT (proposed method, 10x corpus -
row 4) and best RoBERTa (proposed method, base
47k corpus - row 3) model. We attribute this to our
regex rules which mistakenly (as they cannot distin-
guish between true/false patterns) removed entities
relevant to research articles such as author names
or URLs, leading to the decline in performance.

Reduced context length - 47k (at most 1k con-
text tokens) corpus: Galactica can process at most
2048 input tokens which meant that we could not
generate text beyond this limit. Instead, we wanted

to see if a lower number of tokens, i.e., smaller
context size impacted performance (last row of the
proposed method, Table 1). Inevitably, both mod-
els perform worse on both metrics as Galactica
is unable to generate content matching the style
of COVID-QA contexts, underscoring the impor-
tance of domain-aware writing styles for adaptation
pipelines.

6.2 RadQA

Results on RadQA are presented for both its vali-
dation and test splits. We consider various combi-
nations of contexts (prompts) and entity filtration.
Despite finding no information leakage, higher test
scores on average are observed as compared to
validation scores, which we attribute to fewer unan-
swerable questions in the test set (154 vs. 231) and
slightly shorter contexts (73.82 vs. 78.1 tokens).
As such, while we report scores for both, we mainly
focus our analysis on the validation set.

6.2.1 Baselines
On the RadQA benchmark dev set, CODER,
a PubMEDBERT checkpoint, has the best EM
and F1 but suffers slightly v/s PubMedBERT on
only answerable questions presumably because
CODER learned clinical embeddings from the
UMLS knowledge graph with radiology terms.

Surprisingly, PubMed/Blue-BERT performed
similarly on both the dev and test sets. Theoret-
ically, BlueBERT should have performed better
being pre-trained on MIMIC clinical notes. Rad-
BERT, which is a superior RoBERTa architecture,
and specifically trained on radiology reports did
not perform well overall. Although it marginally
improved over PubMed/Blue-BERT, it comes at
the cost of a fraction of the training data. This
again indicates the importance of proper domain
alignment, i.e., what data the models are trained
on.

Unfortunately, LUKE performed poorly as com-
pared to Bio/Sci-BERT, showing little, v/s both on
dev, to no gain, v/s SciBERT on test, during evalu-
ation. The impact of writing styles in the training
corpora is evident in the performance gap between
Clinical/Rad-BERT. While the former was trained
on more clinical data, it was not the right type of
data, i.e., radiology reports, leading RadBERT to
outperform it on both splits.

Contrasting TOP-Training with prior work,
we see that by using our corpus with fancy prompts
on unfiltered entities (proposed method, row 5, Ta-
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Model Train Dataset / Corpus Size Time# Dev Test
EM F1 H(EM) H(F1) EM F1 H(EM) H(F1)

R
el

at
ed

W
or

k Ghosh et al. (2023)

N/A N/A

– 62.55
Lu et al. (2024) 54.6 –
Hernandez et al. (2023) 55.0 74.5
Lewis et al. (2020b) 60.4 75.9
TOP-Training (best) 52.39 65.57

O
ur

B
en

ch
m

ar
ks

BioBERT PubMed/4.5B words

N/A

26.42± 0.49 44.26± 0.09 40.79± 0.76 68.31± 0.14 49.95± 1.08 63.32± 0.40 45.65± 1.21 63.50± 0.57

SciBERT Semantic Scholar/3.2B words 27.03± 0.32 44.40± 0.06 41.65± 0.62 68.45± 0.22 53.04± 0.38 67.17± 0.73 48.62± 0.70 67.49± 1.02

PubMedBERT PubMed/3.1B words(21GB) 31.45± 0.17 47.89± 0.46 48.40± 0.27 73.77± 0.62 54.07± 0.71 68.76± 0.22 49.49± 0.87 69.09± 0.80

BlueBERT PubMed + MIMIC/4.5B words 30.08± 1.33 47.14± 0.81 46.12± 2.01 73.44± 2.78 54.99± 1.91 68.11± 1.41 48.55± 1.66 66.06± 1.40

CODER UMLS/N/A 40.50± 1.31 57.32± 1.74 47.37± 1.70 73.34± 1.29 53.74± 0.71 68.36± 0.36 49.86± 0.50 69.36± 1.00

LUKE Wikipedia/3.5B words 27.44± 0.70 44.77± 0.40 42.35± 1.08 69.10± 0.62 50.92± 1.26 64.47± 1.75 46.16± 0.25 64.25± 1.28

RadBERT1 Radiology reports/2.6 GB 30.34± 1.50 48.00± 1.43 45.73± 0.68 73.00± 0.73 54.40± 2.84 67.34± 1.74 51.52± 0.87 68.80± 0.80

ClinicalBERT2 MIMIC/0.5B words(3.7GB) 27.18± 1.89 44.69± 0.54 41.88± 2.86 68.90± 0.71 50.27± 1.63 63.40± 1.52 46.89± 0.13 64.41± 0.16

BioMed-RoBERTa3 S2ORC/7.55B tokens(47GB) 27.44± 1.10 45.44± 0.64 42.35± 1.70 70.14± 0.99 52.82± 0.57 66.52± 0.32 48.62± 0.33 66.91± 0.82

Galactica c.f. section 4/106B tokens 1.37 8.5 1.37 8.5 0.49 10.23 0.49 10.23
MedLLaMA Medical Corpora/ N/A 0.3 10.63 0.3 10.63 0.16 12.14 0.16 12.14
MedAlpaca Medical Meadow/ N/A 1.68 15.18 1.68 15.18 1.3 16.95 1.3 16.95

Pr
op

os
ed

M
et

ho
d

BERT N/A* N/A 23.83± 0.49 42.91± 0.46 36.79± 0.76 66.23± 0.70 46.20± 1.96 59.42± 1.10 40.65± 1.15 58.30± 0.74

RoBERTa 26.12± 0.69 43.83± 0.44 40.31± 1.06 67.65± 0.68 51.68± 0.73 64.94± 0.62 46.45± 0.66 64.14± 0.42

BERT Wikipedia/18.4 MB ≈30 mins 24.49± 0.38 42.62± 0.08 37.80± 0.59 65.79± 0.13 47.40± 1.85 60.11± 1.59 41.95± 1.73 58.92± 1.56

RoBERTa 27.19± 0.32 44.49± 0.31 41.96± 0.49 68.68± 0.47 50.54± 0.62 63.43± 0.75 45.72± 0.50 62.92± 0.67

BERT Gal(≈55k) †/ 81.6 MB ≈11 hrs 24.70± 0.46 42.88± 0.30 38.12± 0.71 66.19± 0.46 46.74± 1.84 59.69± 0.62 41.60± 2.31 58.88± 1.64

RoBERTa 27.09± 0.70 44.42± 0.55 41.81± 1.09 68.56± 0.86 51.25± 0.41 64.41± 0.95 46.45± 0.66 64.01± 0.71

BERT Gal(≈55k) †♣/ 80.3 MB ≈11 hrs 25.51± 0.38 43.11± 0.23 40.38± 2.31 64.76± 2.75 46.36± 1.79 59.41± 1.67 46.59± 8.06 57.83± 1.81

RoBERTa 27.69± 0.23 45.16± 0.35 42.74± 0.36 69.70± 0.54 51.14± 0.49 64.29± 0.38 46.31± 1.36 63.85± 0.76

BERT Gal(≈55k) ‡/ 38.1 MB ≈11 hrs 25.10± 0.32 42.78± 0.55 38.74± 0.49 66.03± 0.84 46.85± 1.74 59.54± 1.19 41.66± 0.45 58.60± 0.37

RoBERTa 27.64± 0.49 44.99± 0.11 42.67± 0.76 69.45± 0.16 52.39± 0.80 65.57± 0.93 47.76± 1.85 65.34± 1.97

BERT Gal(≈55k) ‡♣/ 34.3 MB ≈11 hrs 25.76 ± 0.66 43.10 ± 0.27 39.68 ± 1.11 66.44 ± 0.55 46.52± 1.20 58.98± 1.09 40.44± 0.95 57.06± 0.94

RoBERTa 27.08± 0.46 44.67± 0.23 41.81± 0.72 68.95± 0.35 51.30± 1.17 64.14± 0.41 47.39± 1.64 64.53± 0.85

BERT Gal(≈100k) †‡/ 120.8 MB ≈22 hrs 25.10± 0.54 42.74± 0.06 38.74± 0.83 65.97± 0.09 47.07± 1.23 60.04± 1.19 42.46± 0.13 59.78± 0.41

RoBERTa 27.49± 0.49 44.82± 0.38 42.43± 0.75 69.17± 0.58 51.79± 1.98 64.99± 1.80 47.03± 1.45 64.45± 1.21

BERT Gal(≈100k) † ‡ ♣/ 115.6 MB ≈22 hrs 24.75± 0.23 42.96± 0.10 38.20± 0.36 66.31± 0.16 47.50± 1.06 60.38± 0.48 41.96± 1.31 59.14± 1.97

RoBERTa 27.85 ± 0.09 45.16 ± 0.11 42.98 ± 0.14 69.71 ± 0.18 51.79± 0.59 64.77± 0.40 46.88± 1.28 64.21± 0.75

Table 2: Results for RadQA. Top: Comparison with Existing Works. | Middle: Our Baselines. H(F1)/H(EM):
Has_F1/Has_EM i.e F1/EM for answerable questions; Blue = best/red = worst scores overall; bold = best decoder |
Bottom: TOP-Training Results. *: [Vanilla Fine-Tuning]. [†: normal, ‡: fancy] prompt, ♣: entity filter. Time#:
Time to generate the corpus. Gal = Galactica; Blue = best/red = worst overall; bold = best BERT/RoBERTa setup.

ble 2), RoBERTa outperforms RadLing (Ghosh
et al., 2023) in test F1 by 4.8%, the latter using a
much larger corpus of radiology reports. Although
we are unable to reach SOTA on RadQA, our best
RoBERTa, on the test set (proposed method, row
5, Table 2) comes within 2 points absolute EM
of Clinical-T5LARGE (Lu et al., 2024) which again
shows the competitiveness of our proposed method
as all our models are BASE versions.

6.2.2 TOP-Training

Wiki Baseline: Training on the Wikipedia cor-
pus, BERT shows an increase in EM only (2.8%)
on the dev set, but an overall improvement in all
measures on the test set compared to vanilla fine-
tuning. RoBERTa showed overall improvement on
the dev set while test scores suffered compared to
the vanilla baseline.

Normal Prompting: Training on the unfiltered
corpus with normal prompts (proposed method,
row 3, Table 2) improved BERT and RoBERTa
3.7% EM, and 1.4% F1 for RoBERTa, over the
vanilla baseline, which is greater than that of our
Wiki baseline. However, when the filter is applied
(proposed method, row 4, Table 2) BERT shows

∼7% EM & 0.5% F1 increase while RoBERTa
shows 6̃% EM & 3̃% F1 increase over regular fine-
tuning indicating the benefits of data filtration.

Best BERT setting: When both filtered entities
and the corpus from the fancy prompt are used
(proposed method, row 6, Table 2), improvements
over basic fine-tuning (8.1% EM, 0.4% F1 on dev)
and the Wikipedia baseline (5.2% EM, 1.1%F1 on
dev) occur. Note: a) the benefit of studying RadQA
and designing targeted prompts, and b) that BERT
reaches these scores with a modest 34.3 MB corpus,
much smaller than the benchmarked models.

Best RoBERTa setting: RoBERTa demon-
strates improvements across different combinations
of filtration methods, prompt styles and using the
Wikipedia corpus. However, the improvements are
inconsistent with respect to a specific approach.
Excluding the combined corpora settings, we see it
achieve the best performance, on validation, using
the corpus obtained from the filtered entities and
normal prompting (proposed method, row 4, Ta-
ble 2) and on the test, using unfiltered entities and
fancy prompting (proposed method, row 5, Table
2).

https://github.com/kbressem/medAlpaca/blob/main/DATA_DESCRIPTION.md#medical-meadow
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RoBERTa v/s Benchmarks: In row 4 (pro-
posed method) of Table 2, RoBERTa, outperforms
Bio/Sci-BERT and LUKE on all metrics along with
long-context models BigBird and Longformer. In-
terestingly, RoBERTa even beats BioClinicalBERT
by 1.9% EM and 1.1% F1, which was trained using
much higher quality clinical notes.

Combined Prompting Styles: Here, we merge
the contexts from both prompt styles (proposed
method, rows 7 and 8, Table 2) for the filtered
and the unfiltered entities separately. BERT shows
better performance in row 7 i.e. using the unfiltered
corpus (1.7% EM increase over the filtered variant
and roughly the same F1) and RoBERTa in row 8
i.e. using the filtered corpus (1.3% EM and 0.8%F1
over the unfiltered variant). Overall, this version
of RoBERTa resulted in our best overall model on
the validation data suggesting that incorporating a
mixture of prompt styles will create more diverse
corpora, enhancing domain alignment.

6.3 Investigating Information Leakage

Figure 2: Information Leakage Validation Trials (Left
- EM | Right - F1): RoBERTa (ours) was trained on a
subset of the 47k corpus with entities only from the 80%
train set. All of the models were fine-tuned in the usual
manner i.e. SQuAD→COVID-QA (80% train set) and
evaluated on the 20% test set.

Given that the synthetic corpus generated for
COVID-QA in §5 contains entities identified in the
entire COVID-QA dataset - not from the train split
within each fold - we explore if the performance
gains from TOP-Training are a result of infor-
mation leak. To this end, we construct a roughly
80%/20% train/test split (1,676/343 records), en-
suring no context overlap, and apply a suite of
models to this new split. When applying our
TOP-Training, a synthetic corpus is generated
only from entities identified in the train split.

RoBERTa subjected to TOP-Training still
yields strong performance in this restricted sce-
nario, only surpassed by PubMedBERT (and
marginally by LUKE in EM) (Fig. 2) demonstrat-
ing that the improved performance on COVID-QA
cannot be attributed to information leak from the

test set. Although the scores are lower than Table 1,
the relative scores produced by each model lead to
a similar conclusion that TOP-Training yields
optimal results.

7 Conclusion

We introduce TOP-Training, an innovative pre-
training solution to enhance the alignment of an
LLM with rare-domain target problems. The dis-
tinctive feature of TOP-Training lies in its
automated synthesis of target-oriented data with
the assistance of an LLM. Our experiments on
Medical-EQA demonstrate the effectiveness of
TOP-Training, shedding light on the limita-
tions of widely used autoregressive LLMs.

Limitations

We recognize that hallucination is still a concern
with our method i.e. we do not provide a way to
alleviate it. This is one area which our future work
will focus on, i.e., developing ways to detect and
remove hallucinated text from the generated corpus.
In our analysis, we do not examine the quality of
the generated corpora and only rely on final task
performance as an indicator of how good our gen-
erated corpus is. While we recognize the insights
that we can gain from this analysis are interest-
ing, we do not believe that its absence seriously
undermines the proposed pipeline.

Ethics Statement

As our work relied on publicly available datasets,
we believe that the ethical ramifications here are
limited. That being said, we recognize that to use
RadQA, we had to acquire certifications to access
it. This shows that even though the data in it is
redacted, loosely disseminated patient reports are a
threat to privacy. Moreover, we had to make sure
that when generating our synthetic reports, we did
not mention any patient names which even with
a small probability might bear resemblance to an
actual person.
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A Token Filtering

We performed entity filtering as a common abla-
tion technique for both datasets. We used regular
expressions to remove entities with special charac-
ters such as *, !, etc., as well as specific text pat-
terns like https* and baby. We implemented
a length-based filter, retaining only entities longer
than a certain number of characters. Additionally,
for COVID-QA, we applied a second round of fil-
tration using TF-IDF, considering the questions +
context as the corpus and retaining the top 25k en-
tities with the highest IDF scores. However, as
this approach did not lead to substantial gains, we
decided not to use it for RadQA. Due to the large
number of possible combinations, we did not ex-
tensively explore these settings in our experiments.

B Synthetic Corpora Samples

We provide samples from our generated corpus.
In Figure 3 we show two positive results for our
COVID-QA-directed corpus. The top one is in
the style of a research paper while the bottom one,
though shorter in length, details useful information
on the required entity. We show negative examples
of the same in Figure 4. The top one completely
degrades into noise while the bottom one although
coherent is talking about an unrelated topic.

For RadQA, we show similar examples. In Fig-
ure 5 we show positive (top) and negative (bottom)
samples from normal prompting. Note that since
programming languages were a part of Galactica’s
training corpora, it sometimes generates the same
during prompting. Finally, Figure 6 shows posi-
tive (top) and negative (bottom) examples of fancy
prompting. While the positive sample shows a
strong correlation with an actual radiology report,
the bottom one completely breaks down.

C ChatGPT trials

We were curious to see if ChatGPT (with GPT3.5)
would be able to answer a few questions from
COVID-QA. Only the questions were provided to
it without the context since they were much longer
than its input capacity. We did not test RadQA
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Figure 3: COVID-QA positive examples (underline = entity | red = prompt) | olive = generation
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Figure 4: COVID-QA negative examples (underline = entity | red = prompt) | olive = generation
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Figure 5: RadQA - normal prompt (underline = entity | red = prompt) | olive = generation
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Figure 6: RadQA - fancy prompt (underline = entity | red = prompt) | olive = generation

Figure 7: Testing ChatGPT
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since its questions were heavily linked to the pa-
tient report on hand and were not as general as
the former’s. Figure 7 shows a few examples from
our trials. As we can see, it seems to answer the
questions correctly. However, as mentioned before,
these answers need validation from a professional
in the field. Also, we see that sometimes it cannot
answer questions on topics not found in its training
data, a problem not faced by our encoder models
which rely only on the provided context.

D Hardware Details

To run our corpus generation code, we used a total
of 8 40GB NVIDIA A100 or 8 32GB NVIDIA
Tesla V100 cards, depending on our institute’s job
scheduler and availability. Although the former
is a superior card, we preferred the latter since it
gives a relatively quick turnaround and is a general-
purpose GPU, unlike the A100 which is required
for even heavier computing. We were requested by
our system administrator to use the V100 over the
A100, if it was possible, to avoid blocking off even
more compute-heavy experiments, which we did
not have an issue obeying. That being said, if the
A100 cluster was free, we did take advantage of it
to run our code. For pre-training and fine-tuning
BERT/RoBERTa, we used only 1 A100 80GB GPU
as RoBERTa was unable to fit on the 40/32 GB
cards owing to the large batch size.

E Prompts Tried

As mentioned before, we knew the prompt to be
used for COVID-QA since it was a feature of Galac-
tica. However, we had to experiment with a few
prompt styles for RadQA before landing on our
final one. We describe the prompts we tried below
for the entity small-bowel injury and the
reasons for not using them. The text in courier
is the prompt and in italics is the generated text.

• IMPRESSION: small-bowel injury
(SBI) was defined as injury to the small bowel
wall, or transmural disruption of the bowel
wall, in the absence of penetrating abdominal
trauma ( The management of small-bowel
injuries in the emergency room., Brown).
Patients were excluded if the SBIs occurred
after admission to the emergency department
or were complicated by perforation. ...
(truncated)

– Issue - Did not include the FINDINGS
section.

• FINDINGS: small-bowel injury
was observed in 11.1% and 21.9% of patients,
respectively. Small-bowel injury associated
with liver injury occurred in 10.1%. The
mortality rate was significantly higher in
the small-bowel injury group than in the
non-small-bowel injury group (11.6% vs.
2.1%, P = 0.005). This study shows that
small-bowel injury is associated with a high
mortality rate, and that this complication is
an important cause of morbidity and mortality
in patients with severe acute pancreatitis.

– Issue - Did not include the
IMPRESSIONS section.

• Patient has small-bowel
injury. FINAL REPORT This pa-
tient was treated with conservative methods.
The small-bowel injury was treated surgically
with resection of the bowel, primary anasto-
mosis, and end-to-end anastomosis between
the ends of the resected bowel. She did not
have recurrence of intestinal obstruction after
3 years.

– Issue - Did not include either
IMPRESSIONS or FINDINGS section.

• John Doe has small-bowel
injury. IMPRESSIONS : This
case study was made possible by his support
by a research grant from the National
Institutes of Health (CA 10644).

– Issue - Had to make sure that the pro-
nouns used were same throughout the
report otherwise it would not be consis-
tent.

• Jane Doe has small-bowel
injury. IMPRESSIONS : This case
study was made possible by the support of
a research grant from the Department of
Veterans Affairs.

– Issue - Same as above.

• Patient I has small-bowel
injury He has no history of abdomi-
nal trauma or surgery. At first, he has only
mild abdominal pain. But with the progress
of disease, he has become distressed. At
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the initial examination, the abdominal pain
was alleviated, but the patient still has slight
distention of abdomen. He was admitted to
our hospital on the third day of admission.
His vital signs were: body temperature 37.5
°C, blood pressure 110/70 mmHg, pulse 105
beats/min, respiratory rate 26 breaths/min
and oxygen saturation 97% on room air.
He had mild abdominal distention. The
results of routine blood tests, urinalysis
and abdominal ultrasound examination
were normal. X-ray showed free air in the
abdomen. ... (truncated)

– Issue - Galactica could get confused
between I (alphabet) and I (roman nu-
meral).

• Patient A has small-bowel
injury (Fig. 1). He has no history
of abdominal trauma or surgery. At first,
an abdominal CT scan was performed to
evaluate abdominal pain. Abdominal CT
showed a partial small-bowel obstruction at
the splenic flexure of the colon (Fig. 2). An
oral contrast medium was then administered
via a nasogastric tube and an abdominal CT
scan was performed. ... (truncated)

– Issue - Galactica could get confused mis-
interpret “A” for the beginning of a sen-
tence (it was observed for a few cases)

• Patient alpha has small-bowel
injury requiring an open operation and
was diagnosed with C. difficile colitis. The
patient had a history of severe anemia and
leukopenia, which were also observed in
patient beta. Patient alpha was treated with
a single course of intravenous moxifloxacin
400 mg/day, which resulted in the resolution
of the diarrhea. He was followed closely after
discharge. In patient beta, he had a similar
episode of diarrhea after hospital admission,
but the diarrhea did not resolve. He was
prescribed with an oral vancomycin 1000 mg
twice a day, and the diarrhea was resolved. ...
(truncated)

– Issue - This would have been a good
choice. However, as we see above, pa-
tient qualifiers such as A, I and alpha,
might bias the model towards more male

patients (He). As such, we decided to
drop the qualifier altogether.

F Hyperparameters Used

Experiment Hyperparameters

Corpus Generation

random seed: 42
renormalize_logits: True
do_sample: True
max_length (prompt + generated tokens): 2,048
top_p: 0.9
temperature: 0.9

Pre-Training
batch_size: 40
learning_rate: 5e-5
epochs: 3

Fine-Tuning (SQuAD)

batch_size: 16
max_input_length (question + context): 384
stride: 128
learning_rate: 2e-5
epochs: 3
n_best (top n answer spans): 20
max_answer_length: 30
optimizer_type: AdamW

Fine-Tuning (COVID-QA)

batch_size: 40
max_input_length (question + context): 384
stride: 128
learning_rate: 2e-5
epochs: 1
n_best (top n answer spans): 20
max_answer_length: 1000
optimizer_type: AdamW

Fine-Tuning (RadQA)

batch_size: 16
max_length: 384
stride: 128
learning_rate: 3e-5
epochs: 1
n_best (top n answer spans): 20
max_answer_length: 1000
optimizer_type: AdamW

Table 3: Hyperparameters for each experiment. We use
three random seeds during pre-training and fine-tuning,
41,42,43 but only 42 when generating the corpus.
This is done since otherwise running the entire pipeline
from generation to training across all ablations would
take an infeasible amount of time.

Hyperparameters for each experiment are de-
tailed in Table 3. These were selected mostly from
preexisting implementations or through minimal
exploration of known settings.

G Note on Stability

All of our experiments were run using PyTorch
1.13.1 and Huggingface 4.26.1. How-
ever, we have noticed fluctuations in results when
training with other versions of these libraries. Thus,
to replicate our scores to the best extent, we recom-
mend installing the aforementioned versions of the
packages.

H Responses to Reviews

In this section, we provide clarifying statements to
questions raised during the review process.



7053

• The generative models used in the evaluation
(Galactia, MedLLaMMA, and MedAlpaca) do
not appear to be producing valid outputs. One
possible cause of this is the lack of instruction
following ability in the models, it may be nec-
essary to try instruction tuning or few-shot
prompting that are suited to the assumed task
or to try more capable recent generative mod-
els.

– While not being able to produce valid
outputs is a legitimate concern, we point
out that EQA systems are evaluated us-
ing EM and F1, both of which count to-
ken overlap with the gold answer. As
these models are free to produce text in
an unconstrained manner, their answers
display poor alignment with the gold ref-
erence. We observe that this is more of-
ten the case than producing invalid re-
sponses.

– Considering the complexity of the task,
it would make sense to try instruction
tuning, i.e., instead of span-extraction,
make the objective span generation. That
said, span generation is typically used for
open-ended QA, i.e., abstractive QA in-
stead of EQA. Additionally, we have not
found studies in the existing literature
that approach EQA in this manner. How-
ever, we agree that this will be an interest-
ing experiment for the project. As for try-
ing more capable LLMs, we tried Chat-
GPT (3.5) on a few samples as shown in
Appendix C. While we did not provide
a context in those trials, we estimate us-
ing OAI documentation that processing
the entire COVID-QA dataset would re-
quire upwards of $450, which is quite
expensive.

• In your trial, how much does the proposed
method depend on the prompts? Have you
noticed any limitations in the prompt design?

– This is a key point to the setup. The
goal is to generate data that matches
the content & style of the downstream
dataset. As such, writing prompts to
obey this observation is very important.
The prompt for COVID-QA was decided
based on Galactica’s pre-training instruc-
tions. RadQA’s prompt required data

examination to determine important fea-
tures such as “Findings” and “Impres-
sions”. Determining how much the over-
all method is impacted by prompt choice
is challenging as it requires us to rerun
the pipeline several times for corpora
generated using different prompts. As
such, our goal was to first write a prompt
to mimic the downstream dataset’s con-
texts as best as possible, before genera-
tion and training.

• I would also have liked to have had even a
brief indication of the results that can be ob-
tained in a specialist field other than medicine.

– Although in this paper, we have shown a
method to develop corpora for the med-
ical domain using dataset-specific enti-
ties, there is no reason why the same can-
not be applied to other closed domains
such as legal or finance. This ideally will
involve studying the dataset to gain in-
sights on the linguistic characteristics to
be mimicked by the synthetic data and
using an associated entity recognizer that
can perform better than general domain
ones to better identify important entities.

• One of the first issues addressed in the ab-
stract and the introduction is the challenge
of potential hallucinations of autoregressive
LLMs. The pre-training framework TOP-
Training is proposed "to address these chal-
lenges". However, the hallucination issue is
neither addressed nor evaluated in the paper.
The authors are aware of this problem and
mention it as a limitation of the paper. While
this is honest and appreciated, the objectives,
abstract and introduction need to be more
clarified.

– The main point we highlight is that “hal-
lucination” is a point of weakness in
LLMs for solving EQA. However, we
can still utilize their generation capabil-
ities to produce synthetic “pre-training”
data. The point on hallucination we men-
tion under “Limitations” is that we do
not implement a strategy to detect/filter
such instances in the pre-training corpus
as opposed to the task generations, when
we apply the LLMs directly for the task.
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• Regarding the limitations of autoregressive
LLMs for the EQA task, as written in the pa-
per, their capabilities with EQA datasets are
unexplored, and while one of the possible con-
tributions of the paper was to show their limi-
tations, autoregressive models are not evalu-
ated in depth, which is normal given the scope
of the article. The explanation of why they are
not effective should be a bit more explicit.

– As we’ve explained throughout the paper,
such as the introduction, related work
and benchmarking on both datasets (Ta-
ble 1, 2), autoregressive LLMs are sub-
optimal for EQA. Apart from hallucina-
tion, another reason is the way EQA sys-
tems are evaluated, i.e., EM and F1, both
of which require token overlap with the
gold reference. As these models gener-
ate text in an open-ended manner, their
performance drastically takes a hit.

• TOP-Training is a complex framework in-
volving several important steps such as data
argumentation and double fine-tuning with
an open and specific domain dataset. This
complexity makes the reasons why the method
works less clear. Is it the combination of data
augmentation and double fine-tuning that is
successful, or would just fine-tuning in a spe-
cific domain dataset be enough, like is done
in (Seo et al., 2024)? How does the use of
different NER systems affect the results? etc.

– TOP-Training refers to the entire
pipeline of entity extraction + data gen-
eration + model training. While there
are several steps, the complexity of our
framework is mitigated by the fact that
each step is straightforward and has a rea-
son. First, double pre-training is needed
to align the open-domain model with the
target domain. Next, the two rounds of
fine-tuning are needed to first learn the
task on a high-quality dataset with sev-
eral samples before approaching the tar-
get dataset with far less samples (both
COVID-QA and RadQA have ∼8K sam-
ples << than SQuAD’s 100K samples).
We also find that directly fine-tuning
models on the target dataset, i.e., with-
out the first round of fine-tuning, leads
to much worse performance as the ran-

domly initialized span-extraction head
is unable to learn from those few sam-
ples. The impact of different NER tools
is a bit more straightforward in that using
a domain-aligned entity recognizer will
lead to a higher number of quality identi-
fications. That said, we did initially try
Stanford’s Stanza (Qi et al., 2020), but
found Spacy’s extractions to be qualita-
tively better and thus decided to use it.

I Model Cards

Model Model Card (URL)
BERT-Base, Cased bert-base-cased

BERT-Base, Cased, SQuAD v1 batterydata/bert-base-cased-squad-v1
BERT-Base, Cased, SQuAD v2 deepset/bert-base-cased-squad2

RoBERTa-Base roberta-base
RoBERTa-Base, SQuAD v1 csarron/roberta-base-squad-v1
RoBERTa-Base, SQuAD v2 deepset/roberta-base-squad2

BioBERT dmis-lab/biobert-base-cased-v1.2
SciBERT allenai/scibert_scivocab_uncased

SciBERT (+CORD-19) lordtt13/COVID-SciBERT
PubMedBERT microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

BlueBERT bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
CODER GanjinZero/UMLSBert_ENG
LUKE studio-ousia/luke-base

XLNet, SQuAD v1 arrafmousa/xlnet-base-cased-finetuned-squad
STonKGs * stonkgs/stonkgs-150k
RadBERT zzxslp/RadBERT-RoBERTa-4m

Clinical BERT emilyalsentzer/Bio_ClinicalBERT
BioMed-RoBERTa allenai/biomed_roberta_base

MedLLaMA chaoyi-wu/MedLLaMA_13B
MedAlpaca medalpaca/medalpaca-13b
Galactica facebook/galactica-1.3b

Longformer, SQuAD v1 valhalla/longformer-base-4096-finetuned-squadv1
Longformer, SQuAD v2 mrm8488/longformer-base-4096-finetuned-squadv2

BigBird, SQuAD v1 FredNajjar/NF-bigbird-squad
BigBird, SQuAD v2 FredNajjar/bigbird-QA-squad_v2

Table 4: Model cards and URLs for all models used in
our paper. * We wanted to use STonKGs (Balabin et al.,
2022). However, there was no vocabulary file for the
model which resulted in errors.

All models used in this study were downloaded
from HuggingFace 5. Each model, along with its
model card (name as it appears in the HuggingFace
model hub) and URL is listed in Table 4.

5https://huggingface.co/

https://huggingface.co/bert-base-cased
https://huggingface.co/batterydata/bert-base-cased-squad-
https://huggingface.co/deepset/bert-base-cased-squad2
https://huggingface.co/roberta-base
https://huggingface.co/csarron/roberta-base-squad-v1
https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/lordtt13/COVID-SciBERT
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
https://huggingface.co/GanjinZero/UMLSBert_ENG
https://huggingface.co/studio-ousia/luke-base
https://huggingface.co/arrafmousa/xlnet-base-cased-finetuned-squad
https://huggingface.co/stonkgs/stonkgs-150k
https://huggingface.co/zzxslp/RadBERT-RoBERTa-4m
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/allenai/biomed_roberta_base
https://huggingface.co/chaoyi-wu/MedLLaMA_13B
https://huggingface.co/medalpaca/medalpaca-13b
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/valhalla/longformer-base-4096-finetuned-squadv1
https://huggingface.co/mrm8488/longformer-base-4096-finetuned-squadv2
https://huggingface.co/FredNajjar/NF-bigbird-squad
https://huggingface.co/FredNajjar/bigbird-QA-squad_v2
https://huggingface.co/

	Introduction
	Related Work
	Formulation of Medical-EQA
	TOP-Training
	LLM generates target-oriented Context
	System pre-training on synthetic data

	Experiments
	Baselines & influencing factors

	Results & Discussion
	COVID-QA
	Baselines
	TOP-Training

	RadQA
	Baselines
	TOP-Training

	Investigating Information Leakage

	Conclusion
	Token Filtering
	Synthetic Corpora Samples
	ChatGPT trials
	Hardware Details
	Prompts Tried
	Hyperparameters Used
	Note on Stability
	Responses to Reviews
	Model Cards

